

Andrew Lee Rubinger and Aslak Knutsen

Continuous Enterprise
Development in Java

Continuous Enterprise Development in Java
by Andrew Lee Rubinger and Aslak Knutsen

Copyright © 2014 Andrew Lee Rubinger and Aslak Knutsen. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Mike Loukides and Meghan Blanchette
Production Editor: Kara Ebrahim
Copyeditor: Kim Cofer
Proofreader: Becca Freed

Indexer: WordCo Indexing Services, Inc.
Cover Designer: Randy Comer
Interior Designer: David Futato
Illustrator: Rebecca Demarest

March 2014: First Edition

Revision History for the First Edition:

2014-03-11: First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449328290 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O’Reilly
Media, Inc. Continuous Enterprise Development in Java, the image of a Violet Turaco, and related trade dress
are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a trademark
claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information contained
herein.

ISBN: 978-1-449-32829-0

[LSI]

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449328290

Table of Contents

Foreword. vii
Preface. ix

1. Continuity. 1
The Zen of Prevention 1

Reactive Error Handling 1
Proactive Quality Policies 2

Software Development Processes 2
Serial Models 3
Iterative Models 3

Testing Is Development 5
Levels of Testing 5

Unit 6
Integration 7

Foundation Test Frameworks 8
JUnit 10
TestNG 12

Continuous Development 13

2. Enabling Technologies. 15
Bootstrapping 15

Apache Maven 16
JBoss Forge 17

Version Control 18
Git 19

A Test Platform for Java EE 20
Arquillian 20
ShrinkWrap 22
ShrinkWrap Resolvers 27

iii

Experimental Features 35
Runtime 37

WildFly 37
OpenShift 38

On to the Code 38

3. Scratch to Production. 39
The Development Environment 39
A New Project 40
Writing Our First Integration Test with Arquillian 48
Running the Application Locally 51
Running the Arquillian Integration Test 53
Deploying to OpenShift via JBoss Developer Studio 55

4. Requirements and the Example Application. 63
Introducing GeekSeek 64

Featureset 64
Conceptual Data Model 65
Logical Data Model 66
Obtaining, Building, Testing, and Running GeekSeek 68

Use Cases and Chapter Guide 73
Chapter 5: Java Persistence and Relational Data 73
Chapter 6: NoSQL: Data Grids and Graph Databases 73
Chapter 7: Business Logic and the Services Layer 73
Chapter 8: REST and Addressable Services 74
Chapter 9: Security 74
Chapter 10: UI 75
Chapter 11: Assembly and Deployment 75

5. Java Persistence and Relational Data. 77
The Relational Database Model 79
The Java Persistence API 81

POJO Entities 82
Use Cases and Requirements 83

User Perspective 84
Technical Concerns 84

Implementation 85
Entity Objects 86
Repository EJBs 90

Requirement Test Scenarios 93
Test Setup 93

iv | Table of Contents

CRUD Tests 95

6. NoSQL: Data Grids and Graph Databases. 101
RDBMS: Bad at Binary Data 102

Data Grids 103
RDBMS: Bad at Relationships 104

Graph Theory 105
Use Cases and Requirements 107
Implementation 107

Attachment 107
Relation 111

Requirement Test Scenarios 119
Attachment CRUD Tests 120
Transactional Integrity of Attachment Persistence 123
Validating Relationships 127

7. Business Logic and the Services Layer. 131
Use Cases and Requirements 132

Send Email on New User Signup 133
Implementation 134
Requirement Test Scenarios 139

A Test-Only SMTP Server 140
The Test 142

8. REST and Addressable Services. 149
REST in Enterprise Java: The JAX-RS Specification 152
Use Cases and Requirements 154
Implementation 157

Repository Resources 157
The Representation Converter 161
The @ResourceModel 163
LinkableRepresentation 164
ResourceLink 167

Requirement Test Scenarios 168
A Black-Box Test 169
Validating the HTTP Contracts with Warp 171
Arquillian Warp 171
Test Harness Setup 173
The HTTP Contracts Test 174

9. Security. 177
Use Cases and Requirements 178

Table of Contents | v

Implementation 178
Supporting Software 178

Requirement Test Scenarios 186
Overview 187
Setup 187
Security Tests 188

10. The User Interface. 197
Use Cases and Requirements 197
Implementation 198
Requirement Test Scenarios 201

Pure JavaScript 201
Functional Behavior 203

11. Assembly and Deployment. 211
Obtaining JBoss EAP 211
Running Against JBoss EAP 213

Using the EAP Remote Container 213
Using the EAP Managed Container 215

Continuous Integration and the Authoritative Build Server 218
Configuring the GeekSeek Build on CloudBees 218
Populating CloudBees Jenkins with the EAP Repository 220
Automatic Building on Git Push Events 223

Pushing to Staging and Production 224
Setting Up the OpenShift Application 224
Removing the Default OpenShift Application 227
Pushing from the CI Build Job to OpenShift 227

12. Epilogue. 231

Index. 233

vi | Table of Contents

Foreword

Even ancient J2EE was never just about development.

From the advent of enterprise Java there has been a strictly defined holistic role concept.
Component providers, assemblers, system administrators, and server providers have
clear and distinct responsibilities, but these have been rarely upheld in the real world.
Because of politics and organizational structures, often the developer assumes the re‐
sponsibility of all these roles, with the possible exception of system administration and
operations. The developer’s main goal is development, and the well-intentioned role
separation collapses quickly.

In the “real world,” a dedicated operations department takes the results of the develop‐
ment cycle and attempts to install, run, and just keep it alive. Such an artificially sepa‐
rated model works, but is far away from being optimal. Sometimes it gets even worse,
and signing off documents becomes more important than software quality.

If you are only interested in quick hacks, you will hate Java EE, application servers, and
probably this book altogether. Packaging, deployment, monitoring, and management
sounds like bloat and is bloat, if you are only focusing on development.

However the “DevOps” movement also considers operations and development as a
single unit. Who needs beautiful code that cannot be properly installed in a predefined
environment? DevOps is nothing groundbreaking; rather, it’s a “back to the roots”
movement.

This book is not just compatible with the “DevOps” ideals; it pragmatically shows how
to build a Java EE application from scratch and also patches holes in the Java EE spec.
Automation of project and archive creation, pragmatic integration of Maven builds into
the process, and testing on all levels are deeply explained with concrete code. Rather
than focusing on best-case scenarios, this book shows you how to test the inconvenient,
including examples with SMTP servers or Message Driven Beans.

Although the tools, libraries, and frameworks introduced in this book were initiated by
Red Hat employees, this book will be equally valuable for you if you are not using JBoss

vii

or WildFly at all. In fact, I used Arquillian, ShrinkWrap, and Forge to test applications
on GlassFish and TomEE at the same time. Also, in my workshops I use Arquillian to
test plug-ins, extensions, and sophisticated dependency injection without deploying
mocks to a production archive.

It was fun to read this book on the flight to JavaOne 2013 in San Francisco; I learned a
lot. I wish you happy reading—enjoy the lightweight Java EE development lifecycle!

—Adam Bien
http://adam-bien.com

viii | Foreword

http://airhacks.com

Preface

Simplicity is the ultimate sophistication.
— Leonardo DaVinci

Software development for the modern Web continues to evolve at a furious pace. In
recent years we’ve seen the trend of client-side state move to the server, only to correct
itself back again. Despite JavaScript’s obvious utility, two engineers are likely to yield
three opinions regarding its worthiness. HTML5 ushers an armada of rich-media and
concurrency support right into the browser. The proven, 40-year-old relational data
model has fallen out of vogue to defiant NoSQL systems, and our version-control stores
have undergone both implementation and paradigm overhauls.

Our tools constitute an ever-changing buffet of prescriptions, and sorting through the
array of options presents a dizzying exercise.

In the meantime, engineers face the same central challenges raised by building any
multiuser program; we like our code elegant and maintainable. We need it to run effi‐
ciently and securely. We must assert its correctness.

In the Java space, many answers have come from a set of specifications released under
the heading of the Java Enterprise Edition. The overarching goal of this effort remains:
hide away the syntactic complexity inherent in software development, and attempt to
provide a clean standard model upon which to build. In other words, the Java EE Plat‐
form comprises an evolving toolkit, and a fallible one at that.

So a few years back we set out to fill some of the holes left unspecified by Java EE, and
ended up holding the reins to a test framework that inspired our imaginations and
proved more versatile than initially envisioned. In fleshing out ideas to best share the
lessons we’d learned, it became clear that we didn’t need to document any particular
technology. Developers have been missing a cohesive map to navigate the murky waters
of Java EE, its adjacent frameworks, and its services.

ix

This text does not detail a singular specification. Those volumes may be found else‐
where, because we’ve found it makes little sense to begin our learning with the Solutions.

Instead, let’s align our start with the Problems. We’ll take a use-case–centric approach
to the testable development of enterprise Java, and after a bit of exploratory theory and
requisite background, each chapter will tackle a single high-level issue. The solutions
we propose may span from the user interface to persistent storage, touching upon a
number of standards or third-party projects along the way. All examples are executable,
and as proof run in production on the companion website.

The newbie should expect to meet the players in an enterprise Java system, and bring a
blank repository from scratch to a fully deployed, live public application on the cloud.
Coders of all stripes may find appealing approaches to testing against seed data, pushing
events to the client, interacting with a distributed data grid, validating the user interface,
and more.

Quite simply, we’ll aim to make the complicated much less so. With luck, this will em‐
power greater productivity and enjoyment in your work.

At least, that’s been our experience while employing the techniques that inspired this
book.

Conventions Used in This Book
The following typographical conventions are used in this book:
Italic

Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

x | Preface

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
http://continuousdev.org. We offer a guide to get started in Chapter 4.

This book is here to help you get your job done. All contents here are licensed under
Creative Commons Attribution-ShareAlike 2.0 Generic, and we invite the community at
large to contribute work including feature requests, typographical error corrections,
and enhancements via our GitHub Issue Tracker. You may reuse any of the text or
examples in compliance with the license, which requires attribution. See full license for
details.

An attribution usually includes the title, author, publisher, and ISBN. For example:
“Continuous Enterprise Development in Java by Andrew Lee Rubinger and Aslak Knut‐
sen (O’Reilly). Copyright 2014 Andrew Lee Rubinger and Aslak Knutsen,
978-1-449-32829-0.”

Safari® Books Online
Safari Books Online is an on-demand digital library that
delivers expert content in both book and video form from
the world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research, prob‐
lem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi‐
zations, government agencies, and individuals. Subscribers have access to thousands of
books, training videos, and prepublication manuscripts in one fully searchable database
from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley Pro‐
fessional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT

Preface | xi

http://continuousdev.org
http://creativecommons.org/licenses/by-sa/2.0/
http://bit.ly/1e7kQRD
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals

Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technol‐
ogy, and dozens more. For more information about Safari Books Online, please visit us
online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/continuous-enterprise.

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
First and foremost we would like to give a huge thanks to the Arquillian community:
wonderful, talented folks from around the world who have contributed their time and
knowledge to help improve the project, from coding to writing to speaking to screaming
on the Internet (yes, we pay attention to you).

A special thank you to all the Arquillian module leads: Karel Piwko, Bartosz Majsak,
Lukáš Fryč, Dan Allen, Stefan Miklosovic, Jakub Narloch, Gerhard Poul, John Ament,
Jan Papousek, Bernard Labno, Ståle Pedersen, Ken Finnigan, Tolis Emmanouilidis, Ales
Justin, Martin Gencur, Vineet Reynolds, Davide D’Alto, Jean Deruelle, David Blevins,
Mark Struberg, Thomas Diesler, Romain Manni-Bucau, Logan McGrath, and Alexis
Hassler.

A big shout out to Sarah White and Cheyenne Weaver for giving us the visual identity
and the storyline to play with. You make us look good!

xii | Preface

http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/
http://oreil.ly/continuous-enterprise
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

And thanks to all the people who helped us throughout this book, correcting and com‐
menting on the content.

Thanks to Meghan Blanchette for being so persistent on pushing us back to work. This
probably (definitely) would never have reached revision if you hadn’t!

And last but not least, a big thanks to our friend in code Adam Bien for the foreword.

This book is for the community from which our work was born, raised, and continues
to evolve.

Preface | xiii

CHAPTER 1

Continuity

If everyone is moving forward together, then success takes care of itself.
— Henry Ford

The Zen of Prevention
At times it may feel that the universe mischievously conspires to destroy our work. And
to some extent this is true: nature doesn’t like order. This entropy manifests itself in
many ways: we open a network socket, a router may fail. We write to a file, the disk could
fill up. We fail to check for valid inputs, our program could blow up unexpectedly.

Causes of potential failure are both infinite and inevitable. As guardians of our own
code quality, we’re armed with two battle tactics: Be reactive, or be proactive.

Reactive Error Handling
Colloquially referred to as “firefighting,” a reactive position calls us to action. In most
cases, an undesirable situation has already presented itself, and now we’re charged with
fixing:

1. The initial cause of the error, if under our control
2. The unprotected areas of code that allowed the cause to wreak greater havoc
3. Any resultant artifacts that persist after the error is encountered

Anyone who’s rifled through a database’s binary logfile to restore data to a consistent
state can attest to the stressful waste of time incurred in handling emergency situations
after a breach in expected execution. Dealing with issues as they arise also imposes a
sense of immediacy; the activities of a normal workday may be suspended to address
more pressing concerns.

1

Clearly, the reactive model is not our best option if it can be avoided.

Proactive Quality Policies
“Only YOU can prevent … fires” has been the plea of the United States Forest Service
since 1947, underscoring the importance of limiting factors that contribute to disaster
before they happen.

Related to the prevention of errors is the issue of containment. In the case of failure we’d
like to know as soon as possible and handle the problem prior to its leaking into other
areas of the system, where it might cause greater harm. Consider this simple bit of code:

public String welcome(String name) {
 return "Hello, " + name;
}

Assume a user were to accidentally pass null into the welcome(String) method. The
String returned would be:

Hello, null

This is because the Java Language Specification Version 7 states in 15.18.1 that concat‐
enation with a single String operand will result in string conversion upon the other
operand. The null pointer is therefore represented as the String “null” according to
the rules dictated by 5.1.11.

Likely this isn’t the result we’d been expecting, but we’ve put ourselves in this position
because we didn’t code defensively. Enhancing the welcome(String) method to perform
a precondition check would raise an Exception to the user and prohibit further normal
execution flow:

public String welcome(String name) {
 if (name == null || name.isEmpty()) {
 throw new IllegalArgumentException("name must be specified");
 }
 return "Hello, " + name;
}

This fail-fast policy is equally as important at runtime as it is during development.
Knowing how to limit our exposure to error remains a topic of vast research and re‐
finement. Luckily, the study of the software development process provides us with a
number of models upon which we may base our own practices.

Software Development Processes
Methodology. Doctrine. Paradigm. Whatever we call it, our process (or absence of one!)
is the script we follow on a day-to-day basis that guides our approach to building
software. Typically inspired by the central themes we believe contribute to quality and

2 | Chapter 1: Continuity

http://bit.ly/1e7kLNX
http://bit.ly/1e7kJW5
http://bit.ly/1e7kMBr

efficiency, a model for development workflow may be a powerful tool in keeping you
and your team from heading down an unproductive path. Many well-documented ap‐
proaches exist, and knowing their motivations can help inform your own decisions in
choosing a sensible model for your project.

Serial Models
A serial, or sequential, process follows a linear path from project inception to comple‐
tion. As each stage in the development lifecycle comes to a close, the next one in turn
is started. Prior stages are typically not revisited, and this model is often visualized as a
series of steps, as illustrated in Figure 1-1.

Figure 1-1. Waterfall Model

Development flows from one stage to the next, forming the basis for the nickname
“Waterfall,” often associated with serial models. Also called “Big Design Up Front,” this
process relies heavily upon a full understanding of all requirements from the project
onset. The general theory supporting Waterfall Design is roughly “measure twice, cut
once”: by doing an exhaustive evaluation of all moving parts, the goal is to reduce wasted
time by avoiding the need to go back and make corrections. In our opinion, this tack is
best applied for projects with a long development cycle targeting a single release.

Though this might fit the retail software mold, the never-go-back mentality of a serial
process makes it a particularly brittle approach to building adaptable code; the model
is not designed to support changing requirements. For that, we might be better served
by looking to a more random-access model where any development phase may be re‐
visited (or many may be in-process at the same time!).

Iterative Models
In stark contrast to the linear workflow prescribed by the Waterfall Model, there exists
a suite of well-known iterative designs built to encourage change and promote paral‐
lelism. By decomposing a large problem into more manageable components, we grant
ourselves the option to solve each piece independently. Additionally, we might opt to
take broad swipes on a first pass, further refining our solutions in repeated cycles; this
is where “iterative” processes obtain their name.

Software Development Processes | 3

Extreme Programming
Also known simply as “XP,” Extreme Programming is a discipline that introduces a
feedback loop into each phase of the development process. A practice that rose to pop‐
ularity especially in the late ’90s and early 2000s, XP lauds communication and other
social aspects as centrally important themes. Figure 1-2 illustrates a typical workflow.

Figure 1-2. Iterative feedback loops in Extreme Programming

While the full reasoning behind XP is detailed by Kent Beck’s Extreme Programming
Explained: Embrace Change, Second Edition (Addison-Wesley, 2004), some of its pri‐
mary tenets can be boiled down to:

• Short development cycles
• Daily, brief meetings
• Pair Programming, Team Ownership, and Accountability
• Doing only what needs to be done now, deferring nonessential work until later
• Garnering feedback from all stakeholders, not only programmers, early and often
• Test-Driven Development

— The approach of first writing automated tests, then correcting/augmenting main
code until it passes

In fact, XP, along with other models, has both inspired and acts as an implementation
of a larger collection of iterative policies as outlined by the Manifesto for Agile Software
Development.

4 | Chapter 1: Continuity

http://agilemanifesto.org/
http://agilemanifesto.org/

Testing Is Development
Move testing from the caboose to the engine.

— Tim Ottinger
 Senior Consultant

No matter the development method your team prescribes, and no matter how rigidly
you adhere to its principles, eventually you’re going to need to assert that your code
works. Of course you could handle this manually by deploying the application and
letting a human user follow a scripted test plan, but wherever possible it’s much more
efficient and fail-proof to automate the test execution. So you’re going to need to write
some tests.

But it’s our opinion that testing is not simply about making sure your code works as
expected.

When you write tests, you’re a user of your API. You’ll see how intuitive it is to use, and
you’ll discover gaps in documentation. You might discover that it’s too verbose or ugly,
and most importantly: you can reevaluate your design before it’s too late. You’re putting
yourself in the shoes of your target audience.

What’s more, if you write tests alongside the development of your business logic, you
might find your work to be more enjoyable. You’ll know when a feature is completed;
you’ll have the satisfaction of seeing concrete feedback in real time. Proponents of Test-
Driven Development even make the case for writing tests before implementation. In our
experience, testing may be done alongside construction of the primary code such that
the experience from one end of the tunnel can inform the other.

Automated testing can take many forms, and we’ll categorize a few for use throughout
this text.

Levels of Testing
Proponents of test-oriented software development processes may qualify tests in one
or more flavors:
Acceptance

Asserts that code meets business requirements

Black-box
Asserts the contract of an API is working without respect to its internals

Compatibility
Asserts that code plays nicely with one or more outside components; for instance,
a web application may need to display correctly on Internet Explorer, Chrome,
Firefox, Safari, and mobile devices

Testing Is Development | 5

Functional
Asserts that code meets the technical requirements derived from business require‐
ments (i.e., that all functions are working as expected)

Load/stress/performance
Asserts and measures how a system handles input under load, and how gracefully
it degrades with increased traffic

Regression
Asserts that previously identified errors have been corrected or that existing features
continue to function

Smoke
A subset of a full test suite, intended to run quickly and provide feedback that the
system is generally intact from a simplistic level

White-box
Asserts that an API is working as contracted, taking into consideration
implementation-specific data structures and constructs

A well-tested application may have tests covering many of these areas, and we can further
organize these types according to scope.

Unit
The purpose of a unit test is to validate that a single functionality is operating as expected
in isolation. Unit tests are characterized as fast, simple, easy-to-run, and fine-grained.
They may dig into implementation details for use in white-box testing.

For instance, every Java object inherits the method Object.hashCode() and the value
equality test Object.equals(Object). By API contract, calls to hashCode of equal-by-
value objects must return equal, that is:

/**
 * Test bullet 2 of the hashCode contract as defined by:
 * http://docs.oracle.com/javase/7/docs/api/java/lang/Object.html#hashCode()
*/
public void testHashCodeOfEqualObjects() {
 // Declare some vars that are equal-by-value
 MyObject a = new MyObject("a");
 MyObject b = new MyObject("a");

 // Now ensure hashCode is working for these objects as contracted
 assert a.equals(b) : "The objects should be equal by value";
 assert a.hashCode() == b.hashCode() : "Hash codes of equal objects not equal";
}

This test, implemented using the Java assert keyword, is a classic example of a unit
test: it checks for the smallest possible invariant (in this case that the equals() and

6 | Chapter 1: Continuity

hashCode() implementations of MyObject are working with respect to one another).
Many experts will advise that a unit test contains only one assertion; in our experience
this is a fantastic guideline, but as the preceding example illustrates, use common sense.
If more than one assertion is required to conclude that all participants in an invariant
are in expected form, then use what’s necessary.

In cases where a unit test may require inputs from unrelated components, the use of
mock objects is a common solution. Mocks supply an alternate implementation used in
testing that may help the developer to:

• Simulate an error condition
• Avoid starting up an expensive process or code path
• Avoid dependence upon a third-party system that might not be reliable (or even

not available) for testing purposes
• Avoid dependence upon a mechanism that supplies nonidempotent (nonrepeata‐

ble) values
— For instance, a random-number generator or something that relies on the cur‐

rent time

Although mocks absolutely have their place in the testing arsenal, in the context of
Enterprise development it’s our opinion that their use should be limited. The Java En‐
terprise Edition is based on a POJO (Plain Old Java Object) component model, which
enables us to directly instantiate servlets, Enterprise JavaBeans (EJBs), and Context and
Dependency Injection (CDI) beans; this is great for validating business logic in simple
calls. However, the true power of Java EE is in the loose coupling between components,
and mocks do not account for the linkage between these pieces that’s provided by the
container. To fully test an application, you must test the whole runtime, not simply the
code you’ve written on your own. For that, we need a more comprehensive solution to
validation than is allowed by unit tests.

Integration
Imagine we’d like to build a pipe to carry water from a nearby reservoir to a treatment
and purification facility. The unit tests we described previously would be responsible
for ensuring that each section of the tube was free of leaks and generally of good quality.
But the whole is more than the sum of its parts: the opportunity for water escaping
between the cracks still exists.

And so it is with software: we must check that our components play nicely with one
another. This is especially true for Java EE, where dependency injection is a commonplace
tool. It’s great that one bean not be explicitly bound to another, but eventually we rely
upon a container to do the wiring for us. If our metadata or configuration is incorrect,
our injection points may not be filled as we’re expecting. This could result in a

Levels of Testing | 7

deployment-time exception or worse, making it imperative that we have test coverage
for the interaction between components.

When we talk about integration testing in this book, it’s within the context of a contain‐
er. Historically, interaction with an application server has been notoriously difficult to
test. For many, Java EE has become a dirty term as a result. It’s the goal of this text to
clearly delineate techniques for building enterprise applications in a testable manner.
Though many may view this discussion as related to integration testing, instead we feel
that it’s more about development, and integration testing is a valued part of that equation.

In that sense, testing is development.

Foundation Test Frameworks
As you might imagine, container services really help us to cut down on the complexity
in our application code. Dependency injection frees us from manual wiring, while fea‐
tures like declarative security and transaction management keep us from weaving tech‐
nical concerns into our business logic. Unfortunately, nothing comes for free: the cost
of enlisting a framework or an application server’s help is that we’ve now added another
integration point. And every integration point must be validated by an integration test.

Java has built-in support for the java.lang.Assertion error and the assert keyword,
and these are fine tools when used in the right context. Because assertions using assert
are only analyzed in the presence of the -ea switch at launch of the Java runtime, you
need not worry about the performance implications of running extra checks in a pro‐
duction environment with this support disabled. For that reason, it makes sense to use
assert for testing internal code. For instance:

private String welcome(String name) {
 assert name!=null && !name.isEmpty() : "name must be specified";
 return "Hello, " + name;
}

Because the visibility of this code is private, we do not need to worry about doing
precondition checks on end-user input; the parameter username must be supplied by
something we have written. Therefore, this need not be tested in production.

Of course, assertions may help us along the way, but they’re not tests. Tests exercise a
code path and validate one or more post-conditions. For instance, we might write the
following client to validate that the public welcome(String) example from “Proactive
Quality Policies” on page 2 is working as we’d expect:

8 | Chapter 1: Continuity

public class WelcomeJDKTest {

 /** WelcomeBean instance to be tested **/
 private WelcomeBean welcomer;

 private WelcomeJDKTest(WelcomeBean welcomer) {
 this.welcomer = welcomer;
 }

 public static void main(String... args) {

 /** Make a test client, then execute its tests **/
 WelcomeJDKTest tester = new WelcomeJDKTest(new WelcomeBean());
 tester.testWelcome();
 tester.testWelcomeRequiresInput();

 }

 private void testWelcome() {
 String name = "ALR";
 String expectedResult = "Hello, " + name;
 String receivedResult = welcomer.welcome(name);
 if(!expectedResult.equals(receivedResult)) {
 throw new AssertionError("Did not welcome " + name + " correctly");
 }
 }

 private void testWelcomeRequiresInput() {
 boolean gotExpectedException = false;
 try {
 welcomer.welcome(null);
 } catch (final IllegalArgumentException iae) {
 gotExpectedException = true;
 }
 if(!gotExpectedException) {
 throw new AssertionError("Should not accept null input");
 }
 }

}

Not too terrible as far as code coverage goes; we’ve ensured that the welcome method
functions as we’d expect, and we even check that it bans null input at the right place,
before that null pointer has a chance to make things more complicated later.

But our signal-to-noise ratio is way off when we write our own main(String[])-based
test clients. Look at all the boilerplate involved just to get the execution running, as
compared with the test code itself! Just as we use frameworks and component models
to cut the redundant, rote bits in our business logic, we can take advantage of some
popular libraries to help us slim our tests.

Foundation Test Frameworks | 9

JUnit
The JUnit Test Framework is one of the most widely known testing frameworks for Java.
Initially ported from Kent Beck’s work in testing the Smalltalk programming
language, JUnit is the most-downloaded artifact in the Maven Central Repository out‐
side of libraries used to run Maven itself (as of August 2012).

Refactoring our WelcomeJDKTest to use JUnit might look a little like this:

public class WelcomeJUnitTest {

 /** To be set by the {@link Before} lifecycle method **/
 private WelcomeBean welcomer;

 /** Called by JUnit before each {@link Test} method **/
 @Before
 public void makeWelcomer() {
 this.welcomer = new WelcomeBean();
 }

 @Test
 public void welcome() {
 final String name = "ALR";
 final String expectedResult = "Hello, " + name;
 final String receivedResult = welcomer.welcome(name);
 Assert.assertEquals("Did not welcome " + name + " correctly",
 expectedResult, receivedResult);
 }

 @Test
 public void welcomeRequiresInput() {
 boolean gotExpectedException = false;
 try {
 welcomer.welcome(null);
 } catch (final IllegalArgumentException iae) {
 gotExpectedException = true;
 }
 Assert.assertTrue("Should not accept null input", gotExpectedException);
 }
}

The first benefit we get is that we don’t need a main(String[]) method, and we don’t
need to manually call upon our test methods. Instead, JUnit will dutifully execute for
us any lifecycle (i.e., @Before) or test (annotated with @Test) methods and report the
results back to its initial runner. Secondly, we’re given access to the JUnit library (for
instance, a set of convenience methods in org.junit.Assert) to help us reduce the
amount of code we’ll need to write assertions.

10 | Chapter 1: Continuity

http://www.junit.org/
http://en.wikipedia.org/wiki/Kent_Beck
http://en.wikipedia.org/wiki/Kent_Beck
http://search.maven.org/

JUnit also has widespread IDE support, making test execution during development
much easier. For instance, consider the context menu available in Eclipse, as shown in
Figure 1-3.

Figure 1-3. JUnit IDE runner integration

As opposed to our homebrewed main(String[]) test client, JUnit supports reporting.
In the IDE this may appear graphically, as shown in Figure 1-4.

Figure 1-4. JUnit IDE reporting integration

Often we’ll make use of a continuous integration server to handle our builds and provide
an auditable view of the codebase over time. During this more formal build process,
output may be directed to an XML file for analysis by plug-ins. This can be very helpful
in tracking progress of the failing and total number of tests. For instance, we can use
the Jenkins Continuous Integration Server shown in Figure 1-5 to track the progress
graphically.

Foundation Test Frameworks | 11

http://jenkins-ci.org/

Figure 1-5. Continuous integration test reporting

Of course, JUnit is not the only kid on the block when it comes to test frameworks.

TestNG
If JUnit sets the standard for simplicity in Java testing, TestNG touts greater flexibility
to the developer by offering an arguably greater featureset. Although the differences
between the two frameworks are beyond the scope of this text, there’s quite a bit of
overlap in concept. Refactoring our test for TestNG should look familiar:

public class WelcomeTestNGTest {

 /** To be set by the {@link @BeforeTest} lifecycle method **/
 private WelcomeBean welcomer;

 /** Called by TestNG before each {@link Test} method **/
 @BeforeTest
 public void makeWelcomer() {
 this.welcomer = new WelcomeBean();
 }

 @Test
 public void welcome() {
 /// .. Omitting logic for brevity
 Assert.assertEquals(receivedResult, expectedResult, "Did not welcome " +
 name + " correctly");
 }

 @Test
 public void welcomeRequiresInput() {
 /// .. Omitting logic for brevity
 Assert.assertTrue(gotExpectedException, "Should not accept null input");
 }
}

Some of the parameter orders and API names for the annotations have changed, but
the concept remains: write less, and let the framework wire up the call stack.

12 | Chapter 1: Continuity

http://testng.org/doc/index.html

IDE integration, while not standard for Eclipse Juno, is simple enough to install and
provides a GUI runner, as we see in Figure 1-6.

Figure 1-6. JUnit runner in Eclipse

Continuous Development
Followers of Extreme Programming and Agile methodologies are likely to be familiar
with Continuous Integration, a practice that advocates frequent patching of the up‐
stream development branch in order to catch errors as they’re introduced. Such an
approach involves:

• An authoritative source repository (which is not at odds with decentralized version
control systems, as we’ll soon see)

• A comprehensive test suite
• An automated build system
• Automated deployment

These general rules are applicable in most any modern language, are tool-agnostic, and
are widely accepted throughout the development community.

So why the Continuous Development title of this book?

In addition to the successful ideology and theory espoused by the Agile community,
we’ll be looking at concrete tools and projects both within and extending the Java En‐
terprise platform to best address the real-world concerns of an Enterprise Java developer.

The authoritative Git repository containing the book and example application source
for this text is hosted by our friends at GitHub. The accompanying book site is located
at http://continuousdev.org, and the official Twitter channel is @ContinuousDev. The
authors can be reached at authors@continuousdev.org.

Continuous Development | 13

http://testng.org/doc/download.html
http://bit.ly/1e7nG9j
http://bit.ly/1e7o0ox
http://continuousdev.org
http://twitter.com/ContinuousDev
mailto:authors@continuousdev.org

All contents of the book’s repository are licensed under Creative Commons Attribution-
ShareAlike 2.0 Generic, and we invite the community at large to contribute work, in‐
cluding feature requests, typographical error corrections, and enhancements, via our
GitHub Issue Tracker.

The print release of the book and its example source is set to be given the Git tag of
1.0.0 in the authoritative repository, and development will continue thereafter in the
master branch to correct errata and add supplementary material, including new chap‐
ters and use cases. The community is welcome to suggest or request topics for additional
coverage.

The example application accompanying the use cases raised in this book is called Geek‐
Seek, and it is publicly available at http://geekseek.continuousdev.org. The source is lo‐
cated in this repository under code/application, and instructions for building, testing,
and running locally are detailed in Chapter 4. The build jobs for the application are
kindly powered by CloudBees at http://bit.ly/1e7wRGN and http://bit.ly/1e7wQ5H.

We welcome your contributions and hope you find the material covered here to be of
interest and benefit to your work and career in testable enterprise development.

The first step is to meet some of the key players who will become thematic in this text.

14 | Chapter 1: Continuity

http://creativecommons.org/licenses/by-sa/2.0/
http://creativecommons.org/licenses/by-sa/2.0/
http://bit.ly/1e7kQRD
http://geekseek.continuousdev.org
http://bit.ly/1e7wJqQ
http://www.cloudbees.com
http://bit.ly/1e7wRGN
http://bit.ly/1e7wQ5H

CHAPTER 2

Enabling Technologies

I get by with a little help from my friends.
— Paul McCartney and John Lennon

There’s a common misconception that the goal of a standard specification is to address
every problem. This couldn’t be further from the truth: creating a standard is meant to
address the 80% case in a manner that’s been proven through experience in the field.
The Java Enterprise Edition and its subsystems, governed by the Java Community Pro‐
cess (JCP), is no exception.

By its very makeup, the JCP is designed to strive for consensus among all participants
in an Expert Group on a given technology. Where corporate sponsors and individual
contributors disagree or determine that a feature is not yet mature enough to be ade‐
quately standardized, latitude is given to specification implementors. This helps to foster
creativity and provides differentiation between vendors. In fact, on a discussion re‐
garding the Java EE7 Roadmap, Expert Group member David Blevins succinctly ad‐
dressed the dynamic: “Vendors innovate, collectively we standardize.”

Though it’s not the goal of this book to provide exhaustive instruction on the complete
featureset of Java EE, it is absolutely our intent to unify the development experience.
Helping us along the way are a set of enabling technologies intended to smooth the
rough edges of the EE platform and fill the gaps left open by its specifications.

The following open source projects are all made freely available for you to download,
use, and modify (be sure to consult individual licensing terms).

Bootstrapping
For all the documentation surrounding Java EE and its use, the seemingly simple act of
getting started gets quickly muddled:

15

http://bit.ly/1e7xn7H
http://www.jcp.org/en/home/index
http://www.jcp.org/en/home/index
http://bit.ly/1e7xoIF
http://bit.ly/1e7xoIF

• How am I going to build my sources into deployments?
• How should I organize my codebase?
• How can my team best collaborate in parallel on the codebase?
• What about libraries my code uses? How do I get those?

There are a number of valid answers to each of these questions, and the flexibility of
choice can easily turn into a burden. Because we’ll be exploring fully functioning ex‐
amples that are intended to be reproduced in your own environment, by necessity we’ve
had to make some decisions in the interest of keeping focus on the code as opposed to
our development tools. The following projects, when combined, work very well together
but are certainly not the only solutions to the preceding bullet points.

One approach to undertaking a new project is to first lay out the scaffolding on your
local filesystem. This will create the structure for your source code, build descriptors,
and other resources used by your project. Often this process is fairly rote, involving
commands to make new directories and text files in some sensible layout. Although
there’s no formal rule dictating how your project tree is organized, some build systems
employ a convention; others instead choose to allow you total control over your project’s
build by encouraging you to script or otherwise instruct each build task.

Our examples will be built using a declarative build tool, which has standard commands
that do not change from project to project.

Apache Maven
Perhaps the most prominent figure in the Java automated build tool landscape, Apache
Maven positions itself as a “software project management and comprehension tool.” For
simplicity’s sake, we can view it as a build tool; it’s capable of compiling, testing, and
assembling.

One very nice feature of Maven is that it strives for "convention over configuration.” By
following a set of recommended best practices, you’re likely to trim down on the amount
of metadata you’d otherwise need to explicitly define. Additionally, Maven actions
(called goals) are bound to a documented lifecycle that is common to all Maven-based
projects. For instance, in order to compile, test, and package your project, the command
$> mvn package applies. This standardization relieves us from having to declare or learn
different build commands for each project.

At the core of the Maven engine is a sophisticated dependency management solution
capable of resolving libraries by name from a Central Repository (or additionally con‐
figured repository) onto a user’s local system. This feature allows us to skip the manual
process of adding dependencies into our version control system, and allows us to instead
fetch them on demand as part of the build process. As an added bonus, the requisite

16 | Chapter 2: Enabling Technologies

http://maven.apache.org/
http://maven.apache.org/
http://bit.ly/1e7xH6o
http://search.maven.org/

dependencies for all projects consuming ours are well-documented and automatically
fetched for us, as shown in Figure 2-1.

Figure 2-1. Project dependencies as fetched from an external repository

Maven is not without its detractors, however. It’s been criticized for a few points. Among
them are:

• Maven plug-in versions are not bound to Maven Core versions, making guaranteed
reproducible builds between different environments difficult to guarantee.

• Project Object Model (POM, i.e., pom.xml) syntax, which is the metadata describing
a project’s makeup, is verbose.

• Transitive dependencies as a default trigger a lot of downloading on first build.
Without care, a project may inherit more dependencies than are necessary or
desired.

• Deviation from the defined Maven standard is often difficult to reconcile.

It is possible to use Maven-structured repositories from outside Maven. In fact, stand‐
alone dependency manager Apache Ivy (often used in concert with task-based tool
Apache Ant), does just that. Groovy-based Gradle seeks to provide the flexibility of Ant
with the dependency management of Maven.

That said, Maven continues to be a popular and widely used tool in Java development,
and will satisfy our requirements to build our examples.

JBoss Forge
If you’ve spent any time developing Java EE–based projects (or any nontrivial applica‐
tion, for that matter!), you’ve likely invested a good amount of energy in creating the
project layout, defining dependencies, and informing the build system of the relevant
class paths to be used in compilation and execution. Although Maven enables us to
reduce that load as compared with undertaking project setup manually, there’s typically
quite a bit of boilerplate involved in the pom.xml defining your requirements.

Bootstrapping | 17

http://ant.apache.org/ivy/
http://ant.apache.org/
http://www.gradle.org/

JBoss Forge offers “incremental project enhancement for Java EE.” Implemented as a
command shell, Forge gives us the ability to alter project files and folders. Some concrete
tasks we might use Forge to handle are:

• Adding Java Persistence API (JPA) entities and describing their model
• Configuring Maven dependencies
• Setting up project scaffolding
• Generating a view layer, reverse-engineered from a domain model
• Deploying to an application server

Because Forge is built atop a modular, plug-in-based architecture, it’s extensible to ad‐
ditional tasks that may be specific to your application.

Overall, the goal of Forge is to ease project setup at all stages of development, so we’ll
be employing it in this text to speed along the construction of our examples.

Version Control
From the moment we collaborate on a project with others or would like to inspect the
evolution of our code over time, we need some form of version control. Until recently,
the most common paradigm for synchronizing access to a shared codebase was the
client/server model, wherein developers can keep a local working copy and check their
changes into a centralized server, as shown in Figure 2-2.

Figure 2-2. Clients interacting with a centralized version control system

Some systems utilize file-level locking to ensure that no conflicts arise during develop‐
ment; others allow concurrent access at the file granularity but cue the developer to
resolve line-level conflicts upon committing changes upstream.

18 | Chapter 2: Enabling Technologies

http://forge.jboss.org/
http://forge.jboss.org/plugins.html

Likely the most widely deployed client/server version control system (VCS) from the
1990s through the 2000s has been Concurrent Versions Systems, most often referred to
by its acronym, CVS. Although CVS has enabled teams to freely work on all files in the
tree through unreserved checkouts, its shortcomings (including nonatomic commits and
absent tracking for file renames) prompted the development of Subversion (SVN), heir
apparent to CVS. Boasting a wider featureset and greater stability as contrasted with
CVS, SVN has enjoyed its reign from the mid- to late-2000s.

These days, the centralized model has been superseded by distributed version control
systems (DVCS), which are differentiated by their ability to store the full repository,
including all history in any number of nodes.

This layout creates a “pull model,” where developers on a common project are given the
authority over their own repository, free to incorporate changes from others (or not!).
At first, this can be a confusing topic to grasp for users vested in the centralized “push
model,” but it’s our opinion that the benefits of this design easily justify the initial con‐
fusion inherent when considering many full-fledged repositories representing the same
project.

Some immediate gains to consider:

• Repository operations such as committing and searching history are much faster.
• Network connectivity is not required to alter the respository’s state.
• Every repository is a full backup of the codebase’s history.

This is because each user is typically working on a local repository, and synchronization
with a remote repository is only necessary when pushing changes to be visible by others.

In this text, we’ll be using the open source DVCS Git.

Git
Originally developed to coordinate development of the Linux kernel, Git is a DVCS
whose usage has taken off in recent years, arguably due to the user-friendliness of the
socially aware hosting site GitHub. In fact, this book’s text and examples are hosted on
GitHub for all to participate.

From a high level, we’ve chosen Git for our projects because it enables:
True feature (topic) development

Branching is quick, easy, and cheap. You can work on feature X in isolation, with
the ability to put your changes on top of development that may be occurring in the
mainline branch.

Version Control | 19

http://savannah.nongnu.org/projects/cvs
http://subversion.apache.org/
http://www.github.com
http://bit.ly/1e7o0ox
http://bit.ly/1e7o0ox

Integration with third-party systems built to respond to Git events
For instance, we’ll be able to trigger builds and production deployments by pushing
our local changes to a remote repository.

Rewriting of local history
Often it’s handy to commit liberally, giving yourself many “save” points along the
way. However, before making these (sometimes breaking) changes visible to the
rest of the world, it’s good practice to “squash” the mini-changes into a cohesive,
singular commit. This helps keep the version history sane and facilitates later au‐
diting if a bug should arise.

Again, it is not our aim to fully delve into the mechanics of each tool we’ll be employing.
However, we will be issuing Git commands and explaining their use along the way. You
can find a very good reference on the myriad Git subroutines in Pro Git by Scott Chacon
(Apress, 2009), available for free in digital editions and in print via online retailers.

A Test Platform for Java EE
Java EE 5 introduced a POJO (Plain Old Java Object) programming model, which freed
developers from having to adhere to any particular class hierarchy for its business ob‐
jects. The introduction of Contexts and Dependency Injection (CDI) in Java EE 6 further
pushed the notion of simple business objects by providing typesafe injection.

The benefit to objects that can be easily created using the new operator is the same as
their drawback: when we manually instantiate objects for use in testing, we’re not dealing
with the same enterprise components we have in the target runtime. An EJB becomes
such only in the context of an EJB container; a servlet is a servlet only when created by
a servlet container. Any time we circumvent the target runtime environment to handle
object creation and wiring on our own, we’re using mock objects.

Although many will advocate on the usefulness of mocks, by definition they provide an
approximation of how your application will behave in a production environment. Re‐
member that you’re responsible for validating that the full bevy of code running on your
servers is working as expected, including the bits you did not write. Many not-so-subtle
errors may arise while leveraging the full potential of the application server in produc‐
tion, and it’s best to be testing in an environment as close to the real thing as possible.

True Java EE testing in this sense is an area left largely unspecified by the EE platform,
and we’ll be examining some tools to help bridge this divide.

Arquillian
Arquillian is an innovative and highly extensible testing platform for the JVM that
enables developers to easily create automated integration, functional, and acceptance
tests for Java middleware.

20 | Chapter 2: Enabling Technologies

http://git-scm.com/book
http://bit.ly/MAgJYs
http://arquillian.org

Picking up where unit tests leave off, Arquillian handles all the plumbing of container
management, deployment, and framework initialization, so you can focus on the busi‐
ness of writing test logic. Instead of configuring a potentially complex test harness,
Arquillian abstracts out the target runtime by:

• Managing the lifecycle of the container (or containers).
• Bundling the test case, dependent classes, and resources into a ShrinkWrap archive

(or archives).
• Deploying the archive (or archives) to the container (or containers).
• Enriching the test case by providing dependency injection and other declarative

services.
• Executing the tests inside (or against) the container.
• Capturing the results and returning them to the test runner for reporting.
• To avoid introducing unnecessary complexity into the developer’s build environ‐

ment, Arquillian integrates seamlessly with familiar testing frameworks (e.g., JUnit
4, TestNG 5), allowing tests to be launched using existing IDE, Ant, and Maven test
plug-ins—without any add-ons.

The Arquillian project adheres to three core principles:
Tests should be portable to any supported container.

Keeping container-specific APIs out of the tests enables developers to verify appli‐
cation portability by running tests in a variety of containers. It also means that
lightweight containers can be used as a substitute for full containers during
development.

Tests should be executable from both the IDE and the build tool.
By leveraging the IDE, the developer can skip the build for a faster turnaround and
has a familiar environment for debugging. These benefits shouldn’t sacrifice the
ability to run the tests in continuous integration using a build tool.

The platform should extend or integrate existing test frameworks.
An extensible architecture encourages reuse of existing software and fosters a uni‐
fied Java testing ecosystem. Regardless of how complex it becomes, executing an
Arquillian test is as simple as selecting Run As → Test in the IDE or executing the
“test” goal from the build tool, as shown in Figure 2-3.

A Test Platform for Java EE | 21

Figure 2-3. DCVS repositories and their relationships

ShrinkWrap
From the onset, ShrinkWrap was born from a need to more easily test Java Enterprise
deployments. Traditionally defined as flat-file archives adhering to the ZIP standard,
these have necessitated the introduction of some build step to package up all application
resources. And a build step takes time:

$ mvn clean install
... terrifying output trace ...
[INFO] --
[INFO] BUILD SUCCESS
[INFO] --
[INFO] Total time: 1:13.492s
[INFO] --

But as developers, we live in our coding environments. Switching out of that mind set
to run a build is wasteful. So we asked: “What if we could declare, in Java, an object to
represent that archive?” What resulted was a Java API analogue to the “jar” tool, a virtual
filesystem with an intuitive syntax:

JavaArchive archive = ShrinkWrap.create(JavaArchive.class,"myarchive.jar")
 .addClasses(MyClass.class, MyOtherClass.class)
 .addResource("mystuff.properties");

This enables us to take advantage of the IDE’s incremental compilation features, allow‐
ing us to skip the build, as shown in Figure 2-4.

22 | Chapter 2: Enabling Technologies

Figure 2-4. Incremental compilation in the Eclipse IDE

This piece fulfills the design goal of Arquillian to run tests based on full-fledged de‐
ployments directly from the IDE.

Although ShrinkWrap is a standalone virtual filesystem, in our examples we’ll be pri‐
marily exercising it as the deployment mechanism for Arquillian. Let’s take a moment
to review its usage.

The first step is getting your hands on the ShrinkWrap binaries. The Core is composed
of three pieces, as outlined in Table 2-1.

Table 2-1. ShrinkWrap modules and separation of API, SPI, and implementation
Name Maven coordinates

API org.jboss.shrinkwrap:shrinkwrap-api

SPI org.jboss.shrinkwrap:shrinkwrap-spi

Implementation org.jboss.shrinkwrap:shrinkwrap-impl-base

Only the API should be available upon your compilation class path, while the SPI and
the Implementation modules are both required for the runtime. This is to enforce good
separation between classes intended for direct use and the project’s internals.

In Maven, these can be brought in under the proper scopes easily by using the Shrink‐
Wrap Dependency Chain POM, available in Maven Central:

<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <!-- snip -->

 <dependency>
 <groupId>org.jboss.shrinkwrap</groupId>
 <artifactId>shrinkwrap-depchain</artifactId>
 <version>${version.shrinkwrap}</version>

A Test Platform for Java EE | 23

 <type>pom</type>
 </dependency>

 <!-- snip -->
</project>

For projects not using the Maven repository system, the ShrinkWrap Distribution
makes all modules available as a download, and you can set up the dependencies man‐
ually to suit your needs. Here are the prerequisites:

• JRE5+ runtime
• No additional dependencies

ShrinkWrap can run on any Java5 runtime or higher, but requires at least JDK6 for
compilation.

The primary entry point to the ShrinkWrap library is the org.jboss.shrink
wrap.api.ShrinkWrap class. From here you can call the create method to make a new
Archive, a generic view of the virtual filesystem that allows the addition of content called
Assets into a location called an ArchivePath. Table 2-2 more easily shows ShrinkWrap
nomenclature next to more common terms.

Table 2-2. ShrinkWrap archive types
Archive type Description

org.jboss.shrinkwrap.api.GenericArchive Simplest type of concrete user-view of an
Archive; supports generic operations

org.jboss.shrinkwrap.api.spec.JavaArchive JAR type; allows addition of Classes, Pack
ages, and Manifest operations

org.jboss.shrinkwrap.api.spec.EnterpriseArchive Java EE EAR type; supports Manifest and
related spec operations

org.jboss.shrinkwrap.api.spec.WebArchive Java EE WAR type; supports operations
common to web application deployments

org.jboss.shrinkwrap.api.spec.ResourceAdaptorArchive Java EE RAR type; supports operations
common to resource adapter deployments

To create an Archive, simply choose your desired archive type and optionally supply a
name to the static ShrinkWrap:create method:

GenericArchive myArchive = ShrinkWrap.create(GenericArchive.class,
 "myArchive.jar");

That’s it! You’ve got your first ShrinkWrap archive!

Of course, an object representing an empty archive is pretty useless. So let’s have a look
at adding in some content. As we noted before, content is modeled by the Asset class,

24 | Chapter 2: Enabling Technologies

so let’s first take a look at some of the Asset implementations provided by ShrinkWrap
(as listed in Table 2-3).

Table 2-3. ShrinkWrap asset types
Asset Represents

org.jboss.shrinkwrap.api.asset.ArchiveAsset Nested Archive content

org.jboss.shrinkwrap.api.asset.ByteArrayAsset byte[] or InputStream content

org.jboss.shrinkwrap.api.asset.ClassAsset Java Class content

org.jboss.shrinkwrap.api.asset.ClassLoaderAsset A resource that can be loaded by an optionally
specified ClassLoader

org.jboss.shrinkwrap.api.asset.FileAsset File content

org.jboss.shrinkwrap.api.asset.StringAsset String content

org.jboss.shrinkwrap.api.asset.UrlAsset Content located at a given URL

org.jboss.shrinkwrap.api.asset.EmptyAsset Empty (0-byte) content

Additionally, because Asset is an interface, you can provide your own implementation
to supply any byte-based content that may be represented as an InputStream. For
instance, the following snippet shows how to present an Activation Framework Data
Source as an Asset:

final DataSource dataSource = null; // Assume you have this
Asset asset = new Asset() {
 @Override
 public InputStream openStream() {
 try {
 return dataSource.getInputStream();
 } catch (final IOException e) {
 throw new RuntimeException(e);
 }
 }
};

The Archive:add method allows us to pass in some Asset content and add it under an
ArchivePath:

myArchive.add(myAsset,"path/to/content");
System.out.println(myArchive.toString(true));

Passing a true verbosity flag into the toString method of Archive creates a recursive
"ls -l" -style output:

myArchive.jar:
/path/
/path/to/
/path/to/content

A Test Platform for Java EE | 25

The Archive views we covered before are also really helpful, depending upon the type
of content you’re working with. For instance, a standard JAR file typically con‐
tains .class files and other resources, so the JavaArchive type lets you add these.

ShrinkWrap supports a simple mechanism allowing you to switch “views” of your
archive, and it’s provided by the as method of the org.jboss.shrinkwrap.api.Assign
able interface; each view in turn extends Assignable. So to get your archive to use the
JavaArchive view in order to easily add Class resources, you could simply write this:

myArchive.as(JavaArchive.class).addClasses(String.class, Integer.class);
System.out.println(myArchive.toString(true));

archive.jar:
/java/
/java/lang/
/java/lang/String.class
/java/lang/Integer.class

Using this mechanism is central to keeping ShrinkWrap’s usage clean and intuitive, while
providing for a versatility typically found in true multiple-inheritance languages.

Although ShrinkWrap has its roots in Java EE and close ties to the Arquillian Testing
Platform, it’s certainly not limited to these domains. In fact, ShrinkWrap on its own
intentionally is scoped to go no further than to act as a virtual filesystem for archives.
As such, it provides a simple mechanism for playing nicely with flat-file structures.

Borrowing from the previous example, perhaps we’d like to use ShrinkWrap to package
up all of the .class files in the current package and output these as a standard JAR in ZIP
format. The code for that would actually be pretty simple:

 JavaArchive archive = ShrinkWrap.create(JavaArchive.class, "myPackage.jar")
 .addPackage(this.getClass().getPackage());
 System.out.println(archive.toString(true));
 archive.as(ZipExporter.class).exportTo(
 new File("/home/alr/Desktop/myPackage.jar"), true);

myPackage.jar:
/org/
/org/alr/
/org/alr/test/
/org/alr/test/TestClass.class

So let’s see what’s going on here. First we create a JavaArchive and add all the contents
of the current Class’s Package. Then we dump the output to the console, just to see
what’s included. In the final line, we again use the Assignable facilities of the JavaArch
ive view to get us into a new view: one capable of exporting to ZIP format. In this case
we use the appropriately named ZipExporter, allowing us to export to a File, Output
Stream, or even get the contents as an InputStream so we can deal with the bytes
ourselves.

26 | Chapter 2: Enabling Technologies

Table 2-4 lists the three types of exporters that ship with ShrinkWrap.

Table 2-4. ShrinkWrap exporter types
Exporter Output format

org.jboss.shrinkwrap.api.exporter.TarExporter TAR

org.jboss.shrinkwrap.api.exporter.TarGzExporter TAR.GZ

org.jboss.shrinkwrap.api.exporter.ZipExporter ZIP

Of course, we can also obtain a ShrinkWrap archive from a flat file in a similar fashion
by using one of the standard importers shown in Table 2-5.

Table 2-5. ShrinkWrap importer types
Importer Output format

org.jboss.shrinkwrap.api.importer.TarImporter TAR

org.jboss.shrinkwrap.api.importer.TarGzImporter TAR.GZ

org.jboss.shrinkwrap.api.importer.ZipImporter ZIP

The code for running an import to roundtrip the previous example might look like this:

 JavaArchive roundtrip = ShrinkWrap
 .create(ZipImporter.class, "myPackageRoundtrip.jar")
 .importFrom(new File("/home/alr/Desktop/myPackage.jar"))
 .as(JavaArchive.class);

Note how we can pass ZipImporter into the ShrinkWrap.create method, because it’s
Assignable as well! Beginning to notice a theme here?

This concludes our brief introduction into manipulating archive content with
ShrinkWrap.

ShrinkWrap Resolvers
Although ShrinkWrap is ideally suited for creating new archives containing byte-based
resources, often our applications are composed with prebuilt libraries bundled along‐
side our code, making for more complex deployments. These may bundle other archives
together, as shown in the following example Web application ARchive (WAR):

$> jar -tvf myApplication.war
 0 Tue Apr 23 17:01:08 MST 2013 META-INF/
 128 Tue Apr 23 17:01:06 MST 2013 META-INF/MANIFEST.MF
 0 Tue Apr 23 17:01:08 MST 2013 WEB-INF/
 0 Tue Apr 23 17:01:08 MST 2013 WEB-INF/classes/
 0 Tue Apr 23 17:01:08 MST 2013 WEB-INF/lib/
 3654 Tue Apr 23 16:59:44 MST 2013 WEB-INF/lib/hibernate.jar
 3800 Tue Apr 23 17:01:00 MST 2013 WEB-INF/lib/commons-io.jar
 4015 Tue Apr 23 17:00:44 MST 2013 WEB-INF/lib/myEjbModule.jar

A Test Platform for Java EE | 27

As you can see, under WEB-INF/lib are a couple of third-party libraries used as depen‐
dencies by our own code, and an Enterprise JavaBeans (EJB) module that we’ve written
for our application. This packaging structure is consistent with the final deployments
used by most WARs and Enterprise application ARchives (EARs).

Often we don’t control the construction of these libraries, and we certainly shouldn’t be
in the business of reassembling them (and hence further differentiating our tests from
our production runtime deployments). With the advent of Maven and other build sys‐
tems, typically third-party libraries and our own dependent modules are obtained from
a backing software repository. In this case we supply a series of coordinates that uniquely
identifies an artifact in the repository, and resolve the target files from there.

That is precisely the aim of the ShrinkWrap Resolvers project; it is a Java API to obtain
artifacts from a repository system. Grammars and support for Maven-based repository
structures are currently implemented (this is separate from the use of Maven as a project
management system or build tool; it’s possible to use a Maven repository layout with
other build systems).

ShrinkWrap Resolvers is comprised of the modules listed in Table 2-6.

Table 2-6. ShrinkWrap modules
Name Maven coordinates

API org.jboss.shrinkwrap.resolver:shrinkwrap-resolver-api

SPI org.jboss.shrinkwrap.resolver:shrinkwrap-resolver-spi

Maven API org.jboss.shrinkwrap.resolver:shrinkwrap-resolver-api-maven

Maven SPI org.jboss.shrinkwrap.resolver:shrinkwrap-resolver-spi-maven

Maven Implementation org.jboss.shrinkwrap.resolver:shrinkwrap-resolver-impl-maven

Maven Implementation with
Archive Integration

org.jboss.shrinkwrap.resolver:shrinkwrap-resolver-impl-

maven-archive

The separation between the Maven and non-Maven modules is there to enforce modular
design and separate out generic resolution from Maven-specific grammars, should the
project support other mechanisms in the future.

Adding ShrinkWrap Resolvers to your project
You can obtain ShrinkWrap Resolvers for use in your system in a single pass by declaring
a dependency upon the depchain module in a Maven pom.xml file:

<dependencies>
 ...
 <dependency>
 <groupId>org.jboss.shrinkwrap.resolver</groupId>
 <artifactId>shrinkwrap-resolver-depchain</artifactId>
 <version>${version.shrinkwrap.resolvers}</version>
 <scope>test</scope>

28 | Chapter 2: Enabling Technologies

 <type>pom</type>
 </dependency>
 ...
</dependencies>

This will bring the APIs into the test classpath and the SPIs and Implementation modules
into the runtime classpaths (which will not be transitively inherited, as per Maven rules
in runtime scope).

Alternatively, you can have finer-grained control over using ShrinkWrap Resolvers by
bringing in each module manually:

 <dependencies>
 ...
 <dependency>
 <groupId>org.jboss.shrinkwrap.resolver</groupId>
 <artifactId>shrinkwrap-resolver-api</artifactId>
 <version>${version.shrinkwrap.resolvers}</version>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>org.jboss.shrinkwrap.resolver</groupId>
 <artifactId>shrinkwrap-resolver-spi</artifactId>
 <version>${version.shrinkwrap.resolvers}</version>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>org.jboss.shrinkwrap.resolver</groupId>
 <artifactId>shrinkwrap-resolver-api-maven</artifactId>
 <version>${version.shrinkwrap.resolvers}</version>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>org.jboss.shrinkwrap.resolver</groupId>
 <artifactId>shrinkwrap-resolver-spi-maven</artifactId>
 <version>${version.shrinkwrap.resolvers}</version>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>org.jboss.shrinkwrap.resolver</groupId>
 <artifactId>shrinkwrap-resolver-impl-maven</artifactId>
 <version>${version.shrinkwrap.resolvers}</version>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>org.jboss.shrinkwrap.resolver</groupId>
 <artifactId>shrinkwrap-resolver-impl-maven-archive</artifactId>
 <version>${version.shrinkwrap.resolvers}</version>
 <scope>test</scope>
 </dependency>
 ...
 </dependencies>

A Test Platform for Java EE | 29

The general entry point for resolution is the convenience org.jboss.shrinkwrap.re
solver.api.maven.Maven class, which has static hooks to obtain a new org.jboss.
shrinkwrap.resolver.api.maven.MavenResolverSystem. Let’s cover some of the
most popular use cases for ShrinkWrap Resolvers.

If you happen to use Arquillian BOM in <dependencyManagement>,
it already contains a ShrinkWrap Resolvers version. You must im‐
port the ShrinkWrap Resolvers BOM preceding the Arquillian OM
in order to attain the 2.0.0-x version. Adding a ShrinkWrap BOM is
recommended in any case.
You can import the ShrinkWrap Resolvers BOM via the following
snippet:

<dependencyManagement>
 <dependencies>
 ...
 <!-- Override dependency resolver with latest version.
 This must go *BEFORE* the Arquillian BOM. -->
 <dependency>
 <groupId>org.jboss.shrinkwrap.resolver</groupId>
 <artifactId>shrinkwrap-resolver-bom</artifactId>
 <version>${version.shrinkwrap.resolvers}</version>
 <scope>import</scope>
 <type>pom</type>
 </dependency>
 ...
 </dependencies>
</dependencyManagement>

Resolution of artifacts specified by Maven coordinates

Maven coordinates, in their canonical form, are specified as follows: groupId:artifac
tId:[packagingType:[classifier]]:version. Often, those are referred as G

(groupId), A (artifactId), P (packagingType), C (classifier), and V (version). If you omit
P and C, you will get the default value, which uses jar as the packaging type and an
empty classifier. ShrinkWrap Resolvers additionally allows you to skip V in case it has
version information available from the POM; here are some use cases:

• The simplest use case is to resolve a file using coordinates. Here, the resolver locates
an artifact defined by G:A:V and resolves it including all transitive dependencies.
The result is formatted as an array of type File:

File[] = Maven.resolver().resolve("G:A:V").withTransitivity().asFile();

• You might want to change the default Maven behavior and resolve only one artifact
specified by G:A:V, avoiding Maven’s transitive dependencies. For this use case,
ShrinkWrap Resolvers provides a shorthand for changing resolution strategy, called

30 | Chapter 2: Enabling Technologies

withoutTransitivity(). Additionally, you might want to return a single File
instead of an array:

Maven.resolver().resolve("G:A:V").withoutTransitivity().asSingleFile();

• Very often, you need to resolve more than one artifact. The resolve(String…)
method allows you to specify many artifacts at the same time. The result of the call
will be an array of File composed of artifacts defined by G1:A1:V1 and G2:A2:V2,
including their transitive dependencies:

Maven.resolver().resolve("G1:A1:V1", "G2:A1:V1").withTransitivity().asFile();

• Resolving a dependency with a specific packaging type. The packaging type is
specified by P in the G:A:P:V coordinates description:

Maven.resolver().resolve("G:A:war:V").withTransitivity().asFile();

Packaging can be of any type; the most common are listed here:
jar war ear ejb rar par pom test-jar maven-plugin

• Resolving a dependency with a specific classifier. With a classifier, such as tests,
you need to include all G:A:P:C:V parts of the coordinates string:

Maven.resolver().resolve("G:A:test-jar:tests:V").withTransitivity().asFile();

• Returning resolved artifacts as a type other than File. ShrinkWrap Resolvers pro‐
vides shorthands for returning an InputStream instead of File. Additionally, with
shrinkwrap-resolver-maven-impl-archive on the runtime classpath, you can
return results as ShrinkWrap archives, such as JavaArchive, WebArchive, or
EnterpriseArchive:

Maven.resolver().resolve("G:A:V").withTransitivity().as(File.class);
Maven.resolver().resolve("G:A:V").withTransitivity().as(InputStream.class);
Maven.resolver().resolve("G:A:V").withTransitivity().as(JavaArchive.class);
Maven.resolver().resolve("G:A:war:V").withoutTransitivity().asSingle(
 WebArchive.class);

It’s the responsibility of the caller to close the returned Input
Stream.

• Working with artifact metadata. Sometimes, you are more interested in metadata,
such as dependencies of a given artifact instead of the artifact itself. ShrinkWrap
Resolvers provides an API for such use cases:

MavenResolvedArtifact artifact = Maven.resolver().resolve("G:A:war:V")
 .withoutTransitivity().asSingle(MavenResolvedArtifact.class);

MavenCoordinate coordinates = artifact.getCoordinate();

A Test Platform for Java EE | 31

MavenArtifactInfo[] dependencies = artifact.getDependencies();
String version = artifact.getResolvedVersion();
ScopeType scope = artifact.getScope();

You can still retrieve the resolved artifact from MavenResolvedArtifact:
File file = artifact.asFile();

• Excluding a dependency of the artifact you want to resolve. In case you need to
resolve an artifact while avoiding some of its dependencies, you can follow the
Maven concept known as <exclusions>. The following shows how to exclude G:B
while resolving G:A:V:

Maven.resolver()
 .addDependencies(
 MavenDependencies.createDependency("G:A:V", ScopeType.COMPILE, false,
 MavenDependencies.createExclusion("G:B"))).resolve().
 withTransitivity().asFile();

• Using a strategy to control what will be resolved. In special cases, excluding a single
dependency is not the behavior you want to achieve. For instance, you want to
resolve all test-scoped dependencies of an artifact, you want to completely avoid
some dependency while resolving multiple artifacts, or maybe you’re interested in
optional dependencies. For those cases, ShrinkWrap Resolvers allows you to specify
a MavenResolutionStrategy. For instance, you can exclude G:B from G:A:V (e.g.,
the same as in previous examples) via the following snippet:

Maven.resolver().resolve("G:A:V").using(
 new RejectDependenciesStrategy(false, "G:B")).asFile();

withTransitivity() and withoutTransitivity() are just con‐
venience methods you can use to avoid writing down strategy
names. The first one calls TransitiveStrategy and the second
one calls NotTransitiveStrategy.

Strategies are composed of an array of MavenResolutionFilter instances and
TransitiveExclusionPolicy instances. Defining the former allows you to trans‐
form a dependency graph of resolved artifacts, and defining the latter allows you
to change default behavior when resolving transitive dependencies. By default,
Maven does not resolve any dependencies in provided and test scope, and it also
skips optional dependencies. ShrinkWrap Resolvers behaves the same way by de‐
fault, but allows you to change that behavior. This comes in handy especially when
you want to, for instance, resolve all provided dependencies of G:A:V. For your
convenience, ShrinkWrap Resolvers ships with the strategies described in Table 2-7.

32 | Chapter 2: Enabling Technologies

Table 2-7. Strategies available in ShrinkWrap Resolvers
Name Description

AcceptAllStrategy Accepts all dependencies of artifacts. Equals TransitiveStrategy.

AcceptScopesStrategy Accepts only dependencies that have a defined scope type.

CombinedStrategy Allows you to combine multiple strategies together. The behavior is defined as logical
AND between combined strategies.

NonTransitiveStrategy Rejects all dependencies that were not directly specified for resolution. This means
that all transitive dependencies of artifacts for resolution are rejected.

RejectDependenciesStrategy Rejects dependencies defined by G:A (version is not important for comparison, so it
can be omitted altogether). By default, it is transitive: RejectDependencies
Strategy("G:A", "G:B") means that all dependencies that originate at G:A
or G:B are removed as well. If you want to change that behavior to reject defined
dependencies but to keep their descendants, instantiate the following strategy: Re
jectDependenciesStrategy(false, "G:A", "G:B")

TransitiveStrategy Accepts all dependencies of artifacts. Equals AcceptAllStrategy.

• Control sources of resolution. ShrinkWrap Resolvers allows you to specify where
you want to resolve artifacts from. By default, it uses the classpath (also known as
Maven Reactor) and Maven Central repository; however, you can alter the behavior
programmatically:

Maven.resolver().resolve("G:A:V").withClassPathResolution(false)
 .withTransitivity().asFile();
Maven.resolver().resolve("G:A:V").withMavenCentralRepo(false)
 .withTransitivity().asFile();
Maven.resolver().offline().resolve("G:A:V")
 .withTransitivity().asFile();

Although classpath resolution is handy for testing SNAPSHOT artifacts that are not
yet installed in any Maven repository, making ShrinkWrap Resolvers offline lets
you avoid accessing any repositories but local cache.

• Controlling classpath resolution and Maven Central comes in handy, but sometimes
you might want to specify a completely different settings.xml file than THE default
for your test execution. You can do this via the following API calls:

Maven.configureResolver().fromFile("/path/to/settings.xml")
 .resolve("G:A:V").withTransitivity().asFile();

Maven.configureResolver().fromClassloaderResource("path/to/settings.xml")
 .resolve("G:A:V").withTransitivity().asFile();

A Test Platform for Java EE | 33

ShrinkWrap Resolvers will not consume settings.xml files speci‐
fied on the command line (-s settings.xml) or in the IDE. It
reads settings.xml files at their standard locations, which are
~/.m2/settings.xml and $M2_HOME/conf/settings.xml unless
overridden in the API or via a system property.

Resolution of artifacts defined in POM files
While previous calls allow you to manually define what you want to resolve, in Maven
projects, you have very likely specified this information already in your pom.xml file.
ShrinkWrap Resolvers allows you to follow DRY (Don’t Repeat Yourself) principles and
can load metadata included there.

ShrinkWrap Resolvers constructs a so called effective POM model (simplified, that is
your pom.xml file plus parent hierarchy and Super POM, the Maven default POM file).
In order to construct the model, it uses all local repositories, the classpath repository,
and all remote repositories. Once the model is loaded, you can automatically add the
metadata in there to artifacts you want to resolve. The following use cases are supported:
Resolving an artifact with the version defined in effective POM

In case you want to resolve G:A:V, you can simply specify G:A instead. For artifacts
with non-JAR packaging type or classifier, you must use alternative syntax with a
question mark ?, such as G:A:P:? or G:A:P:C:?:

Maven.resolver().loadPomFromFile("/path/to/pom.xml")
 .resolve("G:A").withTransitivity().asFile();

Maven.resolver().loadPomFromClassLoaderResource("/path/to/pom.xml")
 .resolve("G:A:P:?").withTransitivity().asFile();

Resolving artifacts defined in effective POM
ShrinkWrap resolvers allows you to import artifacts defined with a specific scope
into the list of artifacts to be resolved. This way, you don’t need to alter your tests
if you change dependencies of your application. You can either use importDepen
dencies(ScopeType…) or convenience methods that cover the most frequent usages
(importRuntimeDependencies(), importTestDependencies(), and importRunti
meAndTestDependencies()):

Maven.resolver().loadPomFromFile("/path/to/pom.xml")
 .importDependencies(ScopeType.TEST, ScopeType.PROVIDED)
 .resolve().withTransitivity().asFile();

Maven.resolver().loadPomFromFile("/path/to/pom.xml").
 importRuntimeDependencies().resolve().withTransitivity().asFile();

34 | Chapter 2: Enabling Technologies

“Runtime” in convenience methods means all the Maven scopes
that are used in the application runtime, which are compile,
runtime, import, and system. If you need to select according to
Maven scopes, go for importDependencies(ScopeType…)

instead.

Specifying plug-ins to be activated
By default, ShrinkWrap Resolvers activates profiles based on property value, file
presence, active by default profiles, operating system, and JDK. However, you can
force profiles the same way you would via -P in Maven:

Maven.resolver().loadPomFromFile(
 "/path/to/pom.xml", "activate-profile-1", "!disable-profile-2")
 .importRuntimeAndTestDependencies().resolve().withTransitivity().asFile();

System properties
ShrinkWrap Resolvers allows you to override any programmatic configuration via Sys‐
tem Properties, which are defined in Table 2-8.

Table 2-8. System Properties that alter the behavior of ShrinkWrap Resolvers
Name Description

org.apache.maven.user.settings Path to the user settings.xml file. If both settings are provided, they are
merged; user one has the priority.

org.apache.maven.global-settings Path to the global settings.xml file. If both settings are provided, they are
merged; user one has the priority.

org.apache.maven.security-settings Path to settings-security.xml, which contains an encrypted master
password for password-protected Maven repositories.

org.apache.maven.offline Flag there to work in offline mode.

maven.repo.local Path to local repository with cached artifacts. Overrides value defined in
any of the settings.xml files.

Experimental Features

The following features are in their early development stages. How‐
ever, they should work for the most common use cases. Feel free to
report a bug in the SHRINKRES project if you encounter problems.

A Test Platform for Java EE | 35

https://issues.jboss.org/browse/SHRINKRES

ShrinkWrap Resolvers Maven plug-in
The ShrinkWrap Resolvers Maven plug-in allows you to propagate settings specified on
the command line into test execution. Settings include paths to the pom.xml and set‐
tings.xml files, activated/disabled profiles, offline flag, and path to local repository. No
support for IDE exists at this moment.

To activate the plug-in, you need to add the following snippet to the <build> section of
your pom.xml file:

<plugin>
 <groupId>org.jboss.shrinkwrap.resolver</groupId>
 <artifactId>shrinkwrap-resolver-maven-plugin</artifactId>
 <version>${version.shrinkwrap.resolvers}</version>
 <executions>
 <execution>
 <goals>
 <goal>propagate-execution-context</goal>
 </goals>
 </execution>
 </executions>
</plugin>

Then, in your test you can do the following:

Maven.configureResolverViaPlugin().resolve("G:A").withTransitivity().asFile();

MavenImporter

The MavenImporter is the most advanced feature of ShrinkWrap Resolvers. Instead of
the user being responsible for specifying how the testing archive should look, it reuses
information defined in your pom.xml to construct the archive. So, no matter how your
project looks, you can get a full archive because you would deploy it into the application
server within a single line of code.

MavenImporter is able to compile sources, construct manifest.mf files, fetch the depen‐
dencies, and construct archives as Maven would do. It does not require any data to be
prepared by Maven; however, it can profit from those if they exist. For instance, the
following example takes advantage of metadata defined in the POM file to determine
the build output:

ShrinkWrap.create(MavenImporter.class)
 .loadPomFromFile("/path/to/pom.xml").importBuildOutput().as(WebArchive.class);

ShrinkWrap.create(MavenImporter.class)
 .loadPomFromFile("/path/to/pom.xml", "activate-profile-1",
 "!disable-profile-2").importBuildOutput().as(WebArchive.class);

ShrinkWrap.create(MavenImporter.class).configureFromFile("/path/to/settings.xml")
 .loadPomFromFile("/path/to/pom.xml").importBuildOutput().as(JavaArchive.class);

36 | Chapter 2: Enabling Technologies

MavenImporter currently supports only JAR and WAR packages. Al‐
so, it does not honor many of the Maven plug-ins—it currently sup‐
ports only a limited subset.
Additionally, using different JDKs for running tests and compiling
sources is not supported. However, it should work if you are compil‐
ing sources targeting JDK6 while being bootstrapped on JDK7.

By enabling resolution in a friendly, intuitive API, ShrinkWrap Resolvers arms Shrink‐
Wrap archives with a powerful mechanism to create deployment units, which are ap‐
plicable in real-world scenarios that require libraries and modules not owned by the
current project.

Runtime
Being simply a component model, Java EE needs a concrete implementation to provide
the runtime services to our applications.

WildFly
The latest community edition of the application server offered by JBoss has recently
been renamed to WildFly, and this will be the default target runtime for our examples.
Written from the ground up, WildFly (previously known as JBoss Application Server 7)
was designed with the following goals at the core:
Speed

Startup, deployment, and request-processing demands leverage a concurrent-state
machine and constant-time class loading.

Efficiency
Memory usage is kept to a minimum.

Modularity
Application libraries and server libraries are isolated from one another to avoid
runtime conflicts.

Administration
Centralized settings via web interface, HTTP, Java, and command-line APIs.

Compliance
Java EE6 Full Profile Certification.

Testable
Uses Arquillian and ShrinkWrap in its own internal test suite.

Runtime | 37

http://wildfly.org/
http://bit.ly/MAyPcP

Because a quick feedback loop is important in testing during development, the speed
afforded by WildFly makes it a compelling candidate for our target runtime:

19:16:06,662 INFO [org.jboss.as] (Controller Boot Thread)
 JBAS015874: WildFly 8.0.0.Alpha2 "WildFly" started in 2702ms -
 Started 153 of 189 services (56 services are lazy, passive or on-demand)

The online user guide for WildFly is located at http://bit.ly/MAyZAR.

OpenShift
Although getting our applications running on our own machine is a great step in de‐
veloping, the beauty of the Internet is that we can expose our content and services to
the world at large. Until very recently, Java EE hosting typically involved a dedicated
and expensive server colocated in a data center. With the rapid advent of virtualization
and the cloud, we’re now able to gain public access much more easily, and at a far reduced
cost.

OpenShift is Red Hat’s free Platform as a Service (PaaS) for applications. Although it
supports a variety of frameworks bundled as “cartridges,” we’ll be using OpenShift’s
built-in JBoss AS7 support. With just a little bit of initial setup, pushing changes from
our local Git repository to the OpenShift remote will trigger a build and deployment of
our application for all to see. We’ll be relieved of the responsibility of obtaining a server,
installing JBossAS, configuring the networking and firewalls, or manually deploying
new versions.

On to the Code
Now that we’ve familiarized ourselves with the technologies we’ll be using throughout
the exercises, let’s dig in and create a new Java EE application, making it public to the
world.

38 | Chapter 2: Enabling Technologies

http://bit.ly/MAyZAR
http://www.openshift.com

CHAPTER 3

Scratch to Production

The way to get started is to quit talking and begin doing.
— Walt Disney

Enterprise Java has long suffered the (possibly correct) critique that it’s difficult to boot‐
strap a new project. Couple the lack of definitive jumpstart documentation with vendor-
specific techniques for application deployment, throw a mess of third-party dependen‐
cies into the mix, and we’ve got a prime recipe yielding barriers to entry for programmers
new to web development in Java.

Of course, this all runs contrary to the mission of Java EE: to make our experience with
enterprise features easier. So while the programming model has certainly evolved past
the days of confusingly verbose and explicitly required metadata, the warts that lead to
frustrating stack traces and unexpected deployment behaviors unfortunately persist.

Some of this is by design. The specifications that comprise the Java EE Platform inten‐
tionally leave room for vendors to implement features like server startup and deploy‐
ment at their discretion. (Although there is some limited facility to, for instance, create
an EJB container in a running JVM and bring EJB deployments on the classpath into
service, a full-scale deployment is still typically achieved in a vendor-specific manner.)

In the interest of providing a uniformly workable solution to the reader, this text will
routinely opt for vendor-specific approaches in favor of generic guidelines. By the end
of this chapter, you should be comfortable creating a new Java EE web application and
pushing it live to production using a few tools and services offered by the JBoss
Community.

The Development Environment
Although all projects used here are ultimately standalone and require no plug-ins or
special environments aside from a Java runtime, we’re going to make our lives easier by

39

taking advantage of the integration facilities provided by JBoss Developer Studio
(JBDS).

The JBDS plug-ins atop the Eclipse Integrated Development Environment (IDE) will
unify our development experience and allow us to stay inside one window. Installation
is via an executable JAR available from the JBDS site (see Figure 3-1).

To kick off the installation process, either double-click the icon (if your environment
has the .jar extension correctly associated as a Java executable) or launch the installer
from the command line via the Java runtime:

$> java -jar jbdevstudio-product-universal-7.0.0.GA-v20130720-0044-B364.jar

Figure 3-1. JBoss Developer Studio installation

Following the graphical wizard will install the JDBS IDE (and all requisite plug-ins we’ll
be using) onto your local machine.

A New Project
The previous chapter introduced us to JBoss Forge, a tool that aims to make project
creation and enhancement more declarative and less manual. Because we’re starting
fresh now, it makes sense to use Forge to create our project layout. This will ultimately
give us a functional skeleton from database to view layer that we can use either as a
learning tool or a quick shortcut to writing some real code.

40 | Chapter 3: Scratch to Production

http://bit.ly/MAzyup

Forge’s user interface is a shell, so it can be installed manually and used from the terminal
like any other command-line application. However, JBDS removes the need for us to
do this setup. As shown in Figure 3-2, selecting Window → Show View → Other will
give us immediate access to the Forge Console.

Figure 3-2. Forge Console view selection

With our new Forge Console view, we’re now free to start up the Forge runtime, which
came embedded with the JBDS installation. Clicking the green play button, as shown
in Figure 3-3, will give us access to the Forge shell:

 | ___|__ _ __ __ _ ___
 | |_ / _ \| `__/ _` |/ _ \ \\
 | _| (_) | | | (_| | __/ //
 |_| ___/|_| __, |___|
 |___/

JBoss Forge, version [1.3.3.Final] - JBoss, by Red Hat, Inc.
[http://forge.jboss.org]
[no project] workspace $

A New Project | 41

Figure 3-3. Click the play button to start Forge

JBDS integration with Forge is especially useful in this console because the IDE will
automatically refresh any changes we make in Forge with our project view and open
text editors.

As a decent shell, Forge supports tab-completion of commands and known parameters;
if you get stuck, feel free to use the Tab key to see what’s available.

To ease up on our configuration options, let’s first start off by instructing Forge to accept
defaults:

$> set ACCEPT_DEFAULTS true;

And now let’s create the filesystem layout and pom.xml for our new Maven-based Java
EE project. We’ll be creating a simple application that will allow users to leave comments,
so we’ll name the application feedback:

$> new-project --named feedback --topLevelPackage org.cedj.ch03.feedback
 --projectFolder feedback;

Once we hit Enter, we’ll see that Forge has dutifully created our new project’s layout:

SUCCESS Created project [feedback] in new working directory [./feedback]
Wrote ./feedback
Wrote ./feedback/pom.xml
Wrote ./feedback/src/main/java
Wrote ./feedback/src/test/java
Wrote ./feedback/src/main/resources
Wrote ./feedback/src/test/resources
Wrote ./feedback/src/main/java/org/cedj/feedback
Wrote ./presentations/feedback/src/main/resources/META-INF/forge.xml

Additionally, our project has appeared in the Project View, as shown in Figure 3-4.

42 | Chapter 3: Scratch to Production

Figure 3-4. Our project created in Project View

Users of Maven Archetypes may be familiar with this type of technique to create a new
project, but because Forge is an incremental tool, it’s capable of reading a project’s state
and adding behaviors after creation.

Let’s add support for Java Persistence API (JPA) to our project, a task that typically would
involve some searching for the correct dependencies for the spec APIs (as well as those
for any vendor-specific extensions). Forge is helpful here as well, via its persistence
plug-in:

$> persistence setup --provider HIBERNATE --container JBOSS_AS7;

In this case we’ve chosen Hibernate as our persistence provider, and have targeted JBoss
AS7 as our container. Forge will equip our POM with the proper dependencies and
supply us with a default persistence.xml preconfigured to work with the AS7 runtime
(for a list of supported options, look to tab completion):

SUCCESS Installed [forge.spec.jpa] successfully.
INFO Setting transaction-type="JTA"
INFO Using example data source [java:jboss/datasources/ExampleDS]
SUCCESS Persistence (JPA) is installed.
Wrote ./feedback/src/main/resources/META-INF/persistence.xml
Wrote ./feedback/pom.xml

A peek into the generated persistence.xml will show us a decent default configuration:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<persistence xmlns="http://java.sun.com/xml/ns/persistence"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" version="2.0"
xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd">
 <persistence-unit name="forge-default" transaction-type="JTA">
 <description>Forge Persistence Unit</description>
 <provider>org.hibernate.ejb.HibernatePersistence</provider>
 <jta-data-source>java:jboss/datasources/ExampleDS</jta-data-source>
 <exclude-unlisted-classes>false</exclude-unlisted-classes>
 <properties>

A New Project | 43

http://bit.ly/MABuTN
http://www.hibernate.org/

 <property name="hibernate.hbm2ddl.auto" value="create-drop"/>
 <property name="hibernate.show_sql" value="true"/>
 <property name="hibernate.format_sql" value="true"/>
 <property name="hibernate.transaction.flush_before_completion"
 value="true"/>
 </properties>
 </persistence-unit>
</persistence>

Let’s make one tweak; the property hibernate.hbm2ddl.auto is set to automatically
drop the database tables so they can’t be reused across deployments. Though this might
be handy in development to ensure we’re always coding from a clean slate, we’d actually
like to use some real persistence later, so let’s change that property to a value of update.

Java EE6 introduced the Bean Validation Specification, which allows for validation
constraints at the database, application, and view layers all with a single declaration.
Let’s enable BV for our project, similar to how we put in place support for persistence:

$> validation setup --provider HIBERNATE_VALIDATOR

Once again we’re given the appropriate dependencies in our POM, as well as a valid
validation.xml configuration file such that we don’t have to apply any boilerplate XML
on our own:

SUCCESS Installed [forge.spec.validation] successfully.
Wrote ./feedback/src/main/resources/META-INF/validation.xml
Wrote ./feedback/pom.xml

The generated validation.xml should be fine for our uses without any modification:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<validation-config xmlns="http://jboss.org/xml/ns/javax/validation/configuration"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <default-provider>org.hibernate.validator.HibernateValidator</default-provider>
 <message-interpolator>org.hibernate.validator.messageinterpolation.
 ResourceBundleMessageInterpolator</message-interpolator>
 <traversable-resolver>org.hibernate.validator.engine.resolver.
 DefaultTraversableResolver</traversable-resolver>
 <constraint-validator-factory>org.hibernate.validator.engine.
 ConstraintValidatorFactoryImpl</constraint-validator-factory>
</validation-config>

Now we’re all set to add some entities to our project. For the uninitiated, this will be our
interface to accessing persistent (i.e., database-backed) data as an object. For now we’ll
just create one simple bean to represent a database table, and we’ll call it FeedbackEntry:

$> entity --named FeedbackEntry;

Forge will create a new Java class for us, adding the proper @Entity annotation, an ID
field to represent our primary key, a version field for optimistic locking, and stubbed-
out methods for the value-based equals(Object) and hashCode():

44 | Chapter 3: Scratch to Production

http://jcp.org/en/jsr/detail?id=303

package org.cedj.feedback.model;

import javax.persistence.Entity;
import java.io.Serializable;
import javax.persistence.Id;
import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import javax.persistence.Column;
import javax.persistence.Version;
import java.lang.Override;

@Entity
public class FeedbackEntry implements Serializable
{

 @Id
 private @GeneratedValue(strategy = GenerationType.AUTO)
 @Column(name = "id", updatable = false, nullable = false)
 Long id = null;
 @Version
 private @Column(name = "version")
 int version = 0;

 public Long getId()
 {
 return this.id;
 }

 public void setId(final Long id)
 {
 this.id = id;
 }

 public int getVersion()
 {
 return this.version;
 }

 public void setVersion(final int version)
 {
 this.version = version;
 }

 public String toString()
 {
 String result = "";
 if (id != null)
 result += id;
 return result;
 }

 @Override

A New Project | 45

 public boolean equals(Object that)
 {
 if (this == that)
 {
 return true;
 }
 if (that == null)
 {
 return false;
 }
 if (getClass() != that.getClass())
 {
 return false;
 }
 if (id != null)
 {
 return id.equals(((FeedbackEntry) that).id);
 }
 return super.equals(that);
 }

 @Override
 public int hashCode()
 {
 if (id != null)
 {
 return id.hashCode();
 }
 return super.hashCode();
 }
}

Our FeedbackEntry entity should be capable of recording feedback for some user with
a Twitter ID, so let’s add fields to represent that data (as well as some validation con‐
straints dictating that these cannot be null):

field string --named twitterHandle;
constraint NotNull --onProperty twitterHandle;
field string --named feedback;
constraint NotNull --onProperty feedback;

It’s worth noting now that our Forge prompt reads that the current location is inside our
entity, because that’s where we’re currently working. Forge’s ls command is handy for
seeing the current state of our entity as we build:

[feedback] FeedbackEntry.java $ ls

[fields]
private::Long::id;
private::String::feedback;
private::String::twitterHandle;
private::int::version;

46 | Chapter 3: Scratch to Production

[methods]
public::equals(Object that)::boolean
public::getFeedback()::String
public::getId()::Long
public::getTwitterHandle()::String
public::getVersion()::int
public::hashCode()::int
public::setFeedback(final String feedback)::void
public::setId(final Long id)::void
public::setTwitterHandle(final String twitterHandle)::void
public::setVersion(final int version)::void
public::toString()::String

With our sole entity in place, it’s time to let Forge generate a UI layer for us as a starting
point for the view in our web application. The scaffold command makes short work
of this:

$> scaffold setup
SUCCESS Installed [forge.maven.WebResourceFacet] successfully.
SUCCESS Installed [forge.spec.ejb] successfully.
SUCCESS Installed [forge.spec.cdi] successfully.
SUCCESS Installed [forge.spec.servlet] successfully.
SUCCESS Installed [forge.spec.jsf.api] successfully.
SUCCESS Installed [faces] successfully.
Wrote ./feedback/src/main/webapp
Wrote ./feedback/pom.xml
Wrote ./feedback/src/main/webapp/WEB-INF/beans.xml
Wrote ./feedback/src/main/webapp/WEB-INF/faces-config.xml
Wrote ./feedback/src/main/webapp/favicon.ico
Wrote ./feedback/src/main/webapp/resources/scaffold/paginator.xhtml
Wrote ./feedback/src/main/webapp/resources/scaffold/pageTemplate.xhtml
Wrote ./feedback/src/main/webapp/index.html
Wrote ./feedback/src/main/webapp/index.xhtml
Wrote ./feedback/src/main/webapp/error.xhtml
Wrote ./feedback/src/main/webapp/resources/add.png
Wrote ./feedback/src/main/webapp/resources/bootstrap.css
Wrote ./feedback/src/main/webapp/resources/false.png
Wrote ./feedback/src/main/webapp/resources/favicon.ico
Wrote ./feedback/src/main/webapp/resources/forge-logo.png
Wrote ./feedback/src/main/webapp/resources/forge-style.css
Wrote ./feedback/src/main/webapp/resources/remove.png
Wrote ./feedback/src/main/webapp/resources/search.png
Wrote ./feedback/src/main/webapp/resources/true.png
Wrote ./feedback/src/main/webapp/WEB-INF/web.xml

As shown by the somewhat lengthy output, we’re now equipped with a src/main/
webapp folder laid out with a nice starting point from which we can build our own UI.
With just one more command, we can generate a CRUD (Create, Read, Update, Delete)
interface to our entities:

A New Project | 47

$> scaffold from-entity org.cedj.feedback.model.*;
INFO Using currently installed scaffold [faces]
SUCCESS Generated UI for [org.cedj.feedback.model.FeedbackEntry]
Wrote ./feedback/src/main/java/org/cedj/feedback/view/FeedbackEntryBean.java
Wrote ./feedback/src/main/webapp/feedbackEntry/create.xhtml
Wrote ./feedback/src/main/webapp/feedbackEntry/view.xhtml
Wrote ./feedback/src/main/webapp/feedbackEntry/search.xhtml
Wrote ./feedback/src/main/webapp/resources/scaffold/pageTemplate.xhtml
Wrote ./feedback/src/main/java/org/cedj/feedback/view/ViewUtils.java
Wrote ./feedback/src/main/webapp/WEB-INF/classes/META-INF/forge.taglib.xml
Wrote ./feedback/src/main/java/org/cedj/feedback/model/FeedbackEntry.java

And that’s enough for now; we’ve created the skeleton for a fully functional application.
Of course, the thematic element of this book is testable development, so it’s best we throw
in the facility to run some integration tests on our little application.

Writing Our First Integration Test with Arquillian
We’ve mentioned before that Forge is based on a plug-in architecture; all commands
we’ve used thus far are actually plug-ins called by the Forge runtime when we request
them in the console. Up to this point, we’ve used support that comes standard with the
Forge distribution. Now we’d like to add some tests, and we’ll use the Arquillian Test
Platform as both the programming model and the JUnit test runner. The first order of
business is to install the Arquillian plug-in into our Forge runtime, and we do this by
way of the forge install-plugin command:

$> forge install-plugin arquillian
Connecting to remote repository [https://raw.github.com/forge/plugin-repository/
master/repository.yaml]... connected!
INFO Preparing to install plugin: arquillian
INFO Checking out plugin source files to
 [/tmp/forgetemp1365281623326595751/repo] via 'git'
INFO Switching to branch/tag [refs/heads/1.0.2.Final]
INFO Invoking build with underlying build system.
...
INFO Installing plugin artifact.
SUCCESS Installed from [https://github.com/forge/plugin-arquillian.git]
 successfully.

This instructs Forge to connect to its plug-in repository, grab the latest version of the
requested plug-in, build it from source, and install the binaries into the current runtime.
Because Forge is built on a modular class-loading architecture, we’re able to load in
plug-ins without the need to restart the process or concern ourselves with conflicting
dependencies.

With the Arquillian plug-in installed, we now have access to the arquillian command.
Let’s instruct Forge to equip our POM with the dependencies needed to run Arquillian
tests on the JBoss AS7 container:

48 | Chapter 3: Scratch to Production

$> arquillian setup --containerType REMOTE
 --containerName JBOSS_AS_REMOTE_7.X --testframework

You’ll be prompted for the versions of Arquillian, JUnit, and JBoss AS7 that you’d like
to use, and the available options will expand over time as new versions are released.
These instructions have been tested with:

[org.jboss.arquillian:arquillian-bom:pom::1.1.1.Final]
[junit:junit:::4.11]
[org.jboss.as:jboss-as-arquillian-container-remote:::7.1.1.Final]

With the POM config changes out of the way, let’s ask Forge to now create for us a
jumping-off point from which we’ll write our test:

$> arquillian create-test
 --class org.cedj.ch03.feedback.model.FeedbackEntry.java
Picked up type <JavaResource>: org.cedj.feedback.model.FeedbackEntryTest
Wrote ./feedback/src/test/java/org/cedj/feedback/model/FeedbackEntryTest.java

The newly created FeedbackEntryTest is technically an Arquillian test, but it really
doesn’t do too much for us. After all, we can automate quite a bit, but in the end it’s up
to us to write our own business and test logic. So let’s replace the contents of this class
with:

package org.cedj.feedback.model;

import java.io.File;
import javax.persistence.EntityManager;
import javax.persistence.PersistenceContext;
import org.jboss.arquillian.container.test.api.Deployment;
import org.jboss.arquillian.junit.Arquillian;
import org.jboss.shrinkwrap.api.ShrinkWrap;
import org.jboss.shrinkwrap.api.spec.WebArchive;
import org.junit.Assert;
import org.junit.Test;
import org.junit.runner.RunWith;

@RunWith(Arquillian.class)
public class FeedbackEntryTest {
 @PersistenceContext
 private EntityManager em;

 @Deployment
 public static WebArchive createDeployment() {
 return ShrinkWrap.createFromZipFile(WebArchive.class, new File(
 "target/feedback.war"));
 }

 @Test
 public void canFindFeedbackByUser() {
 final FeedbackEntry feedback = em.createQuery(
 "from " + FeedbackEntry.class.getSimpleName()
 + " where twitterHandle='@ALRubinger'",

Writing Our First Integration Test with Arquillian | 49

 FeedbackEntry.class).getSingleResult();
 Assert.assertNotNull(feedback);
 }

 @Test
 public void testIsDeployed() {
 Assert.assertNotNull(em);
 }
}

Before going forward, let’s break down the anatomy of this test.

First, we’ll note that there are no references in the import statements to any particular
application server or target container. This is because Arquillian is designed to decouple
the programming model of the test from the target runtime; any container that can
handle the capabilities demanded by the test will work. This keeps the portability goals
of Java EE intact, moving the mechanics of startup and deployment to configuration
elements. In this case, the Arquillian runner will note that the JBoss AS7 container
adaptor is available on the classpath because it was defined in the POM when we ran
the setup command for the Arquillian Forge plug-in.

The next point of interest is the class-level annotation:

@RunWith(Arquillian.class)

@RunWith is a standard JUnit construct that directs control to a specified test runner.
This is Arquillian’s entry point; from here Arquillian can receive lifecycle events from
JUnit and perform its own handling. The benefit to this design decision is that Arquillian
requires no special plug-ins or configuration on the part of the user. Anything that is
capable of launching a JUnit test—be it a Maven build, an Ant task, a manual command,
or an IDE—can take advantage of Arquillian without any additional handling. For in‐
stance, you can use JBDS and Eclipse to launch a full-scale integration test with Ar‐
quillian by right-clicking on the class and selecting Run As → JUnit Test.

Next up is the class declaration:

public class FeedbackEntryTest {...}

The important bit here is what’s not required. Because of the Arquillian JUnit Test Run‐
ner, you’re free to use whatever class hierarchy you’d like, and there’s no need to extend
a base support class. This keeps Arquillian tests in line with the POJO programming
model originally introduced in Java EE5.

Another feature of Arquillian is its capability to provide services like injection to the
test. Here we’re going to interact with persistent storage via the JPA EntityManager:

 @PersistenceContext
 private EntityManager em;

50 | Chapter 3: Scratch to Production

The EntityManager is typically used by server-side business components like EJBs or
CDI beans, but because this test is going to run inside the container as part of a deploy‐
ment, we’ll be able to interact with it directly.

Because Arquillian aims to follow the standards set forth by Java EE, instead of requiring
the user to do a lookup or manual creation of the EntityManager, we’ll be able to receive
an instance by requesting injection via use of the @PersistenceContext annotation.

The final important fixture of the Arquillian test anatomy is the @Deployment method:

 @Deployment
 public static WebArchive createDeployment() {
 return ShrinkWrap.createFromZipFile(WebArchive.class, new File(
 "target/feedback.war"));
 }

Because Java EE application servers work off deployments like Web Archives (WARs),
Java Archives (JARs), or Enterprise Archives (EARs), we need to instruct Arquillian with
the artifact to be deployed. This method must be static and return any ShrinkWrap
Archive type; for this first exercise we’ll simply grab the output of the current project’s
build feedback.war, but as we’ll soon see in later examples, we don’t need to rely on flat
files at all! This will free us to skip the build entirely in between code changes and test
runs, instead letting us rely on ShrinkWrap’s packaging of .class files created from the
IDE’s incremental complication features.

The rest of the file is all test logic! Remember, the focus of the Arquillian programming
model is to allow you to write less boilerplate and setup, and focus on the bits of code
that only you as the developer can write. It’s not your job to deal with bootstrapping an
application server or calling upon vendor-specific deployment hooks; Arquillian will
handle all of that for you behind the scenes.

Running the Application Locally
Time to see our generated application in action. First we should run the build to package
our flat-file deployable feedback.war for manual deployment into JBoss AS7. We can
trigger Maven from the Forge Console:

$> build --notest --profile arq-jboss_as_remote_7.x;

After a series of informative build output messages from Maven, we should see BUILD
SUCCESS, indicating that the WAR has been properly built from sources.

The missing bit is that we need a server into which we can deploy our web app! JBoss
AS7 has a simple installation process (simply download and unzip onto the filesystem),
but again Forge can help automate this for us, so we don’t need to locate the JBossAS
binaries. For this we’ll turn to the Forge JBoss AS7 plug-in, which is installed similarly
to the Arquillian plug-in we put in place in the previous section:

Running the Application Locally | 51

$> forge install-plugin jboss-as-7

Once installation is complete, we can use the newly acquired as7 command to set up
our server:

$> as7 setup

You’ll be prompted for your $JAVA_HOME location and JBoss AS7 version; be sure to align
the versions with the Arquillian Container Adaptor Version we chose before. Again, in
this example we recommend 7.1.1.Final. Forge will additionally ask for the location
to a JBoss AS7 installation on the filesystem, but simply hitting Enter will download the
server for us into the target directory of our project.

Now it’s time to fire up the server. We’ll first cd into the root of our project in the Forge
shell, then execute the following command:

$> as7 start --jboss-home target/jboss-as-dist/jboss-as-7.1.1.Final/

If you’ve opted for a different version of JBoss AS7, you may have to make substitutions
to point to JBOSS_HOME correctly. Assuming all goes as planned, you should see the JBoss
AS7 startup sequence in the Forge shell, followed by:

INFO JBoss AS 7.1.1.Final has successfully started.

With the server up, let’s deploy our application:

$> as7 deploy

Again, after a series of JBoss AS7 deployment messages, you should see:

The deployment operation (FORCE_DEPLOY) was successful.

We’re up and running! Point your browser of choice to the root of the application at
http://localhost:8080/feedback, and you should see the home screen of the UI that
Forge has generated for us, as shown in Figure 3-5.

Figure 3-5. Feedback application home page

52 | Chapter 3: Scratch to Production

Clicking the Feedback Entry button in Figure 3-5 will grant us access to the CRUD
editor for this entity. From here we can create a new row in the database table, as shown
in Figure 3-6.

Figure 3-6. New feedback entry

Although CRUD applications are little more than a UI frontend to an entity, the benefit
here is in having a fully functioning application to use as a base from which to start. For
newcomers to Java EE, this is especially useful as a learning tool.

With our new entry now persisted into the database, let’s undeploy the application in
preparation to perform our first integration test run with Arquillian:

$> as7 undeploy
...
The deployment operation (UNDEPLOY_IGNORE_MISSING) was successful.

Running the Arquillian Integration Test
At this point, we still have a running JBoss AS7 server and have undeployed the feed
back application. Because we’d chosen the JBOSS_AS_REMOTE_7.X option as part of the
Forge Arquillian plug-in setup command, our POM is equipped with a profile that
enables a dependency on the JBoss AS7 Arquillian container:

 <profile>
 <id>arq-jboss_as_remote_7.x</id>
 <dependencies>
 <dependency>
 <groupId>org.jboss.as</groupId>
 <artifactId>jboss-as-arquillian-container-remote</artifactId>
 <version>7.1.1.Final</version>
 </dependency>
 </dependencies>
 </profile>

Let’s inform JBDS that we should consider the metadata in this profile; this will impact
our compilation and JUnit runtime classpaths. Right-clicking the pom.xml file and using

Running the Arquillian Integration Test | 53

the Maven context menu will give us the option to select a Maven profile, as shown in
Figure 3-7.

Figure 3-7. Selecting a Maven profile

Now the Arquillian test launcher will know to pick up the proper adaptor to a remote
JVM instance of JBoss AS7 when running tests; it will connect to the currently running
instance, deploy the defined @Deployment, execute the tests, and undeploy to clean up.
If we’d like to allow Arquillian to automatically control the server start/stop lifecycle
alongside each test suite, we could alternatively use the JBOSS_AS_MANAGED_7.X setup
option, which defines org.jboss.as:jboss-as-arquillian-container-managed as a
dependency in a POM profile.

With JBDS now configured with the proper classpath for test execution, all that’s left
to do is launch the test. A simple right-click on the test class in the Project Explorer
yields the option Run As → JUnit Test. The IDE’s JUnit launcher will create a new
process, fire up JUnit, and yield control to Arquillian. We’ll receive results just as we’d
expect from any other JUnit test; The standard JUnit Test Report for Eclipse is shown
in Figure 3-8.

Figure 3-8. Passing the tests

54 | Chapter 3: Scratch to Production

With assurance that our application has some minimal level of tested functionality, let’s
take a risk and move this off the isolation of our local machine and into the public realm,
accessible to the world.

Deploying to OpenShift via JBoss Developer Studio
JBDS provides us a convenient user interface to the OpenShift cloud service, which will
run our applications on the publicly available Web. Complete information is available
at the OpenShift site; for our purposes we’ll be running the Java EE web app we created
earlier in a JBoss AS7 cartridge, OpenShift’s moniker for a canned set of cloud services.

Before continuing, we are required to create an account; we can do this by clicking the
Sign Up button from the home page and completing the requisite form, as shown in
Figure 3-9.

Figure 3-9. OpenShift signup

Existing users can simply log in to see active applications, as shown in Figure 3-10.

Deploying to OpenShift via JBoss Developer Studio | 55

https://www.openshift.com/

Figure 3-10. OpenShift login

With that accomplished, we can use JBDS to connect our current feedback project to
a new application on OpenShift and bring it all the way to deployment. The actions we
need are available in the “OpenShift Explorer,” a view in JBDS (see Figure 3-11).

Figure 3-11. OpenShift Explorer view selection

In the Explorer, we can sign in to OpenShift from JBDS using the Connect to OpenShift
button, as shown on the far right in Figure 3-12.

56 | Chapter 3: Scratch to Production

Figure 3-12. OpenShift Explorer

This will open the prompt shown in Figure 3-13 for us to enter our authentication
information; simply provide the same credentials you used to log in to the OpenShift
site.

Figure 3-13. Sign in to OpenShift

Right-clicking our account will allow us to create a “New OpenShift Application…” As
shown in Figure 3-14, here we’ll supply a name (“feedback” seems appropriate) and
choose the target cartridge or “type” as “JBoss Application Server 7 (jbossas-7).”

Deploying to OpenShift via JBoss Developer Studio | 57

Figure 3-14. New OpenShift application

Next we’ll be asked to set up a new project to back the application on OpenShift. Because
we just created the project, we can choose “Use existing project” and select the feed‐
back project from our JBDS workspace (see Figure 3-15).

58 | Chapter 3: Scratch to Production

Figure 3-15. Project for OpenShift application

Because the OpenShift deployment mechanism is powered by Git, JBDS will now
prompt us to accept some defaults for the Git metadata it’ll write into our local project
directory. You can tailor these as you see fit, though we use the defaults in this example.
Figure 3-16 shows the dialog to import an existing OpenShift application.

Deploying to OpenShift via JBoss Developer Studio | 59

Figure 3-16. Import existing OpenShift application

Finishing this setup will trigger the deployment of our built artifacts from our project,
and JBDS will report this for us (see Figure 3-17).

60 | Chapter 3: Scratch to Production

Figure 3-17. Embedded cartridges

We’ll also want to confirm the Git metadata to be written into our project directory a
final time. As JBDS notes, this cannot be undone (though you can manually delete
the .git directory from your project should you choose to disconnect your local work‐
space from any OpenShift or Git references). Figure 3-18 displays the dialog allowing
us to confirm the addition of Git metadata.

Figure 3-18. Adding Git repo information to the project

Because OpenShift is using Git under the covers, and by extension SSH authentication,
there may be some system-specific confirmation needed to continue. For instance, we
may need to confirm that it’s OK to connect, as shown in Figure 3-19.

Deploying to OpenShift via JBoss Developer Studio | 61

Figure 3-19. Establishing SSH keys

And if you have a passphrase enabled on your SSH key, you will be asked to provide
this as well, as shown in Figure 3-20.

Figure 3-20. Unlocking SSH keys

With these steps completed, our console view should show us output similar to the
following:

Deploying JBoss
Starting jbossas cartridge
Found 127.13.6.1:8080 listening port
Found 127.13.6.1:9999 listening port
/var/lib/openshift/52390eb55973cafc7000008a/jbossas/standalone/deployments
/var/lib/openshift/52390eb55973cafc7000008a/jbossas
CLIENT_MESSAGE: Artifact: ./ROOT.war is still deploying
/var/lib/openshift/52390eb55973cafc7000008a/jbossas
CLIENT_RESULT: Artifacts deployed: ./ROOT.war

Although this is not indicative of the steps we’d traditionally take to develop a more
realistic application, we’ve found that Forge, JBoss AS7 (WildFly support forthcoming),
and OpenShift make a powerful team in quickly prototyping or learning the compo‐
nents involved in bringing a blank slate to a fully deployed, live, Java EE application.

62 | Chapter 3: Scratch to Production

CHAPTER 4

Requirements and the Example Application

Whatever pursuit you undertake, the requirements should start
with a love of what it is that you are pursuing.

— Bill Toomey

Although the previous chapter provides decent proof that it’s possible to jumpstart de‐
velopment on a greenfield Java EE project without too much hassle, we all recognize
that this may be a far cry from how applications are built in the real world. The benefits
of quickly going from a blank canvas to a deployed, functioning application are largely
educational or handy in rapid prototyping, but in the majority of cases we’re likely
looking to:

• Have greater control over the architectural design of our program
• Augment an existing application with new features
• Integrate one or more systems
• Increase modularity during development

In short, the preceding chapter introduced us to some potentially new technologies and
is capable of getting us up and running, but the end result is a toy that would need a lot
more work before it became a viable product.

This book will aim to address some of the common issues encountered during enterprise
development. Our primary goal is education, and that will inform some of the design
choices we make in building our application; for instance, we may expose more tech‐
nologies than necessary to fulfill our objectives. But just as a guide on design patterns
doesn’t advocate usage of every technique at the same time, neither should these ex‐
amples. It’s your responsibility as developer to choose appropriate tools for the job, and
we’ll aspire to help you make informed decisions.

63

Introducing GeekSeek
Our example application will be a software conference tracker, roughly modeled after
the excellent Lanyrd service. Its purpose will be to expose information to aid conference-
goers in planning their experience around technical sessions and related activities. The
goal is to provide a single example with all layers working in concert to showcase how
various technologies interact, and each use case detailed in the book will dig into various
slices of the application. We’ve lovingly named this example GeekSeek.

Reading this book should not be a passive endeavor; we’ve designed the example ap‐
plication to be an executable proof of the approaches we’ll use to satisfy our broad use
cases. Readers will likely get the greatest benefit by pulling down the GeekSeek source
and building, testing, and running the application locally.

The live “production” GeekSeek site is hosted at http://geekseek.continuousdev.org; let’s
first have a look at the requirements comprising this application.

Featureset
We’ll start by outlining in broad strokes the features provided by GeekSeek. This will
provide a high-level view of the actions users may take, and from these we can start to
drill down into more technical requirements.
Account-centric actions

• Users may sign up by associating the site with their Twitter account
• Users may track others whom they follow on Twitter
• Users may see others who may be interested in their activity (their Twitter

followers)
• Users may get updates on the activity of their followee’s followees (transitively,

the people followed by the people you follow)

Directory view
• Users may display upcoming and prior Conferences in the system

Conferences and sessions
• Users may add Conference and Session data, additionally associating them with

a Venue and Room
• Users may define who is speaking at or attending a Session
• Users may add arbitrary Attachments (media) information to a Conference,

Session, Venue, or Room
• Users may track Conferences and Sessions to receive alerts for updates and

changes

64 | Chapter 4: Requirements and the Example Application

http://lanyrd.com/
http://geekseek.continuousdev.org
http://www.twitter.com

Search
• Users may search for a Conference, Session, or User by some criteria

Conceptual Data Model
Because we’re still in the process of defining what our application does and the types of
data it’ll be dealing with, this is not the place to delve into database design just yet. This
is the stage where we describe our conceptual data model; first we need to understand:

• What kind of data is to be represented?
• Who are the major players (entities), and what are their fields?

Here we speak at a very coarse level of granularity, and we seek to define from a business
perspective the nouns of our application. In our case, we have:

User

Name String

Twitter ID String, unique among all users

Bio String

Conference

Name String

Tagline String

Start Date/Time

End Date/Time

Session

Title String

Outline String

Start Date/Time

End Date/Time

Attachment

Content Binary

Type Media Type (i.e., JPEG, PDF, etc.)

Venue

Name String

Introducing GeekSeek | 65

Location Place

Room

Name String

Location Place

Once we’ve got a solid understanding of the kinds of data we’ll be addressing, we can
go a bit further and see how these nouns might play out in the context of our proposed
featureset.

Logical Data Model
We’ve taken the first step in describing our data types by acknowledging the information
we’ll need to capture. Now we need to take into account some additional concerns:

• What are the relationships inherent between entities?
• How much data are we expecting in each entity?
• What features will be demanded of our entities?

It’s questions like these that will help us to arrive at a logical data model, a representation
of our data that isn’t yet tied to any specific storage mechanism but still addresses the
preceding questions. Decisions at this step are instrumental in our later choices, which
will have heavy impact in areas like efficiency and performance.

This is because database systems have varying strengths when we couple data repre‐
sentation with the requests we may make. Actions like searching and sorting can take
milliseconds or days, depending only upon the backing data structures and implemen‐
tation used! Therefore, it’s very important for us to define the relationships required
between our data, and recognize cases where we could have potentially large result sets;
it’s here that we’ll need to design efficiently.

Relationships
Relationships are the bonds that tie our entities together, and come in three flavors of
cardinality:

Cardinality Name Example

1:1 One-to-one I have one nose; my nose belongs to only me.

1:N One-to-many I have many fingers; my fingers belong to only me.

N:N Many-to-many I have many friends; my friends also have many other friends besides me.

So in the case of the entities for our application as defined by our desired featureset, we
can draw the following relationships:

66 | Chapter 4: Requirements and the Example Application

Entity 1 Entity 2 Cardinality Description

1 Conference Session 1:N A conference may have many sessions.

2 Session Room N:N A session may take place in many rooms (spanned together).

3 Venue Room 1:N A venue may have many rooms; a room exists only in one venue.

4 Conference Venue 1:N A conference may take place in many venues.

5 Conference Attachment 1:N A conference may have many attachments.

6 Session Attachment 1:N A session may have many attachments.

7 Venue Attachment 1:N A venue may have many attachments.

8 Room Attachment 1:N A room may have many attachments.

9 User User N:N A user may follow many other users on Twitter, and may also have many followers.

In graphical terms, this may look a little like Figure 4-1.

Figure 4-1. Cardinality in a relational database management system (RBDMS)

Intended use
When considering the efficiency of operations like database lookups, we should attempt
to strike a balance between premature optimization and planning for performance. For
instance, it really wouldn’t matter how complex the relationships between these entities
are if we were only expecting a small, finite number of records; these would likely be
cached at some level and held in memory, avoiding the need for lengthy tasks like full
table scans. At the other end of the spectrum, it’d be an oversight to recognize that we’re
expecting lots of data in a normalized form, and anticipate that querying against this
model has time complexity that’s linear (O(n)), geometric (O(n2)), or worse.

Unfortunately, a quick peek at our data types and featureset shows that given enough
time and interest in the application, we could reasonably expect entries for each of our
main data types to grow, unbounded.

Of particular note is the many-to-many relationship among users. Because a user may
have both many followers and may follow many people, we have two unidirectional
relationships; a follower of mine is not necessarily someone I follow. This is in contrast
to a mutual “friend” model employed by, say, the Facebook social networking site. In
effect, this relationship has a graph structure.

Introducing GeekSeek | 67

http://www.facebook.com

Although we might store and model this structure in any number of ways, it’s worth
noting that requesting transient relationships can be a problem with geometric time
complexity. That is, we’d need one query to find all of a user’s followers. Then, for
each of the results in that set, we’d need another query to find their followers. With each
level we drill in to find followers, the problem becomes more prohibitively complex and
unsolvable when organized in standard tables and rows.

Because the relationship is naturally a graph, it will likely make sense to store our rela‐
tionship data in this fashion. That way, instead of querying standard records, we can
walk the graph (simply obtaining a value from a pointer is an operation with constant
time complexity, and thus will perform many factors better when we compound the
process in a loop).

Another interesting area revolves around the system’s attachments. An attachment can
be associated with a conference, session, venue, or room, and ultimately consists of some
arbitrary series of bytes. This amounts to a natural “key/value” store, where we can add
a bunch of content, associate some metadata with it, and draw a relationship to its
“owner.” Again, we might tackle this in a standard table representation, but perhaps the
problem domain suggests a native solution more in tune with the key/value model.

Now that we’ve developed a better understanding of our data, what requests we’ll make
of it, and how much we might have, we can move on to designing some user-based and
technical use cases to drive the construction of our application.

Obtaining, Building, Testing, and Running GeekSeek
We mentioned earlier that we’d be using the distributed version control system Git to
store the source for this book and its examples, and our authoritative repository is kindly
hosted at GitHub. Unlike centralized version control systems, Git stores the full repos‐
itory history in each clone; when you “fork” or “copy” our repo, you’ll get the entire
history with every commit made since the book’s inception. The authoritative reposi‐
tory refers to the one we elect to act as the upstream; changes that are approved to make
it into new releases go here.

Obtaining the source
The first step toward obtaining the source is to sign up for a GitHub account. Though
it’s absolutely possible to clone the authoritative repo locally, without an account either
here or at some other writable host you won’t have an avenue to push changes of your
own or contribute ideas. Because signing up for an account is free for our uses and has
become commonplace especially in open source development, it’s the avenue we’ll
advise.

As shown in Figure 4-2, signup is fairly simple, and the process starts at https://
github.com.

68 | Chapter 4: Requirements and the Example Application

http://bit.ly/1e7o0ox
https://github.com
https://github.com

Figure 4-2. GitHub signup

Once logged in, you’ll fork the authoritative repo into your own publicly viewable
repository. You do this by visiting the book’s repo and clicking the Fork button, as shown
in Figure 4-3.

Figure 4-3. Forking a GitHub repository

With the fork in your account, now you’ll be able to clone this repository locally. And
because you have your own fork on GitHub, you’ll be able to push the commits you make
locally to your own fork, where you have write access. This provides two important
benefits. First, it serves as a backup in case of disk failure, loss of machine, or a syn‐
chronization point if you develop on many machines. Second, it allows others to see the
changes you’ve made and optionally bring them in for their own use.

Before bringing in your fork of the repository locally, you’ll need to have a Git client
installed. This is a command-line tool available on many platforms, but there are also
GUI wrappers included in many IDEs, like Eclipse or IntelliJ IDEA. We’ll offer instruc‐
tions based on the command line.

Installation is platform-specific, but in flavors of Linux, this is easily enough achieved
via your package manager of choice:

$> sudo apt-get install -y git

apt-get is the default for Debian-based distributions including Ubuntu and Linux
Mint; for others (including RHEL and Fedora), yum may be more appropriate:

Introducing GeekSeek | 69

$> sudo yum install -y git

You can obtain the Git Client for Windows as an executable installer at http://git-
scm.com/download/win. Similarly, the client for Mac is available at http://git-scm.com/
download/mac.

You can verify your installation at the command prompt by executing:

$> git --version
git version 1.8.1.2

With your Git client installed locally, now you’re free to pull down the book’s repository
from your public fork on GitHub to your local machine. You do this by first finding the
URI to your repository on your GitHub repo’s home page, as shown in Figure 4-4.

Figure 4-4. GitHub URI to clone

Then simply move to a directory in which you’d like to place your local clone, and issue
the git clone command, passing in the URI to your GitHub repository. For instance:

$> git clone git@github.com:ALRubinger/continuous-enterprise-development.git
Cloning into 'continuous-enterprise-development'...
remote: Counting objects: 2661, done.
remote: Compressing objects: 100% (1170/1170), done.
remote: Total 2661 (delta 534), reused 2574 (delta 459)
Receiving objects: 100% (2661/2661), 1.19 MiB | 1.24 MiB/s, done.
Resolving deltas: 100% (534/534), done.

This will create a new directory called continuous-enterprise-development, under which
you’ll be able to see the book’s source in the root and all supporting code under the code
directory. The GeekSeek application root is housed under code/application:

$> ls -l
total 492
-rw-r--r-- 1 alr alr 468 Jul 6 17:18 book.asciidoc
-rw-r--r-- 1 alr alr 3227 Jun 26 03:20 Chapter00-Prelude.asciidoc
-rw-r--r-- 1 alr alr 23634 Jun 28 18:03 Chapter01-Continuity.asciidoc
-rw-r--r-- 1 alr alr 40527 Jun 28 18:03 Chapter02-EnablingTechnologies.asciidoc
-rw-r--r-- 1 alr alr 29803 Jun 28 18:03 Chapter03-ScratchToProduction.asciidoc
-rw-r--r-- 1 alr alr 20772 Jul 7 17:29
 Chapter04-RequirementsAndExampleApplication.asciidoc
-rw-r--r-- 1 alr alr 32765 Jun 28 18:03
 Chapter05-JavaPersistenceAndRelationalData.asciidoc
 ...etc
drwxr-xr-x 8 alr alr 4096 Jul 6 20:24 code

70 | Chapter 4: Requirements and the Example Application

http://git-scm.com/download/win
http://git-scm.com/download/win
http://git-scm.com/download/mac
http://git-scm.com/download/mac

drwxr-xr-x 6 alr alr 4096 Jun 26 03:20 images
-rw-r--r-- 1 alr alr 2733 Jul 7 16:19 README.asciidoc

This will pull the current upstream version of the application into your local disk. If, for
instance, you’d like to work against one of the authoritative repository’s tags, you can:

• Create a remote reference to the authoritative repo: git remote add upstream
https://github.com/arquillian/continuous-enterprise-development.git

• fetch all the tags from the remote repo: git fetch -t upstream
• checkout the tag as a local branch: git checkout -b remotes/upstream/1.0.0

(checks out tag 1.0.0)
• Work on your new branch, based off the tag you’ve specified: git branch

Building and testing GeekSeek
We’ll be using the Maven software management tool to handle our build, test, and
packaging needs. The Java 7 JDK is a prerequisite we’ll assume is installed on your
system, referenced by the environment variable JAVA_HOME, and the executables in
$JAVA_HOME/bin available on the system PATH; you can simply download and extract
Maven on your drive to MAVEN_HOME from http://maven.apache.org/download.cgi.
Ensure that MAVEN_HOME/bin is on your PATH, and you’ll be good to go:

$> mvn -version
Apache Maven 3.0.5 (r01de14724cdef164cd33c7c8c2fe155faf9602da;
2013-02-19 08:51:28-0500)
Maven home: /home/alr/opt/apache/maven/apache-maven-3.0.5
Java version: 1.7.0_25, vendor: Oracle Corporation
Java home: /home/alr/opt/oracle/java/jdk1.7.0_25/jre
Default locale: en_US, platform encoding: UTF-8
OS name: "linux", version: "3.8.0-19-generic", arch: "amd64", family: "unix"

You build and test GeekSeek by invoking the package phase of Maven on the pom.xml
file located in code/application:

application $> mvn package
 ...lots of output
[INFO] BUILD SUCCESS

The first run is likely to take some time because Maven will resolve all dependencies of
the project (including the application servers in which it will run), and download them
onto your local disk. Subsequent runs will not require this initial “downloading the
Internet” step and will execute much faster.

The test phase will instruct Maven to fire up the application servers and run all tests
to ensure that everything is working as expected. If you’d like to save some time and

Introducing GeekSeek | 71

https://github.com/arquillian/continuous-enterprise-development.git
http://maven.apache.org/download.cgi

simply fetch the dependencies, build the sources, and package the application, execute
mvn package -DskipTests=true. Here’s a full list of the Maven lifecycles.

Packaging the full application will result in a WAR (Web Archive) file located at appli‐
cation/target/geekseek-(version).war. It’s this file that can be deployed into an application
server to run GeekSeek locally; by default, we’ll be using WildFly from the JBoss
Community.

Running GeekSeek
Although we’ve configured the build to obtain and use WildFly for use in testing Geek‐
Seek automatically, you may prefer to have an installation on your local disk to use
manually. This is useful for testing with remote containers (as covered in Chapter 11)
as well as poking around the running application locally.

WildFly is available for free download, and should be extracted to a location we’ll call
JBOSS_HOME. By executing JBOSS_HOME/bin/standalone.sh, the server will start:

wildfly-8.0.0.Alpha2 $> JBOSS_HOME=`pwd`
wildfly-8.0.0.Alpha2 $> cd bin/
bin $> ./standalone.sh
===
 JBoss Bootstrap Environment
 JBOSS_HOME: /home/alr/business/oreilly/git/continuous-enterprise-development/
 code/application/target/wildfly-8.0.0.Alpha2
 JAVA: /home/alr/opt/oracle/java/jdk7/bin/java
 JAVA_OPTS: -server -XX:+UseCompressedOops -Xms64m -Xmx512m -XX:MaxPermSize=
 256m -Djava.net.preferIPv4Stack=true -Djboss.modules.system.pkgs=org.jboss.
 byteman -Djava.awt.headless=true

===

18:08:42,477 INFO [org.jboss.modules] (main) JBoss Modules version 1.2.2.Final
18:08:43,290 INFO [org.jboss.msc] (main) JBoss MSC version 1.2.0.Beta1
 ...trimm output
JBAS015874: WildFly 8.0.0.Alpha2 "WildFly" started in 8624ms - Started 153 of 189
services (56 services are lazy, passive or on-demand)

Copying the application/target/geekseek-(version).war file into JBOSS_HOME/stand‐
alone/deployments will trigger deployment of the GeekSeek application:

$> cp code/application/application/target/geekseek-1.0.0-alpha-1-SNAPSHOT.war
code/application/target/wildfly-8.0.0.Alpha2/standalone/deployments/
geekseek.war -v
'code/application/application/target/geekseek-1.0.0-alpha-1-SNAPSHOT.war' ->
'code/application/target/wildfly-8.0.0.Alpha2/standalone/deployments/
geekseek.war'

This will trigger something similar to the following on the server console:

18:11:46,839 INFO [org.jboss.as.server] (DeploymentScanner-threads - 2)
JBAS018559: Deployed "geekseek.war" (runtime-name : "geekseek.war")

72 | Chapter 4: Requirements and the Example Application

http://bit.ly/1e7xH6o
http://www.wildfly.org/downloads

Once deployed, you’ll be able to launch your web browser of choice, point it to http://
localhost:8080/geekseek, and explore the screens powering the featureset we’ve cov‐
ered here.

Use Cases and Chapter Guide
Each chapter from here on out will address a set of related technical and user-centric
use cases. They’ll be organized as follows:

Chapter 5: Java Persistence and Relational Data
Our featureset demands a variety of operations that depend upon persistent data; in‐
formation that must be saved longer than a user’s session or even the application’s start‐
up/shutdown lifecycle. It’s likely we won’t be able to hold all of our data in memory
either, so we’ll need to tackle issues like serialization and concurrent, multiuser access.

As our logical data analysis has exposed, we have plenty of data types that might work
well arranged in a table/row/column structure as provided by the relational model, and
that’s exactly what we’ll cover in Chapter 5.

We’ll also give a brief overview of mapping from a relational database to an object model
that’s more familiar and friendly using the Java Persistence API and transactional sup‐
port via Enterprise JavaBeans, and we’ll be sure to test that our domain layer is properly
tested against known data sets using the handy Arquillian Persistence Extension.

Chapter 6: NoSQL: Data Grids and Graph Databases
Although it enjoys popularity as the most widely deployed database management system
flavor, the relational model is not the only representation we have at our disposal. In
recent years a paradigm shift has been prevalent in the persistence space.

NoSQL is a blanket term that has varied definitions, but generally refers to any number
of database systems that do not employ the relational model. Popular implementations
include a document store (i.e., MongoDB), a key/value store (i.e., Infinispan), or a graph
database (i.e., Neo4j).

We noted earlier that our user relationship model is a natural graph and that our at‐
tachments might be well-served from a key/value store, so Chapter 6 will take a look at
implementing persistent storage through these mechanisms.

Chapter 7: Business Logic and the Services Layer
With our persistence layers covered, we need to expose some way of allowing users to
interact with the data and carry out the business logic demanded by our requirements.
Java EE recommends encapsulating business logic in components such as Enterprise

Use Cases and Chapter Guide | 73

http://www.mongodb.org/
http://www.jboss.org/infinispan/
http://www.neo4j.org/

JavaBeans (EJBs) or Contexts and Dependency Injection (CDI) beans; we’ll be using
primarily EJBs.

EJBs and CDI beans are very handy for either direct calling or using a remote procedure
call (RPC) style, but they don’t do much to inform us as users about the possible state
transitions and available operations as we navigate the application.

Our use case will explore the testable development of an SMTP service and interacting
with an external, asynchronous, nontransactional resource.

Chapter 8: REST and Addressable Services
REST (Representational State Transfer) is an architecture of patterns that reveal services
as resources in a fashion consistent with the guiding concepts behind the Web itself.
Chapter 8 will introduce the exposition of enterprise services using REST guidelines,
and will be implemented with Java EE’s JAX-RS framework. Additionally, we’ll test our
endpoints using Arquillian Warp and the REST-assured project.

Chapter 9: Security
Our featureset requirements clearly couple user registration with an existing Twitter
account, so we’ll need plenty of implementation and testing to ensure that the integrity
of our users is not compromised.

Chapter 9 will involve OAuth authentication using security and identity management
from the PicketLink project. We’ll again look to REST-assured to help us with our client
testing strategy.

74 | Chapter 4: Requirements and the Example Application

http://code.google.com/p/rest-assured/
http://www.picketlink.org

Chapter 10: UI
The user interface represents the visible elements with which end users will interact to
submit form data and view our domain objects in a unified aggregate view. We test the
UI through Arquillian Drone, Arquillian Warp, and hooks into the Selenium project.

In this fashion we automate and emulate real user input by writing tests to push data
into the browser and reading the response after it’s been rendered.

Chapter 11: Assembly and Deployment
Once we’ve abided by proper modular design principles, it’s time to bring everything
together and do some full-scale integration testing upon the final deployable archive.
Chapter 11 will combine our application and set up some test configurations to flex all
layers of GeekSeek working in tandem.

With our bird’s-eye view of the GeekSeek example application complete, it’s time to dig
into some code.

Use Cases and Chapter Guide | 75

http://www.seleniumhq.org/

CHAPTER 5

Java Persistence and Relational Data

Energy and persistence conquer all things.
— Benjamin Franklin

If we really boil down the primary objective of most applications to bare metal, we’ll
find that nearly everything we do involves an interaction with data. We supply it when
we make a new online order. We pull it out when we research on a wiki. We update it
when we change our credit card’s billing address.

The information contained in a system at any point in time comprises the state of the
application, and state comes in a variety of scopes, including:
Request

Limited access within one request/response cycle

Session
Limited access within one user session

Conversation/Sequence/Transaction
Limited access to a sequence of events (treated as one unit) within one user session

Application
Shared throughout the application

Environment
Shared throughout the host environment

Depending upon your view or framework of choice, there may be other ways to slice
visibility, but this list outlines some of the most commonly used paradigms.

As is thematic throughout the study of computer science, the rule of thumb is to limit
ourselves to the smallest scope required. Fine-grained access to data helps to ensure that
we don’t leak out state where it can cause security issues or difficult-to-debug behaviors.

77

Can you imagine what it’d be like if one user’s access to his online bank account were
to be replicated to all active sessions?

In addition to the notion of scopes, which limit data’s visibility, we also have the concept
of persistence. Persistence is a property that dictates whether or not state will survive
outside of its confining scope. For instance, we may allow a user to log in and change
her online profile, but if we don’t synchronize these updates with some sort of persistent
storage, they’ll be lost as soon as her user session (which defines the scope of this data)
is closed.

Perhaps the simplest way to handle persistent storage is to directly serialize information
to the filesystem. At first glance, this looks like a nice approach; we open up a file, write
whatever we want in there, and close it up. Later we go in and read as needed. Easy!

…until we start to think through how this is going to play out in practice. Our appli‐
cations are multiuser; they support any number of operations going on in parallel. How
are we to ensure that we don’t have two writes happening on the same file at once? We
could put a read/write lock in place to ensure that only one write happens at a time, but
then we could potentially queue up lots of write requests while work is being done. And
what about auditing our changes, or ensuring that the integrity of our data model is
preserved in case of an error? Very quickly we’ll discover that the task of persisting our
data is a first-class problem in and of itself, and one that probably doesn’t belong on our
desks as application developers.

It’d be much better to delegate the task of persistent storage to another component
equipped to handle this efficiently and securely. Luckily, we’ll have our pick of any
number of database management systems (DBMSs) that do just that. Figure 5-1 illus‐
trates apps using centralized persistent storage.

Figure 5-1. A series of applications backed by an RDMBS

78 | Chapter 5: Java Persistence and Relational Data

The role of a DBMS is very generally to store and provide access to data. They come in
a variety of flavors, which are differentiated in terms of how they internally organize
information:
Relational (RDBMS)

Like data is grouped into tables where columns represent data types and rows rep‐
resent records. Most often employs a protocol language called Structured Query
Language (SQL) for interaction. Examples: MySQL, PostgreSQL.

Graph
Stores objects with relationships in a graph structure; ideal for traversing nodes.
Example: Neo4j.

Key/value
Nested Map or document-oriented structure, has become very popular in recent
years. Examples: Infinispan, MongoDB.

Column-oriented
Stores data in columns, as opposed to an RDBMS, where the records are kept in
rows. Best suited for very large tables. Examples: Apache HBase, Apache Cassandra.

This chapter will focus on today’s most commonly used relational model (NoSQL will
be covered next, in Chapter 6).

The Relational Database Model
To best understand the relational model, let’s highlight how it differs from the object
model with which we’re already familiar. For this example we’ll seek to describe a family.

Each member of the family can be represented by a Person object:

public class Person {

 // Instance members
 private Long id;
 private String name;
 private Boolean male;
 private Person father;
 private Person mother;
 private List<Person> children;

 // Accessors / Mutators
 public Long getId() {
 return id;
 }
 public void setId(final Long id) {
 this.id = id;
 }

The Relational Database Model | 79

http://www.mysql.com/
http://www.postgresql.org/
http://www.neo4j.org/
http://www.jboss.org/infinispan/
http://www.mongodb.org/
http://hbase.apache.org/
http://cassandra.apache.org/

 /* Other properties omitted for brevity... */
}

Simple enough: this value object that explicitly declares the relationship between a par‐
ent and child is sufficient for us to further infer siblings, grandparents, cousins, aunts,
uncles, and so on. If we populate a few of these objects and wire them together, we’ll
end up with a graph representing our family, as shown in Figure 5-2.

Figure 5-2. Family relationships represented as a graph

Now, let’s take a look at how that same information might be represented in a relational
database in Table 5-1. Much like a spreadsheet, classes from our object model are instead
organized into tables.

Table 5-1. Data types representing a “person”
Data type Field name

UNSIGNED INTEGER (PK) id

VARCHAR(255) name

BIT(1) male

UNSIGNED INTEGER father

UNSIGNED INTEGER mother

Already we see some differences here. The id, name, and male fields are as we might
expect; simple data types where a Java Long is now represented as a database UNSIGNED
INTEGER, a Java String maps to a VARCHAR(255) (variable-length character String with
maximum length of 255), and a Java Boolean becomes a BIT type. But instead of a direct
reference to the mother or father, instead we see that the data type there is UNSIGNED
INTEGER. Why?

80 | Chapter 5: Java Persistence and Relational Data

This is the defining characteristic of relationality in RDBMS. These fields are in fact
pointers to the primary key, or the identifying id field of another record. As such, they
are called foreign keys. So our data may look something like Table 5-2.

Table 5-2. Relationships among family members
id name male father mother

1 Paternal Grandpa 1

2 Paternal Grandma 0

3 Dad 1 1 2

4 Mom 0

5 Brother 1 3 4

6 Sister 0 3 4

Note especially that there is no direct data reference to the children of a person in the
relational model. That’s because this is the “many” side of a “one-to-many” relationship:
one person may have many children, and many children may have one father and one
mother. Therefore, to find the children of a given person, we’d ask the database some‐
thing like:

“Please give me all the records where the mother field is my ID if I’m not a male, and
where the father field is my ID if I am a male.”

Of course, the English language might be a bit more confusing than we’d like, so luckily
we’d execute a query in SQL to handle this for us.

The Java Persistence API
It’s nice that a DBMS takes care of the details of persistence for us, but introducing this
separate data layer presents a few issues:

• Though SQL is an ANSI standard, its use is not truly portable between RDBMS
vendors. In truth, each database product has its own dialect and extensions.

• The details of interacting with a database are vendor-dependent, though there are
connection-only abstractions (drivers) in Java (for instance, Java Database Con‐
nectivity, or JDBC).

• The relational model used by the database doesn’t map on its own to the object
model we use in Java; this is called the object/relational impedance mismatch.

To address each of these problems, Java EE6 provides a specification called the Java
Persistence API (JPA), defined by JSR 317. JPA is composed of both an API for defining
and interacting with entity objects, and an SQL-like query language called Java Persis‐
tence Query Language (JPQL) for portable interaction with a variety of database

The Java Persistence API | 81

http://bit.ly/1e84urW
http://bit.ly/1e84sjL

implementations. Because JPA is itself a spec, a variety of open source–compliant im‐
plementations are available, including Hibernate, EclipseLink, and OpenJPA.

So now our tiered data architecture may look something like Figure 5-3.

Figure 5-3. Persistence layers of abstraction from user code to the database

Though a full overview of this technology stack is beyond the scope
of this book, we’ll be sure to point you to enough resources and
explain the basics of interacting with data via JPA that you’ll be able
to understand our application and test examples. For readers inter‐
ested in gaining better insight into JPA (and its parent, EJB), we rec‐
ommend Enterprise Java Beans 3.1, 6th Edition by Andrew Lee Ru‐
binger and Bill Burke (O’Reilly, 2010).

POJO Entities
Again, as Java developers we’re used to interacting with objects and the classes that
define them. Therefore, JPA allows us to design our object model as we wish, and by
sprinkling on some additional metadata (typically in the form of annotations, though
XML may also be applied), we can tell our JPA provider enough for it to take care of the
object/relational mapping for us. For instance, applying the javax.persistence.Enti
ty annotation atop a value object like our Person class is enough to denote a JPA entity.
The data type mapping is largely inferred from our source Java types (though this can
be overridden), and we define relationship fields using the @javax.persistence.One
ToOne, @javax.persistence.OneToMany, and @javax.persistence.ManyToMany an‐
notations. We’ll see examples of this later in our application.

The important thing to keep in mind is the concept of managed entities. Because JPA
exposes a POJO programming model, consider the actions that this code might do upon
an entity class Person:

Person person = new Person();
person.setName("Dick Hoyt");

OK, so very clearly we’ve created a new Person instance and set his name. The beauty
of the POJO programming model is also its drawback; this is just a regular object.
Without some additional magic, there’s no link to the persistence layer. This coupling
is done transparently for us, and the machine providing the voodoo is the JPA Entity
Manager.

82 | Chapter 5: Java Persistence and Relational Data

http://hibernate.org/
http://www.eclipse.org/eclipselink/
http://openjpa.apache.org/
http://shop.oreilly.com/product/9780596158033.do

javax.persistence.EntityManager is our hook to a defined persistence unit, our ab‐
straction above the database. By associating POJO entities with the EntityManager, they
become monitored for changes such that any state differences that take place in the
object will be reflected in persistent storage. An object under such supervision is called
managed. Perhaps this is best illustrated by some examples:

Person person = entityManager.find(Person.class, 1L); // Look up "Person" with
 // Primary Key of 1
System.out.println("Got " + person); // This "person" instance is managed
person.setName("New Name"); // By changing the name of the person,
 // the database will be updated when
 // the EntityManager is flushed (likely when the
 // current transaction commits)

Here we perform a lookup of the entity by its primary key, modify its properties just as
we would any other object, then let the EntityManager worry about synchronizing the
state changes with the underlying database. Alternatively, we could manually attach and
detach the POJO from being managed:

Person person = new Person();
person.setId(1L); // Just a POJO
managedPerson = entityManager.merge(person); // Sync the state with the existing
 // persistence context
managedPerson.setName("New Name"); // Make a change which be eventually become
 // propagated to the DB
entityManager.detach(managedPerson); // Make "managedPerson" unmanaged
managedPerson.setName("Just a POJO"); // This state change will *not* be
 // propagated to the DB, as we're now
 // unmanaged

Use Cases and Requirements
This is the first chapter in which we’ll be dealing with the companion GeekSeek example
application for the book; its purpose is to highlight all layers working in concert to fulfill
the user requirements dictated by each chapter. From here out, we’ll be pointing to
selections from the GeekSeek application in order to showcase how we wire together
the domain, application, view, and test layers in a cohesive, usable project.

As we proceed, we’ll note each file so that you can draw references between the text and
the deployable example. We’re firm believers that you best learn by doing (or at least
exploring real code), so we invite you to dig in and run the examples as we go along.

Testing is a first-class citizen in verifying that our development is done correctly, so, for
instance, in this chapter we’ll be focusing on interactions with persistent data. Before
we can hope to arrive at any solutions, it’s important to clearly identify the problem
domain. Each subsequent chapter will first outline the goals we’re looking to address.

Use Cases and Requirements | 83

http://bit.ly/MAXk9G

User Perspective
Our users are going to have to perform a series of CRUD (Create, Read, Update, Delete)
operations upon the entities that drive our application’s data. As such, we’ve defined a
set of user-centric requirements:

As a User, I should be able to:
...add a Conference.
...add a Session.
...view a Conference.
...view a Session.
...change a Conference.
...change a Session.
...remove a Conference.
...remove a Session.

Quite simple (and maybe even redundant!) when put in these terms, especially for this
persistence example. However, it’s wise to get into the habit of thinking about features
from a user perspective; this technique will come in quite handy later on when, in more
complex cases, it’ll be easy to get mired in the implementation specifics of providing a
feature, and we don’t want to lose track of the real goal we’re aiming to deliver.

To state even more generally:

As a User, I should be able to Create, Read, Update,
and Delete Conference and Session types.

Of course, we have some other requirements that do not pertain to the user perspective.

Technical Concerns
As noted in the introduction, the issue of data persistence is not trivial. We must ensure
that our solution will address:

• Concurrent access
• Multiuser access
• Fault-tolerance

These constraints upon the environment will help to inform our implementation
choices. Again, explicitly stating these issues may seem obvious, but our experience
teaches that sometimes we get so comfortable with an implementation choice that we
may not first stop to think if it’s even appropriate! For instance, a news or blogging site
that has a high read-to-write ratio may not even need to worry about concurrency if the
application can support stale data safely. In that case, we might not even need transac‐
tions, and bypassing that implementation choice can lead to great gains in performance.

84 | Chapter 5: Java Persistence and Relational Data

In GeekSeek, however, we’ll want to ensure that users are seeing up-to-date information
that’s consistent, and that implies a properly synchronized data source guarded by
transactions.

Implementation
Given our user and technical concerns, the Java EE stack using JPA described earlier
will do a satisfactory job toward meeting our requirements. And there’s an added benefit:
by using frameworks designed to relieve the application developer of complicated pro‐
gramming, we’ll end up writing a lot less code. This will help us to reduce the conceptual
weight of our code and ease maintenance over the long run. The slices of Java EE that
we’ll use specifically include:

• Java Transaction API (JTA)
• Enterprise JavaBeans (EJB, JSR 318)
• JPA

Transactions are a wide subject that merits its own book when dealing with the me‐
chanics of implementing a viable transactional engine. For us as users, however, the
rules are remarkably simple. We’ll imagine a transaction is a set of code that runs within
a block. The instructions that are executed within this block must adhere to the ACID
properties—Atomicity, Consistency, Isolation, and Durability:
Atomicity

The instructions in the block act as one unit; they either succeed (commit) or fail
(rollback) together.

Consistency
All resources associated with the transaction (in this case, our database) will always
be in a legal, viable state. For instance, a foreign key field will always point to a valid
primary key. These rules are typically enforced by the transactional resource (again,
our database).

Isolation
Actions taken upon transactional resources within a Tx block will not be seen out‐
side the scope of the current transaction until and unless the transaction has suc‐
cessfully committed.

Durability
Once committed, the state of a transactional resource will not revert back or lose
data.

Enterprise JavaBeans, or EJBs, enjoy close integration with JTA, so we won’t have to
touch much of the transactional engine directly. By managing our JPA entities through

Implementation | 85

http://bit.ly/MAYJwZ

an EntityManager that is encapsulated inside a transactional EJB, we’ll get the benefits
of transaction demarcation and management for free.

Persistence is a case that’s well-understood by and lives at the heart of most Java EE
applications, and these standards have been built specifically with our kind of use case
in mind. What’s left for us is to sanely tie the pieces together, but not before we consider
that the runtime is not the only thing with which we should be concerned.

Entity Objects
There are a few common fields we’ll want from each of our entities and ultimately the
tables they represent. All will have a primary key (ID), and a created and last modified
Date. To avoid duplication of code, we’ll create a base class from which our entities may
extend; this is provided by org.cedj.geekseek.domain.persistence.model.Base
Entity:

@MappedSuperclass
public abstract class BaseEntity
 implements Identifiable, Timestampable, Serializable {

The @javax.persistence.MappedSuperclass annotation signals that there will be no
separate table strategy for this class; its fields will be reflected directly in the tables
defined by its subclasses.

We’ll also want to fulfill the contract of org.cedj.app.domain.model.Identifiable,
which mandates we provide the following:

/**
 * @return The primary key, or ID, of this entity
 */
String getId();

Objects of type Identifiable simply have an ID, which is a primary key.

Similarly, we’ll be org.cedj.geekseek.domain.model.Timestampable, which notes
that we provide support for the following timestamps:

/**
 * @return the Date when this Entity was created
 */
Date getCreated();

/**
 * Returns the LastUpdated, or the Created Date
 * if this Entity has never been updated.
 *
 * @return the Date when this Entity was last modified
 */
Date getLastModified();

86 | Chapter 5: Java Persistence and Relational Data

BaseEntity will therefore contain fields and JPA metadata to reflect these contracts:

@Id
private String id;

@Temporal(TemporalType.TIMESTAMP)
private Date created = new Date();

@Temporal(TemporalType.TIMESTAMP)
private Date updated;

You’ll notice a few interesting bits in play here.

We denote the id field as our primary key by use of the @javax.persistence.Id
annotation.

@javax.persistence.Temporal is required by JPA upon Date and Calendar fields that
are persistent.

We’re primarily concerned with the introduction of our Conference and Session en‐
tities; a Conference may have many Session objects associated with it. So
org.cedj.app.domain.conference.model.Conference looks a bit like this:

@Entity
public class Conference extends BaseEntity {

Our class definition indicates that we’ll be a JPA entity through use of the @javax.per
sistence.Entity annotation. We’ll extend the Timestampable and Identifiable sup‐
port from our BaseEntity.

Next we can put in place the fields holding the state for Conference:

 private static final long serialVersionUID = 1L;

 private String name;

 private String tagLine;

 @Embedded
 private Duration duration;

 @OneToMany(fetch = FetchType.EAGER, orphanRemoval = true,
 mappedBy = "conference", cascade = CascadeType.ALL)
 private Set<Session> sessions;

 public Conference() {
 this.id = UUID.randomUUID().toString();
 }

The duration field is @javax.persistence.Embedded, which is used to signal a complex
object type that will decompose into further fields (columns) when mapped to relational
persistence. org.cedj.app.domain.conference.model.Duration looks like this:

Implementation | 87

public class Duration implements Serializable {

 private static final long serialVersionUID = 1L;

 private Date start;

 private Date end;

 // hidden constructor for Persistence
 Duration() {
 }

 public Duration(Date start, Date end) {
 requireNonNull(start, "Start must be specified");
 requireNonNull(end, "End must be specified");
 if (end.before(start)) {
 throw new IllegalArgumentException("End can not be before Start");
 }
 this.start = (Date)start.clone();
 this.end = (Date)end.clone();
 }

 public Date getEnd() {
 return (Date) end.clone();
 }

 public Date getStart() {
 return (Date) start.clone();
 }

 public Integer getNumberOfDays() {
 return -1;
 }

 public Integer getNumberOfHours() {
 return -1;
 }
}

Conference also has a relationship with Session as denoted by the @OneToMany anno‐
tation. This is a bidirectional relationship; we perform the object association in both the
Conference and Session classes.

Let’s define the constructors that will be used to create new instances:

 // JPA
 protected Conference() {}

 public Conference(String name, String tagLine, Duration duration) {
 super(UUID.randomUUID().toString());
 requireNonNull(name, "Name must be specified)");
 requireNonNull(tagLine, "TagLine must be specified");
 requireNonNull(duration, "Duration must be specified");

88 | Chapter 5: Java Persistence and Relational Data

 this.name = name;
 this.tagLine = tagLine;
 this.duration = duration;
 }

A no-argument constructor is required by JPA, so we’ll provide one, albeit with pro
tected visibility so we won’t encourage users to call upon it.

Now we can flush out the accessors/mutators of this POJO entity, applying some intel‐
ligent defaults along the way:

 public String getName() {
 return name;
 }

 public Conference setName(String name) {
 requireNonNull(name, "Name must be specified)");
 this.name = name;
 return this;
 }

 public String getTagLine() {
 return tagLine;
 }

 public Conference setTagLine(String tagLine) {
 requireNonNull(tagLine, "TagLine must be specified");
 this.tagLine = tagLine;
 return this;
 }

 public Conference setDuration(Duration duration) {
 requireNonNull(duration, "Duration must be specified");
 this.duration = duration;
 return this;
 }

 public Duration getDuration() {
 return duration;
 }

 public Set<Session> getSessions() {
 if (sessions == null) {
 this.sessions = new HashSet<Session>();
 }
 return Collections.unmodifiableSet(sessions);
 }

 public Conference addSession(Session session) {
 requireNonNull(session, "Session must be specified");
 if (sessions == null) {
 this.sessions = new HashSet<Session>();
 }

Implementation | 89

 sessions.add(session);
 session.setConference(this);
 return this;
 }

 public void removeSession(Session session) {
 if(session == null) {
 return;
 }
 if (sessions.remove(session)) {
 session.setConference(null);
 }
 }
}

Similar in form to the Conference entity, org.cedj.app.domain.conference.mod
el.Session looks like this:

@Entity
public class Session extends BaseEntity {

 @Lob
 private String outline;

 @ManyToOne
 private Conference conference;

 // ... redundant bits omitted

 @PreRemove
 public void removeConferenceRef() {
 if(conference != null) {
 conference.removeSession(this);
 }
 }
}

We’ll allow an outline for the session of arbitrary size, permitted by the @Lob annotation.

At this end of the relationship between Session and Conference, you’ll see that a
Session is associated with a Conference via the ManyToOne annotation.

We’ve also introduced a callback handler to ensure that before a Session entity is re‐
moved, we also remove the association it has with a Conference so that we aren’t left
with orphan references.

Repository EJBs
The “Repository” EJBs are where we’ll define the operations that may be taken by the
user with respect to our entities. Strictly speaking, they define the verbs “Store,” “Get,”
and “Remove.”

90 | Chapter 5: Java Persistence and Relational Data

Because we want to completely decouple these persistent actions from JPA, we’ll define
an interface to abstract out the verbs from the implementations. Later on, we’ll want to
provide mechanisms that fulfill these responsibilities in both RDBMS and other NoSQL
variants. Our contract is in org.cedj.geekseek.domain.Repository:

public interface Repository<T extends Identifiable> {

 Class<T> getType();

 T store(T entity);

 T get(String id);

 void remove(T entity);
}

This means that for any Identifiable type, we’ll be able to obtain the concrete class
type, store the entity, and get and remove it from the database. In JPA, we do this via an
EntityManager, so we can write a base class to support these operations for all JPA
entities. The following is from org.cedj.geekseek.domain.persistence.Persisten
ceRepository:

public abstract class PersistenceRepository<T extends Identifiable>
 implements Repository<T> {

 @PersistenceContext
 private EntityManager manager;

 private Class<T> type;

 public PersistenceRepository(Class<T> type) {
 this.type = type;
 }

 @Override
 public Class<T> getType() {
 return type;
 }

 @Override
 public T store(T entity) {
 T merged = merge(entity);
 manager.persist(merged);
 return merged;
 }

 @Override
 public T get(String id) {
 return manager.find(type, id);
 }

Implementation | 91

 @Override
 public void remove(T entity) {
 manager.remove(merge(entity));
 }

 private T merge(T entity) {
 return manager.merge(entity);
 }

 protected EntityManager getManager() {
 return manager;
 }
}

An instance member of this class is our EntityManager, which is injected via the @Per
sistenceContext annotation and will be used to carry out the public business methods
store (Create), remove (Delete), and get (Read). Update is handled by simply reading
in an entity, then making any changes to that object’s state. The application server will
propagate these state changes to persistent storage when the transaction commits (i.e.,
a transactional business method invocation completes successfully).

We can now extend this behavior with a concrete class and supply the requisite EJB
annotations easily; for instance, org.cedj.geekseek.domain.conference.Conferen
ceRepository:

@Stateless
@LocalBean
@Typed(ConferenceRepository.class)
@TransactionAttribute(TransactionAttributeType.REQUIRED)
public class ConferenceRepository extends PersistenceRepository<Conference> {

 public ConferenceRepository() {
 super(Conference.class);
 }
}

Despite the small amount of code here, there’s a lot of utility going on.

The Stateless annotation defines this class as an EJB, a Stateless Session Bean, meaning
that the application server may create and destroy instances at will, and a client should
not count on ever receiving any particular instance. @LocalBean indicates that this EJB
has no business interface; clients may call upon ConferenceRepository methods
directly.

The TransactionAttribute annotation and its REQUIRED value on the class level notes
that every method invocation upon one of the business methods exposed by the EJB
will run in a transaction. That means that if a transaction does not exist one will be
created, and if there’s currently a transaction in flight, it will be used.

92 | Chapter 5: Java Persistence and Relational Data

The @Typed annotation from CDI is explained best by the ConferenceRepository
JavaDocs:

/**
 * This EJB is @Typed to a specific type to avoid being picked up by
 * CDI under Repository<Conference> due to limitations/error in the CDI EJB
 * interactions. A EJB Beans is always resolved as Repository<T>, which means
 * two EJBs that implements the Repository interface both respond to
 * the InjectionPoint @Inject Repository<X> and making the InjectionPoint
 * ambiguous.
 *
 * As a WorkAround we wrap the EJB that has Transactional properties in CDI bean
 * that can be used by the Type system. The EJB is to be considered a internal
 * implementation detail. The CDI Type provided by the
 * ConferenceCDIDelegateRepository is the real Repository api.
 */

Requirement Test Scenarios
Of course the runtime will be the executable code of our application. However, the theme
of this book is testable development, and we’ll be focusing on proof through automated
tests. To that end, every user and technical requirement we identify will be matched to
a test that will ensure that functions are producing the correct results during the devel‐
opment cycle.

In this case, we need to create coverage to ensure that we can:

• Perform CRUD operations on the Conference and Session entities
— Execute operations against known data sets and validate the results

• Exercise our transaction handling
— Commits should result in entity object state flushed to persistent storage.
— Rollbacks (when a commit fails) result in no changes to persistent storage.

Test Setup
Our tests will be taking advantage of the Arquillian Persistence Extension, which has
been created to aid in writing tests where the persistence layer is involved. It supports
the following features:

• Wrapping each test in the separated transaction.
• Seeding database using:

— DBUnit with XML, XLS, YAML, and JSON supported as data set formats.
— Custom SQL scripts.

Requirement Test Scenarios | 93

http://bit.ly/MB0wCg

• Comparing database state at the end of the test using given data sets (with column
exclusion).

Creating ad hoc object graphs in the test code is often too verbose and makes it harder
to read the tests themselves. The Arquillian Persistence Extension provides alternatives
to set database fixtures to be used for the given test.

Adding transactional support to these tests is fairly straightforward. If that’s all you need,
simply put a @Transactional annotation either on the test you want to be wrapped in
the transaction or on the test class (which will result in all tests running in their own
transactions). The following modes are supported:
COMMIT

Each test will be finished with a commit operation. This is default behavior.

ROLLBACK

At the end of the test execution, rollback will be performed.

DISABLED

If you have enabled transactional support at the test class level, marking a given test
with this mode will simply run it without the transaction.

We’ll start by defining the Arquillian Persistence Extension in the dependencyManage
ment section of our parent POM:

code/application/pom.xml:

 <properties>
 <version.arquillian_persistence>1.0.0.Alpha6</version.arquillian_persistence>
 ...
 </properties>

 ...

 <dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.jboss.arquillian.extension</groupId>
 <artifactId>arquillian-persistence-impl</artifactId>
 <version>${version.arquillian_persistence}</version>
 <scope>test</scope>
 </dependency>
 ...
 </dependencies>
 </dependencyManagement>

94 | Chapter 5: Java Persistence and Relational Data

And we’ll also enable this in the dependencies section of the POMs of the projects in
which we’ll be using the extension:

code/application/domain/pom.xml:

 <dependencies>
 <dependency>
 <groupId>org.jboss.arquillian.extension</groupId>
 <artifactId>arquillian-persistence-impl</artifactId>
 <scope>test</scope>
 </dependency>
 ...
 </dependencies>

Database configuration for tests powered by the Persistence Extension is done via the
same mechanism as is used for the runtime: the persistence.xml configuration file. For
instance, we supply a persistence descriptor in org.cedj.geekseek.domain.persis
tence.test.integration.PersistenceDeployments:

public static PersistenceDescriptor descriptor() {
 return Descriptors.create(PersistenceDescriptor.class)
 .createPersistenceUnit()
 .name("test")
 .getOrCreateProperties()
 .createProperty()
 .name("hibernate.hbm2ddl.auto")
 .value("create-drop").up()
 .createProperty()
 .name("hibernate.show_sql")
 .value("true").up().up()
 .jtaDataSource("java:jboss/datasources/ExampleDS").up();
 }

CRUD Tests
With our setup and objectives clearly in place, we’d like to assert that the CRUD oper‐
ations against our Repository implementations hold up. For instance, the
org.cedj.geekseek.domain.conference.test.integration.ConferenceTestCase

contains a series of tests that aim to do just that, and are backed by the Arquillian
Persistence Extension.

First, the test class definition:

@Transactional(TransactionMode.COMMIT)
@RunWith(Arquillian.class)
public class ConferenceTestCase {

This is a plain class with no parent, and will be executed by Arquillian using the JUnit
@RunWith annotation, passing along Arquillian.class as the test runner.

Requirement Test Scenarios | 95

The @Transactional annotation from the Arquillian Transaction Extension (a de‐
pendency of the Persistence Extension) notes that we’ll be running each test method in
a transaction, and committing the result upon completion.

Next we’ll define a ShrinkWrap @Deployment that will be deployed onto the backing
server as our application under test:

 @Deployment
 public static WebArchive deploy() {
 return ShrinkWrap.create(WebArchive.class)
 .addAsLibraries(
 ConferenceDeployments.conference().addClasses(
 ConferenceTestCase.class,
 TestUtils.class)
 .addAsManifestResource(new StringAsset(
 PersistenceDeployments.descriptor().exportAsString()),
 "persistence.xml")
 .addAsManifestResource(
 new File("src/main/resources/META-INF/beans.xml")))
 .addAsWebInfResource(EmptyAsset.INSTANCE, "beans.xml");
 }

This will create a WAR of a structure similar to:

a23508c0-974e-4ae3-a609-cc532828e6c4.war:
/WEB-INF/
/WEB-INF/lib/
/WEB-INF/lib/c2c1eaf4-4f80-49ce-875b-5090cc6dcc7c.jar
/WEB-INF/beans.xml

The nested JAR in WEB-INF/lib are our own libraries under test, which include the core
deployments, the ConferenceRepository, and their dependencies.

We’ll now be able to use Arquillian to inject the ConferenceRepository right into the
test instance, which will be executed inside the deployment on the server. This makes
it a local reference to the runtime code:

 @Inject
 private Repository<Conference> repository;

Our tests will use this repository to interact with persistent storage.

We can also set a few flags to note whether our create and remove JPA events are fired:

 // these fields are static because Events observed by this TestClass
 // are not observed on the same TestClass instance as @Test is running.
 private static boolean createdEventFired = false;
 private static boolean removedEventFired = false;

And we’ll put some methods in place to observe the JPA create events and set the flags.
Because our test is itself a CDI bean, we can use the CDI @Observes annotation to listen
in:

96 | Chapter 5: Java Persistence and Relational Data

 public void createdEventFired(@Observes @Created Conference conference) {
 createdEventFired = true;
 }

 public void removedEventFired(@Observes @Removed Conference conference) {
 removedEventFired = true;
 }

@Created and @Removed are our own CDI qualifiers, defined like so:

@Qualifier
@Target({ElementType.FIELD, ElementType.PARAMETER})
@Retention(RetentionPolicy.RUNTIME)
public @interface Created {

 public static class Literal extends AnnotationLiteral<Created> {
 private static final long serialVersionUID = 1L;
 }
}

Now we’re set to run some tests. The first one will ensure we can create a conference:

 // Story: As a User I should be able to create a Conference
 @Test
 @ShouldMatchDataSet(value = { "conference.yml" }, excludeColumns = { "*id" })
 public void shouldBeAbleToCreateConference() {

 Conference conference = createConference();

 repository.store(conference);
 Assert.assertTrue(createdEventFired);
 }

 public static Conference createConference() {
 Conference conference = new Conference(
 "Devoxx Belgium 2013",
 "We Code In Peace",
 new Duration(toDate(2013, 11, 11), toDate(2013, 11, 15)));
 return conference;
 }

Because we’ll check that the flag was set based upon the CDI @Observes support, we
can be sure that the conference was in fact created. Additionally, we use the @Should
MatchDataSet annotation from the Arquillian Persistence Extension to check that the
values in the DB are in the expected form, given the contents of the conference.xml file,
which looks like:

conference:
 - id: CA
 name: Devoxx Belgium 2013
 tagLine: We Code In Peace
 start: 2013-11-11 00:00:00.0
 end: 2013-11-15 00:00:00.0

Requirement Test Scenarios | 97

In this manner, we can more easily check that data is making its way to and from the
persistence layer intact, with an easier syntax to define the values we’ll expect to find.
This also frees us from writing a lot of assertions on each individual field of every entry
in the DB, and makes for much easier automated checking of large data sets.

Our test class has similar methods to enforce related behaviors mandated by our
requirements:

 // Story: As a User I should be able to create a Conference with a Session
 @Test
 @ShouldMatchDataSet(value = { "conference.yml", "session.yml" },
 excludeColumns = { "*id" })
 public void shouldBeAbleToCreateConferenceWithSession(){...}

 // Story: As a User I should be able to add a Session to an
 // existing Conference
 @Test
 @UsingDataSet("conference.yml")
 @ShouldMatchDataSet(value = { "conference.yml", "session.yml" },
 excludeColumns = { "*id" })
 public void shouldBeAbleToAddSessionToConference() {...}

 // Story: As a User I should be able to remove a Conference
 @Test
 @UsingDataSet("conference.yml")
 @ShouldMatchDataSet("conference_empty.yml")
 public void shouldBeAbleToRemoveConference() {...}

 // Story: As a User I should be able to remove a Session from a Conference
 @Test
 @UsingDataSet({ "conference.yml", "session.yml" })
 @ShouldMatchDataSet({ "conference.yml", "session_empty.yml" })
 public void shouldBeAbleToRemoveConferenceWithSession(){...}

 // Story: As a User I should be able to change a Conference
 @Test
 @UsingDataSet("conference.yml")
 @ShouldMatchDataSet(value = { "conference_updated.yml" })
 public void shouldBeAbleToChangeConference() {...}

 // Story: As a User I should be able to change a Session
 @Test
 @UsingDataSet({ "conference.yml", "session.yml" })
 @ShouldMatchDataSet(value = { "conference.yml", "session_updated.yml" })
 public void shouldBeAbleToChangeSession() {...}

98 | Chapter 5: Java Persistence and Relational Data

By using Arquillian’s injection facilities along with the additional transactions and data-
checking support offered by the Persistence Extension, we can, with very little test logic,
perform powerful assertions which validate that our data is making its way to the real
persistence layer without the use of mock objects.

Requirement Test Scenarios | 99

CHAPTER 6

NoSQL: Data Grids and Graph Databases

I’m more of an adventurous type than a relationship type.
— Bob Dylan

Until relatively recently, the relational database (RDBMS) reigned over data in enterprise
applications by a wide margin when contrasted with other approaches. RDBMSs follow
a premise of storing heavily normalized data in relational structures such as tables, and
are heavily based on rigorous mathematical set theory. Commercial offerings from
Oracle and established open source projects like MySQL (reborn as MariaDB) and
PostgreSQL became de facto choices when it came to storing, archiving, retrieving, and
searching for data. In retrospect, it’s shocking that given the varying requirements from
those operations, one solution was so widely lauded for so long.

In the late 2000s, a trend away from the strict ACID transactional properties could be
clearly observed, given the emergence of data stores that organized information differ‐
ently from the traditional row-based table model. In addition, many programmers were
beginning to advocate for a release from strict transactions; in many use cases it appeared
that this level of isolation wasn’t enough of a priority to warrant the computational
expense necessary to provide ACID guarantees, and the often severe performance pen‐
alties it imposed on storage systems distributed across more than one server.

In 2009, Amazon’s Werner Vogels published Eventually Consistent, an article that ad‐
vocated for the tolerance of inconsistent data in large, distributed systems. He argued
that this was central to providing a system that could continue to perform effectively
under load and could withstand times when part of a distributed data model was ef‐
fectively unavailable for use. In contrast with the rigid ACID properties, this system
could be described as BASE (Basically Available, Soft state, Eventual consistency).

The tenets of eventual consistency are as the name implies: in a distributed system,
updates to a data item will, over time, be reflected in all nodes. There is no guarantee of
when, or that this will happen immediately, so it’s possible that disparate nodes in a

101

http://www.oracle.com/index.html
http://www.mysql.com/
https://mariadb.org/
http://www.postgresql.org/
http://bit.ly/MB2t1C

replicated database may not all be in sync at any given point in time. Vogels argued that
this was a condition to embrace, not fear.

Thus began the rise of the newly coined NoSQL systems, an umbrella term that en‐
compasses, very generally, data solutions that do not adhere to the ACID properties or
store information in a relational format.

It’s important to remember that as developers we’re not bound to any set of solutions
before we’ve fully analyzed the problem. The overwhelming dominance of RDBMS is
a clear sign that as an industry we stopped focusing on the operations needed by our
data model, and instead were throwing all persistent storage features into solutions that
perhaps were not the most efficient at solving a particular storage or querying problem.

Let’s have a look at a few scenarios in which an RDBMS might not be the best-suited
solution.

RDBMS: Bad at Binary Data
An RDBMS is absolutely capable of storing binary data of arbitrary type. Typically done
in a column of type BLOB (Binary Large OBject), CLOB (Character Large OBject), or some
related variant, these fields can hold images, PDFs, or anything else we’d like to persist.
There are a few caveats, however.

Most RDBMS engines have mechanisms to ensure that queries are executed quickly.
One device is a query cache, a temporary location held in memory that remembers the
result of recently or often-executed queries and holds them until the data changes, in‐
validating the cached result and evicting the result from the cache. This space is precious
and valuable; it’s typically limited by the amount of RAM available and configuration
parameters supported by the vendor. When we add BLOB data into a query and it makes
its way into the cache, this very quickly fills up space that’s better used for holding
references or other small bits of useful data. When a query is not available in the cache
or an index is not available, a full table scan must be performed to attain the result. It’s
therefore best to ensure that our large bits of data stay clear of the cache.

The other issue with a traditional RDMBS is that its adherence to the ACID properties
is, in most cases, overkill for fetching documents. It’s entirely possible (and probable)
in a distributed environment with many database nodes that the user can see data that’s
not entirely up-to-date. Consider the case of Twitter or Facebook; seeing the newest
tweets or status updates in your feed is not a request that demands completely up-to-
date information. Eventually you’ll want to catch all the posts of your friends, but this
doesn’t need to be available to you immediately after the update is posted to the server.
To provide complete consistency across the database implies that there is locking and
blocking taking place; other writes and reads in this concurrent environment would have
to wait until the new update is fully committed. Before long, we’d have requests queueing
up at a rate likely to exceed that at which the writes could be committed, and the system

102 | Chapter 6: NoSQL: Data Grids and Graph Databases

http://twitter.com/
http://www.facebook.com

could grind to a standstill. The mark of a functioning concurrent environment is to
avoid blocking wherever possible.

Data Grids
In an era where big data is becoming more and more relevant, we’re faced with the
problem of scaling. Our systems are continually asked to store and query upon larger
and larger data sets, and one machine is unlikely to be able to handle the load for a non-
trivial, public application.

Traditional RDBMS implementations typically offer one or two approaches. First, rep‐
lication involves a write-only master instance where a single machine is knighted as the
authoritative instance. Slaves then pull data from the master’s write operations and
replay those writes locally, thus being able to serve read requests. This works well in an
application where there is a low write-to-read ratio; the reads will scale out to new slaves
while the writes remain centralized on the master.

Second, clustering is an option where a number of database instances keep state current
over the network. This is generally a preferred approach in a write-heavy environment
where scaling out only the read operations is unlikely to provide much performance
benefit. Full clustering has significant overhead, however, so the costs should be weighed
carefully.

Data grids work a little bit differently. They’re designed to store pieces of data across
available nodes; each node cannot contain the entire data set. Because of this arrange‐
ment, they’re built to scale out by simply adding more nodes to the network. Configu‐
ration is typically available to control the amount of redundancy; should each piece of
data live on two nodes, three, or four? If a node goes down, the system is built to re-
distribute the information contained in the now-offline node. This makes data grids
especially fault-tolerant and elastic; nodes can be provisioned at runtime. The key to a
data grid lies in its capability to partition the data and distribute it across nodes on the
network.

Infinispan
Infinispan is an open source data grid from the JBoss Community. Its API centers
around a Cache, a Map structure that provides a mapping between a key and value (this
does not actually extend the java.util.Map interface from the Java Collections library).
The full javax.cache API is defined by the Java Community Process in JSR-107, and
although Infinispan is not a direct implementor of this specification, it contains many
ideas adjacent to and inspiring JSR-107 and the newer Data Grids Specification
JSR-347. Infinispan bills itself as a “Transactional in-memory key/value NoSQL data‐
store & Data Grid.”

RDBMS: Bad at Binary Data | 103

http://www.jboss.org/infinispan/
http://bit.ly/MB357k
http://bit.ly/MB31Ve

Readers keen on gaining better insight into Infinispan and data grids
are urged to check out Infinispan Data Grid Platform by Francesco
Marchioni and Manik Surtani (Packt Publishing, 2012). A guide to
the Infinispan User API is located at http://bit.ly/MB3ree.

The general idea behind Infinispan is that it aims to provide unlimited heap to keep all
objects available in memory. For instance, if we have an environment of 50 servers each
with 2GB of available RAM, the total heap size is 100GB. When the data set becomes
too large for the currently deployed nodes, new memory can be added in the form of
new nodes. This keeps all data quickly accessible, though it may be partitioned across
nodes. This is not an issue, because every item remains accessible from every node in
the grid, even though the current node may not be the one storing the data.

This makes Infinispan well-suited to holding large objects that may have otherwise been
baked into a traditional RDBMS model. Its implementation is versatile enough to be
used in other applications (for instance, as a local cache), but for the purposes of our
GeekSeek application we’ll be leveraging it to handle the storage and retrieval of our
binary data.

RDBMS: Bad at Relationships
The greatest irony of the relational database management system is that it starts to break
down when we need to model complex relationships. As we’ve seen, a traditional
RDBMS will associate data types by drawing pointers between tables using foreign-key
relationships, as shown in Figure 6-1.

Figure 6-1. Foreign-key relationships in an RDBMS

When we go to query for these relationships, we often perform an operation called an
SQL JOIN to return a result of rows from two or more tables. This process involves
resolving any foreign keys to provide a denormalized view; one that combines all

104 | Chapter 6: NoSQL: Data Grids and Graph Databases

http://bit.ly/MB3l6r
http://bit.ly/MB3ree

relevant data into a form that’s useful for us as humans to interpret, but might not be
the most efficient for storage or searching purposes.

The problem is that running joins between data types is an inherently expensive oper‐
ation, and often we need to join more than two tables. Sometimes we even need to join
results. Consider the following example, which has now become a commonplace feature
in social media.

Andy has a set of friends. His friends also each have a set of friends. To find all of the
people who are friends with both Andy and his friends, we might do something like:

• Find all of Andy’s friends.
• For each of those friends, find their friends (third-degree friends).
• For each of the third-degree friends, determine who is also friends directly with

Andy.

That amounts to a lot of querying and joining. What makes this approach unworkable
from a computer science standpoint is the use of the term for each, which indicates a
loop. The preceding example has two of these, creating a computational problem with
geometric complexity at best. As the size of the friend network increases linearly, the
time it will take to determine a result increases by factors of magnitude. Eventually (and
it doesn’t take a very large social network size), our system will be unable to perform
these calculations in a reasonable amount of time, if at all.

Additionally, the approach outlined in the preceding example will need to either search
entire tables for the correct foreign-key relationships or maintain a separate index for
each type of query. Indexing adds some overhead to write operations; whenever a row
is updated or added, the index must reflect that. And working devoid of an index will
require the database to do a full table scan. If the size of the table is large enough that it
cannot be contained in memory (RAM) or the query cannot be held in a cache, now we
face another serious roadblock, because the system must resort to reading from physical
disk, which is a far slower undertaking.

When it comes to complex relationships involving tables of any substantial size, the
classic RDBMS approach is simply not the most intelligent way to model these resources.

Graph Theory
The preceding problem illustrates that we’re simply using the wrong tool for the job.
An RDBMS excels at storage of tabular data, and even does a passable job of drawing
simple relationships.

What we want to do here is easily explore transitive relationships without a geometric
complexity problem, so we need to tackle the problem from a different angle. Students
of computer science will remember studying various data structures and their strengths

RDBMS: Bad at Relationships | 105

and weaknesses. In this case, we benefit from turning to the writings of mathemati‐
cian Leonhard Euler on the Seven Bridges of Königsberg, which in 1735 established the
roots of graph theory.

Graphs are data structures comprised from nodes or vertices and edges; the node/vertex
represents our data, while the edge defines the relationship.

Using this view of our data points and the relationships between them, we can apply
much more efficient algorithms for:

• Calculating the shortest distance between two nodes
• Determining a path from one node to another
• Finding subgraphs and intersections based on query criteria

We’ll be using a graph database to represent some of the relationships between the data
held in our RDBMS; we can think of this as a “relationship layer” atop our pure data
storage model.

Neo4j
Neo4j is is an open source, transactional graph database that does adhere to the ACID
properties. Both its user view and its backing storage engine use underlying graph
structures, so it achieves the performance we’d expect from applying graph theory to
queries it’s suited to serve. Because of this, the Neo4j documentation touts performance
one thousand times faster than possible with an RDBMS for connected data problems.

For those looking to understand graph databases and Neo4j in great‐
er detail, we recommend Graph Databases by Robinson, Webber, and
Eifrém (O’Reilly, 2013).

Because our GeekSeek application has a social component (who is attending which
conferences, who is following speakers and attendees, etc.), we’d like to put in place a
solution that will enable us to augment the data in our RDBMS to:

• Draw relationships between data unrelated in the RDBMS schema
• Quickly query recursive relationships
• Efficiently seek out information relevant to users based on relationship data

106 | Chapter 6: NoSQL: Data Grids and Graph Databases

http://graphdatabases.com/

Use Cases and Requirements
We’ve already seen the domain model for our GeekSeek application in the previous
chapter; this encompasses all of our Conference, Session, User, and Venue entities. The
link between Conference and Session is fairly restricted, so we use an RBDMS rela‐
tionship to handle this.

We’d also like to be able to introduce the notion of an Attachment; this can be any bit
of supporting documentation that may be associated with a Conference or Session.
Therefore we have the requirement:

As a User I should be able to Add/Change/Delete an Attachment.

Because the Attachment is binary data (perhaps a PDF, .doc, or other related material),
we’ll store these in a data grid backend using Infinispan.

Additionally, we’d like to introduce some relationships atop our existing data model.

Adding an Attachment is wonderful, but it won’t have much utility for us unless we
somehow associate this information with the entity it represents. Therefore, we have
the requirement:

As a User I should be able to Add/Delete an Attachment to a Conference.

As a User I should be able to Add/Delete an Attachment to a Session.

A User may attend or speak at a Conference, and it’ll be useful to see who might be
nearby while we’re at the show. So we also have the general requirement:

As a User I should be able to SPEAK at a Conference.

As a User I should be able to ATTEND a Conference.

Because this represents a potentially recursive situation (“I want to see all the attendees
at conferences in which I’m a speaker”), we’d be smart to use a graph structure to model
these ties.

Implementation
We’ll be introducing two domain objects here that are not reflected in our relational
model: Attachment and Relation.

Attachment
We’ll start by introducing the model for our Attachment. Because this will not be stored
in our RDBMS engine, we’ll create a value object to hold the data describing this entity,
and it will not be an @Entity under the management of JPA. We can accomplish this

Use Cases and Requirements | 107

by making a simple class to hold our fields, org.cedj.geekseek.domain.attach
ment.model.Attachment:

public class Attachment implements Identifiable, Timestampable, Serializable {

 private static final long serialVersionUID = 1L;
 private final String id;
 private final String title;
 private final String mimeType;
 private final URL url;
 private final Date created;
 private final Date updated;

This class declaration will adhere to the contracts we’ve seen before in Identifiable
and Timestampable, and it has no JPA annotations or metadata because we’ll be dele‐
gating the persistent operations of this class to Infinispan.

We should also be sure that these Attachment objects are in a valid state, so we’ll add
some assertion checks and intelligent defaults along the way:

 public Attachment(String title, String mimeType, URL url) {
 this(UUID.randomUUID().toString(),
 title, mimeType, url, new Date());
 }

 private Attachment(String id, String title, String mimeType,
 URL url, Date created) {
 requireNonNull(title, "Title must be specified)");
 requireNonNull(mimeType, "MimeType must be specified)");
 requireNonNull(url, "Url must be specified)");
 this.id = id;
 this.created = created;
 this.updated = new Date();
 this.title = title;
 this.mimeType = mimeType;
 this.url = url;
 }

 @Override
 public String getId() {
 return id;
 }

 public String getTitle() {
 return title;
 }

 public Attachment setTitle(String title) {
 return new Attachment(this.id, title, this.mimeType, this.url,
 this.created);
 }

108 | Chapter 6: NoSQL: Data Grids and Graph Databases

 public String getMimeType() {
 return mimeType;
 }

 public Attachment setMimeType(String mimeType) {
 return new Attachment(this.id, this.title, mimeType, this.url,
 this.created);
 }

 public URL getUrl() {
 return url;
 }

 public Attachment setUrl(URL url) {
 return new Attachment(this.id, this.title, this.mimeType, url,
 this.created);
 }

 public Date getLastUpdated() {
 return updated == null ? null:(Date)updated.clone();
 }

 @Override
 public Date getCreated() {
 return created == null ? null:(Date)created.clone();
 }

 @Override
 public Date getLastModified() {
 return getLastUpdated() == null ? getCreated():getLastUpdated();
 }
}

Of note are the calls to our updated method, which will set the timestamp to the current
time on any state change operation.

Recall that our persistence layer for objects, whether through JPA or other means, op‐
erates through the Repository abstraction; this provides hooks for all CRUD opera‐
tions. The previous chapter illustrated a Repository backed by JPA and the EntityMan
ager, but because we’ll be storing Attachment objects in a data grid, we need an imple‐
mentation that will delegate those operations to Infinispan. org.cedj.geekseek.do
main.attachment.AttachmentRepository handles this for us:

@Stateless
@LocalBean
@Typed(AttachmentRepository.class)
@TransactionAttribute(TransactionAttributeType.REQUIRED)
public class AttachmentRepository implements Repository<Attachment> {

We’re implementing this AttachmentRepository as a Stateless Session EJB, where all
business methods are executed inside the context of a transaction. If a transaction is

Implementation | 109

already in flight, it will be used; otherwise, a new one will be started at the onset of the
method invocation and committed when complete.

Our storage engine will be accessed via the Infinispan API’s org.infinispan.Advan
cedCache, so we’ll inject this using CDI:

@Inject
private AdvancedCache<String, Attachment> cache;

Armed with a hook to the Infinispan grid, we can then implement the methods of the
Repository contract using the Infinispan API:

 @Override
 public Class<Attachment> getType() {
 return Attachment.class;
 }

 @Override
 public Attachment store(Attachment entity) {
 try {
 cache.withFlags(Flag.SKIP_REMOTE_LOOKUP,
 Flag.SKIP_CACHE_LOAD,
 Flag.IGNORE_RETURN_VALUES)
 .put(entity.getId(), entity);
 return entity;
 } catch (Exception e) {
 throw new RuntimeException("Could not store Attachment with id " +
 entity.getId(), e);
 }
 }

 @Override
 public Attachment get(String id) {
 try {
 return cache.get(id);
 } catch (Exception e) {
 throw new RuntimeException(
 "Could not retreive Attachment with id "
 + id, e);
 }
 }

 @Override
 public void remove(Attachment entity) {
 cache.withFlags(Flag.SKIP_REMOTE_LOOKUP,
 Flag.SKIP_CACHE_LOAD,
 Flag.IGNORE_RETURN_VALUES)
 .remove(entity.getId());
 }

110 | Chapter 6: NoSQL: Data Grids and Graph Databases

Our AttachmentRepository relies upon an Infinispan AdvancedCache, so we must
make a CDI producer to create the cache instance to be injected. This is handled by
org.cedj.geekseek.domain.attachment.infinispan.CacheProducer:

public class CacheProducer {

 @Produces @ApplicationScoped
 public EmbeddedCacheManager create() {
 GlobalConfiguration global = new GlobalConfigurationBuilder()
 .globalJmxStatistics().cacheManagerName("geekseek")
 .build();

 Configuration local = new ConfigurationBuilder()
 .clustering()
 .cacheMode(CacheMode.LOCAL)
 .transaction()
 .transactionMode(TransactionMode.TRANSACTIONAL)
 .transactionManagerLookup(new GenericTransactionManagerLookup())
 .autoCommit(false)
 .build();
 return new DefaultCacheManager(global, local);
 }

 @Produces @ApplicationScoped
 public AdvancedCache<String, Attachment> createAdvanced(
 EmbeddedCacheManager manager) {
 Cache<String, Attachment> cache =
 manager.getCache();
 return cache.getAdvancedCache();
 }

 public void destroy(@Disposes Cache<?, ?> cache) {
 cache.stop();
 }

 ...
}

CacheProducer does the business of creating and configuring the Infinispan Advan
cedCache instance and makes it a valid injection source by use of CDI’s (technically
javax.enterprise.inject) @Produces annotation.

This should be enough to fulfill our requirements to perform CRUD operations on an
Attachment, and does so in a way that won’t bog down our RDBMS with binary data.

Relation
With our Attachment now modeled and capable of persistence in the data grid, we can
move on to the task of associating it with a Session or Conference. Because we’ll handle
relationships in a separate layer over the RDBMS, we can do this in a generic fashion

Implementation | 111

that will also grant us the ability to let a User attend or speak at a Conference. The model
for a relationship is reflected by org.cedj.geekseek.domain.relation.model.
Relation:

public class Relation {
 private Key key;
 private Date created;

Relation is another standalone class with no additional metadata or dependencies. It
contains a Date of creation and a Reference.Key:

private static class Key implements Serializable {

 private static final long serialVersionUID = 1L;
 private String sourceId;
 private String targetId;
 private String type;

 private Key(String sourceId, String targetId, String type) {
 this.sourceId = sourceId;
 this.targetId = targetId;
 this.type = type;
 }

 @Override
 public int hashCode() {
 final int prime = 31;
 int result = 1;
 result = prime * result + ((sourceId == null) ? 0 :
 sourceId.hashCode());
 result = prime * result + ((targetId == null) ? 0 :
 targetId.hashCode());
 result = prime * result + ((type == null) ? 0 : type.hashCode());
 return result;
 }

 @Override
 public boolean equals(Object obj) {
 if (this == obj)
 return true;
 if (obj == null)
 return false;
 if (getClass() != obj.getClass())
 return false;
 Key other = (Key) obj;
 if (sourceId == null) {
 if (other.sourceId != null)
 return false;
 } else if (!sourceId.equals(other.sourceId))
 return false;
 if (targetId == null) {
 if (other.targetId != null)

112 | Chapter 6: NoSQL: Data Grids and Graph Databases

 return false;
 } else if (!targetId.equals(other.targetId))
 return false;
 if (type != other.type)
 return false;
 return true;
 }
 }

The Reference.Key very simply draws a link between a source primary key and a target
primary key, the IDs of the entities it is linking. Additionally, we assign a type to note
what the relationship is reflecting. Because we want to determine value equality using
the Object.equals method, we override the equals and hashCode methods (by Object
contract, objects with equal values must have equal hashCodes).

The rest of the Relation class is straightforward:

 public Relation(String sourceId, String targetId, String type) {
 this.key = new Key(sourceId, targetId, type);
 this.created = new Date();
 }

 public String getSourceId() {
 return key.sourceId;
 }

 public String getTargetId() {
 return key.targetId;
 }

 public String getType() {
 return key.type;
 }

 public Date getCreated() {
 return (Date) created.clone();
 }
}

Now we need a mechanism to persist and remove Relation instances. Our Reposito
ry interface used on other objects doesn’t really fit the operations we need; relationships
are not true entities, but are instead pointers from one entity to another. So in
org.cedj.geekseek.domain.relation.RelationRepository we’ll define a more fit‐
ting contract:

public interface RelationRepository {

 Relation add(Identifiable source, String type, Identifiable target);

 void remove(Identifiable source, String type, Identifiable target);

Implementation | 113

 <T extends Identifiable> List<T> findTargets(Identifiable source,
 String type, Class<T> targetType);
}

The RelationRepository will be used by the services layer, and acts as an abstraction
above the data store provider persisting the relationships (a graph database in this case).

Now we’re free to implement RelationRepository with a Neo4j backend in
org.cedj.geekseek.domain.relation.neo.GraphRelationRepository:

@ApplicationScoped
public class GraphRelationRepository implements RelationRepository {

 private static final String PROP_INDEX_NODE = "all_nodes";
 private static final String PROP_INDEX_REL = "all_relations";
 private static final String PROP_ID = "id";
 private static final String PROP_NODE_CLASS = "_classname";
 private static final String PROP_CREATED = "created";
 private static final String REL_TYPE_ALL = "all";

 @Inject
 private GraphDatabaseService graph;

 @Inject
 private BeanManager manager;

GraphRelationRepository is implemented as an application-scoped CDI bean; it con‐
tains a few constants, a hook to the backend graph database (Neo4j API’s GraphDataba
seService), and a reference to the CDI BeanManager.

The RelationRepository contract implementation looks like this:

 @Override
 public Relation add(Identifiable source, final String type,
 Identifiable target) {

 Transaction tx = graph.beginTx();
 try {
 Node root =graph.getNodeById(0);
 String sourceTypeName = source.getClass().getSimpleName();
 String targetTypeName = target.getClass().getSimpleName();
 Node sourceTypeNode = getOrCreateNodeType(sourceTypeName);
 Node targetTypeNode = getOrCreateNodeType(targetTypeName);
 getOrCreateRelationship(root, sourceTypeNode,
 Named.relation(sourceTypeName));
 getOrCreateRelationship(root, targetTypeNode,
 Named.relation(targetTypeName));

 Node sourceNode = getOrCreateNode(source, sourceTypeName);
 getOrCreateRelationship(sourceTypeNode, sourceNode,
 Named.relation(REL_TYPE_ALL));
 Node targetNode = getOrCreateNode(target, targetTypeName);

114 | Chapter 6: NoSQL: Data Grids and Graph Databases

 getOrCreateRelationship(targetTypeNode, targetNode,
 Named.relation(REL_TYPE_ALL));

 getOrCreateRelationship(sourceNode, targetNode, Named.relation(type));

 tx.success();
 } catch(Exception e) {
 tx.failure();
 throw new RuntimeException(
 "Could not add relation of type " + type + " between " + source +
 " and " + target, e);
 } finally {
 tx.finish();
 }
 return new Relation(source.getId(), target.getId(), type);
 }

 @Override
 public void remove(Identifiable source, String type, Identifiable target) {

 Transaction tx = graph.beginTx();
 try {
 Index<Node> nodeIndex = graph.index().forNodes(PROP_INDEX_NODE);
 Index<Relationship> relationIndex = graph.index().forRelationships(
 PROP_INDEX_REL);

 Node sourceNode = nodeIndex.get(PROP_ID, source.getId()).getSingle();
 Node targetNode = nodeIndex.get(PROP_ID, target.getId()).getSingle();
 for(Relationship rel : sourceNode.getRelationships(
 Named.relation(type))) {
 if(rel.getEndNode().equals(targetNode)) {
 rel.delete();
 relationIndex.remove(rel);
 }
 }

 tx.success();
 } catch(Exception e) {
 tx.failure();
 throw new RuntimeException(
 "Could not add relation of type " + type + " between " + source +
 " and " + target, e);
 } finally {
 tx.finish();
 }
 }

 @Override
 public <T extends Identifiable> List<T> findTargets(Identifiable source,
 final String type, final Class<T> targetType) {

 Repository<T> repo = locateTargetRepository(targetType);

Implementation | 115

 if(repo == null) {
 throw new RuntimeException("Could not locate a " +
 Repository.class.getName() + " instance for Type " +
 targetType.getName());
 }

 List<T> targets = new ArrayList<T>();
 Index<Node> index = graph.index().forNodes(PROP_INDEX_NODE);
 Node node = index.get(PROP_ID, source.getId()).getSingle();
 if(node == null) {
 return targets;
 }
 Iterable<Relationship> relationships = node.getRelationships(
 Named.relation(type));
 List<String> targetIds = new ArrayList<String>();
 for(Relationship relation : relationships) {
 targetIds.add(relation.getEndNode().getProperty(PROP_ID).toString());
 }

 for(String targetId : targetIds) {
 targets.add(repo.get(targetId));
 }
 return targets;
 }

As shown, this is a fairly simple undertaking given a little research into proper use of
the Neo4j API. We’ll also need a little help to resolve the proper Repository types from
the types of the entities between which we’re drawing relationships. So we’ll add some
internal helper methods to GraphRelationRepository to contain this logic:

 /**
 * Helper method that looks in the BeanManager for a Repository that
 * matches signature Repository<T>.
 *
 * Used to dynamically find repository to load targets from.
 *
 * @param targetType Repository object type to locate
 * @return Repository<T>
 */
 private <T extends Identifiable> Repository<T> locateTargetRepository(
 final Class<T> targetType) {
 ParameterizedType paramType = new ParameterizedType() {
 @Override
 public Type getRawType() {
 return Repository.class;
 }
 @Override
 public Type getOwnerType() {
 return null;
 }
 @Override
 public Type[] getActualTypeArguments() {

116 | Chapter 6: NoSQL: Data Grids and Graph Databases

 return new Type[] {targetType};
 }
 };

 Set<Bean<?>> beans = manager.getBeans(paramType);
 Bean<?> bean = manager.resolve(beans);
 CreationalContext<?> cc = manager.createCreationalContext(null);

 @SuppressWarnings("unchecked")
 Repository<T> repo = (Repository<T>)manager.getReference(bean,
 paramType, cc);
 return repo;
 }

 private Node getOrCreateNodeType(String type) {
 UniqueFactory<Node> factory = new UniqueFactory.UniqueNodeFactory(
 graph, PROP_INDEX_NODE) {
 @Override
 protected void initialize(Node created, Map<String, Object>
 properties) {
 created.setProperty(PROP_ID, properties.get(PROP_ID));
 }
 };
 return factory.getOrCreate(PROP_ID, type);
 }

 private Node getOrCreateNode(Identifiable source,
 final String nodeClassType) {
 UniqueFactory<Node> factory = new UniqueFactory.UniqueNodeFactory(
 graph, PROP_INDEX_NODE) {
 @Override
 protected void initialize(Node created, Map<String, Object>
 properties) {
 created.setProperty(PROP_ID, properties.get(PROP_ID));
 created.setProperty(PROP_NODE_CLASS, nodeClassType);
 }
 };
 return factory.getOrCreate(PROP_ID, source.getId());
 }

 private Relationship getOrCreateRelationship(final Node source,
 final Node target, final RelationshipType type) {
 final String key = generateKey(source, target, type);

 UniqueFactory<Relationship> factory =
 new UniqueFactory.UniqueRelationshipFactory(
 graph, PROP_INDEX_REL) {

 @Override
 protected Relationship create(Map<String, Object> properties) {
 Relationship rel = source.createRelationshipTo(target, type);
 rel.setProperty(PROP_ID, properties.get(PROP_ID));

Implementation | 117

 return rel;
 }

 @Override
 protected void initialize(Relationship rel,
 Map<String, Object> properties) {
 rel.setProperty(PROP_CREATED, System.currentTimeMillis());
 }
 };
 return factory.getOrCreate(PROP_ID, key);
 }

 /**
 * Generate some unique key we can identify a relationship with.
 */
 private String generateKey(Node source, Node target,
 RelationshipType type) {
 return source.getProperty(PROP_ID, "X") + "-" + type.name() + "-" +
 target.getProperty(PROP_ID, "X");
 }

 private static class Named implements RelationshipType {

 public static RelationshipType relation(String name) {
 return new Named(name);
 }

 private String name;

 private Named(String name) {
 this.name = name;
 }

 @Override
 public String name() {
 return name;
 }
 }
}

Again, we’ve made an implementation class that depends upon injection of a backend
provider’s API. To enable injection of the Neo4j GraphDatabaseService, we’ll create
another CDI producer in org.cedj.geekseek.domain.relation.neo.GraphDataba
seProducer:

@ApplicationScoped
public class GraphDatabaseProducer {

 private String DATABASE_PATH_PROPERTY = "neo4j.path";

 private static Logger log = Logger.getLogger(
 GraphDatabaseProducer.class.getName());

118 | Chapter 6: NoSQL: Data Grids and Graph Databases

 @Produces
 public GraphDatabaseService createGraphInstance() throws Exception {
 String databasePath = getDataBasePath();
 log.info("Using Neo4j database at " + databasePath);
 return new GraphDatabaseFactory().newEmbeddedDatabase(databasePath);
 }

 public void shutdownGraphInstance(@Disposes GraphDatabaseService service)
 throws Exception {
 service.shutdown();
 }

 private String getDataBasePath() {
 String path = System.clearProperty(DATABASE_PATH_PROPERTY);
 if(path == null || path.isEmpty()) {
 try {
 File tmp = File.createTempFile("neo", "geekseek");
 File parent = tmp.getParentFile();
 tmp.delete();
 parent.mkdirs();
 path = parent.getAbsolutePath();
 }catch (IOException e) {
 throw new RuntimeException(
 "Could not create temp location for Nepo4j Database. " +
 "Please provide system property " + DATABASE_PATH_PROPERTY +
 " with a valid path", e);
 }
 }
 return path;
 }
}

With this in place we can inject a GraphDataBaseService instance into our GraphRela
tionRepository.

Our implementation is almost complete, though it’s our position that nothing truly
exists until it’s been proven through tests.

Requirement Test Scenarios
Given our user requirements and the implementation choices we’ve made, it’s important
we assert that a few areas are working as expected:

• CRUD operations on Attachment objects
• Transactional integrity of CRUD operations on Attachment objects
• Create, Delete, and Find relationships between entities

Requirement Test Scenarios | 119

Attachment CRUD Tests
First we’ll need to ensure that we can Create, Read, Update, and Delete Attachment
instances using the data grid provided by Infinispan. To ensure these are working, we’ll
use org.cedj.geekseek.domain.attachment.test.integration.AttachmentRepo

sitoryTestCase:

@RunWith(Arquillian.class)
public class AttachmentRepositoryTestCase {

 // Given
 @Deployment
 public static WebArchive deploy() {
 return ShrinkWrap.create(WebArchive.class)
 .addAsLibraries(
 CoreDeployments.core(),
 AttachmentDeployments.attachmentWithCache())
 .addAsLibraries(AttachmentDeployments.resolveDependencies())
 .addClass(TestUtils.class)
 .addAsWebInfResource(EmptyAsset.INSTANCE, "beans.xml");
 }

Here we have a simple Arquillian test defined with no additional extensions. We’ll de‐
ploy an attachmentWithCache, as defined by:

 public static JavaArchive attachment() {
 return ShrinkWrap.create(JavaArchive.class)
 .addPackage(Attachment.class.getPackage())
 .addAsManifestResource(EmptyAsset.INSTANCE, "beans.xml");
 }

 public static JavaArchive attachmentWithCache() {
 return attachment()
 .addPackage(AttachmentRepository.class.getPackage())
 .addPackage(CacheProducer.class.getPackage());
 }

This will give us our Attachment domain entity, the AttachmentRepository, and the
CDI producer to inject hooks into an Infinispan Cache as shown before. Additionally,
we’ll need to deploy the Infinispan API and implementation as a library, so Attach
mentDeployments.resolveDependencies will bring this in for us:

 public static File[] resolveDependencies() {
 return Maven.resolver()
 .offline()
 .loadPomFromFile("pom.xml")
 .resolve("org.infinispan:infinispan-core")
 .withTransitivity()
 .asFile();
 }

120 | Chapter 6: NoSQL: Data Grids and Graph Databases

This uses the ShrinkWrap Maven Resolver to pull the groupId:artifactId of
org.infinispan:infinispan-core and all of its dependencies in from the Maven
repository, returning the artifacts as files. We don’t need to define the version explicitly
here; that will be configured from the definition contained in the project’s pom.xml file
because we’ve told the resolver to loadPomFromFile("pom.xml").

Also as part of the deployment we’ll throw in a TestUtils class, which will let us easily
create Attachment objects from the tests running inside the container:

 public static Attachment createAttachment() {
 try {
 return new Attachment(
 "Test Attachment",
 "text/plain",
 new URL("http://geekseek.org"));
 } catch(MalformedURLException e) {
 throw new RuntimeException(e);
 }
 }

The resulting deployment should have structure that looks similar to this:

749e9f51-d858-42a6-a06e-3f3d03fc32ad.war:
/WEB-INF/
/WEB-INF/lib/
/WEB-INF/lib/jgroups-3.3.1.Final.jar
/WEB-INF/lib/43322d61-32c4-444c-9681-079ac34c6e87.jar
/WEB-INF/lib/staxmapper-1.1.0.Final.jar
/WEB-INF/lib/jboss-marshalling-river-1.3.15.GA.jar
/WEB-INF/lib/56201983-371f-4ed5-8705-d4fd6ec8f936.jar
/WEB-INF/lib/infinispan-core-5.3.0.Final.jar
/WEB-INF/lib/jboss-marshalling-1.3.15.GA.jar
/WEB-INF/lib/jboss-logging-3.1.1.GA.jar
/WEB-INF/beans.xml
/WEB-INF/classes/
/WEB-INF/classes/org/
/WEB-INF/classes/org/cedj/
/WEB-INF/classes/org/cedj/geekseek/
/WEB-INF/classes/org/cedj/geekseek/domain/
/WEB-INF/classes/org/cedj/geekseek/domain/attachment/
/WEB-INF/classes/org/cedj/geekseek/domain/attachment/test/
/WEB-INF/classes/org/cedj/geekseek/domain/attachment/test/TestUtils.class

As we can see, Infinispan and all of its dependencies have made their way to WEB-INF/
lib; our own libraries are not explicitly named, so they’re assigned a UUID filename.

Requirement Test Scenarios | 121

It’s useful to debug your deployments by simply printing out a list‐
ing of your archive; this is easily accomplished by throwing a state‐
ment like System.out.println(archive.toString(true)); in your
@Deployment method before returning the archive. If you want to
debug the content of the final deployment as seen by the container,
you can set the deploymentExportPath property under the engine
element in arquillian.xml to the path where you want Arquillian to
output the deployments. This is useful if you’re having deployment
problems that you suspect are related to how Arquillian enriches the
deployment, or if you’re generating file content dynamically.

Now let’s give our test a hook to the Repository we’ll use to perform CRUD operations
on our Attachment objects:

 @Inject
 private Repository<Attachment> repository;

With the deployment and injection of the Repository done, we’re now free to imple‐
ment our tests:

 // Story: As a User I should be able to create an Attachment

 @Test
 public void shouldBeAbleToCreateAttachment() throws Exception {
 Attachment attachment = createAttachment();
 repository.store(attachment);

 Attachment stored = repository.get(attachment.getId());
 Assert.assertNotNull(stored);

 Assert.assertEquals(attachment.getId(), stored.getId());
 Assert.assertEquals(attachment.getTitle(), stored.getTitle());
 Assert.assertEquals(attachment.getUrl(), stored.getUrl());
 Assert.assertEquals(attachment.getMimeType(), stored.getMimeType());
 Assert.assertNotNull(stored.getCreated());
 }

 // Story: As a User I should be able to update an Attachment

 @Test
 public void shouldBeAbleToUpdateAttachment() throws Exception {
 String updatedTitle = "Test 2";
 Attachment attachment = createAttachment();
 attachment = repository.store(attachment);

 attachment = attachment.setTitle(updatedTitle);
 attachment = repository.store(attachment);

 Attachment updated = repository.get(attachment.getId());

122 | Chapter 6: NoSQL: Data Grids and Graph Databases

 Assert.assertEquals(updated.getTitle(), updatedTitle);
 Assert.assertNotNull(attachment.getLastUpdated());
 }

 // Story: As a User I should be able to remove an Attachment

 @Test
 public void shouldBeAbleToRemoveAttachment() throws Exception {
 Attachment attachment = createAttachment();
 attachment = repository.store(attachment);

 repository.remove(attachment);

 Attachment removed = repository.get(attachment.getId());
 Assert.assertNull(removed);
 }

 @Test
 public void shouldNotReflectNonStoredChanges() throws Exception {
 tring updatedTitle = "Test Non Stored Changes";
 Attachment attachment = createAttachment();
 String originalTitle = attachment.getTitle();

 Attachment stored = repository.store(attachment);

 // tile change not stored to repository
 stored = stored.setTitle(updatedTitle);

 Attachment refreshed = repository.get(attachment.getId());

 Assert.assertEquals(refreshed.getTitle(), originalTitle);
 }
}

So here we have our CRUD tests using the injected Repository to perform their per‐
sistence operations. In turn, we’ve implemented the Repository with an Infinispan
backend (which in this case is running in local embedded mode). We can now be assured
that our repository layer is correctly hooked together and persistence to the data grid
is working properly.

Transactional Integrity of Attachment Persistence
While we’re confident that the CRUD operations of our Attachment entity are in place,
we should ensure that the transactional semantics are upheld if a transaction is in flight.
This will essentially validate that Infinispan is respectful of the Java Transactions API
(JTA), a specification under the direction of the JSR-907 Expert Group.

To accomplish this, we’re going to directly interact with JTA’s UserTransaction in our
test. In fact, the Attachment entity is not the only one we should be verifying, so we’ll

Requirement Test Scenarios | 123

http://jcp.org/en/jsr/detail?id=907

code this test in a way that will enable us to extend it to ensure that Conference,
Session, and other entities can be exercised for transactional compliance.

Our goals are to assert that for any entity type T:

• T is Stored on commit and can be read from another transaction.
• T is Updated on commit and can be read from another transaction.
• T is Removed on commit and cannot be read by another transaction.
• T is not Stored on rollback and cannot be read by another transaction.
• T is not Updated on rollback and cannot be read by another transaction.
• T is not Removed on rollback and can be read by another transaction.

Therefore we’ll attempt to centralize these operations in a base test class that will, when
provided a T and a Repository<T>, verify that T is committed and rolled back as re‐
quired. Thus we introduce org.cedj.geekseek.domain.test.integration.BaseTran
sactionalSpecification:

public abstract class BaseTransactionalSpecification<
 DOMAIN extends Identifiable,
 REPO extends Repository<DOMAIN>> {

We define some generic variables for easy extension; this test will deal with entity objects
of type Identifiable and the Repository that interacts with them. Next we’ll gain
access to the JTA UserTransaction:

 @Inject
 private UserTransaction tx;

Because this class is to be extended for each entity type we’d like to test, we’ll make a
contract for those implementations to supply:

 /**
 * Get the Repository instance to use.
 */
 protected abstract REPO getRepository();

 /**
 * Create a new unique instance of the Domain Object.
 */
 protected abstract DOMAIN createNewDomainObject();

 /**
 * Update some domain object values.
 */
 protected abstract void updateDomainObject(
 DOMAIN domain);

 /**

124 | Chapter 6: NoSQL: Data Grids and Graph Databases

 * Validate that the update change has occurred.
 * Expecting Assert error when validation does not match.
 */
 protected abstract void validateUpdatedDomainObject(
 DOMAIN domain);

And now we’re free to write the tests backing the points listed earlier; we want to validate
that objects are either accessible or not based on commit or rollback operations to the
transaction in play. For instance, this test ensures that an object is stored after a commit:

 @Test
 public void shouldStoreObjectOnCommit() throws Exception {
 final DOMAIN domain = createNewDomainObject();

 commit(Void.class, new Store(domain));

 DOMAIN stored = commit(new Get(domain.getId()));
 Assert.assertNotNull(
 "Object should be stored when transaction is committed",
 stored);
 }

 protected DOMAIN commit(Callable<DOMAIN> callable) throws Exception {
 return commit(getDomainClass(), callable);
 }

 protected <T> T commit(Class<T> type, Callable<T> callable)
 throws Exception {
 try {
 tx.begin();
 return callable.call();
 } finally {
 tx.commit();
 }
 }

 private class Store implements Callable<Void> {
 private DOMAIN domain;

 public Store(DOMAIN domain) {
 this.domain = domain;
 }

 @Override
 public Void call() throws Exception {
 getRepository().store(domain);
 return null;
 }
 }

 private class Get implements Callable<DOMAIN> {
 private String id;

Requirement Test Scenarios | 125

 public Get(String id) {
 this.id = id;
 }

 @Override
 public DOMAIN call() throws Exception {
 return getRepository().get(id);
 }
 }

Here we see that we manually manipulate the UserTransaction to our liking in the test
method; the mechanics of this interaction are handled by the commit method.

We have similar tests in place to validate the other conditions:

 @Test public void shouldUpdateObjectOnCommit() throws Exception {...}

 @Test public void shouldRemoveObjectOnCommmit() throws Exception {...}

 @Test public void shouldNotStoreObjectOnRollback() throws Exception {...}

 @Test public void shouldNotUpdateObjectOnRollback() throws Exception {...}

 @Test public void shouldNotRemoveObjectOnRollback() throws Exception {...}

 @Test public void shouldSetCreatedDate() throws Exception {...}

 @Test public void shouldSetUpdatedDate() throws Exception {...}

With our base class containing most of our support for the transactional specification
tests, now we can provide a concrete implementation for our Attachment entities. We
do this in org.cedj.geekseek.domain.attachment.test.integration.Attachment
RepositoryTransactionalTestCase:

@RunWith(Arquillian.class)
public class AttachmentRepositoryTransactionalTestCase
 extends
 BaseTransactionalSpecification<Attachment, Repository<Attachment>> {

We’ll extend BaseTransactionalSpecification and close the generic context to be
relative to Attachment. By implementing the parent abstract methods of the parent
class, we’ll then be done and able to run transactional tests on Attachment types:

 private static final String UPDATED_TITLE = "TEST UPDATED";
...
 @Inject
 private Repository<Attachment> repository;

 @Override
 protected Attachment createNewDomainObject() {
 return createAttachment();

126 | Chapter 6: NoSQL: Data Grids and Graph Databases

 }

 @Override
 protected Attachment updateDomainObject(
 Attachment domain) {
 return domain.setTitle(UPDATED_TITLE);
 }

 @Override
 protected void validateUpdatedDomainObject(Attachment domain) {
 Assert.assertEquals(UPDATED_TITLE, domain.getTitle());
 }

 @Override
 protected Repository<Attachment> getRepository() {
 return repository;
 }

With these tests passing, we’re now satisfied that our Infinispan backend is complying
with the semantics of a backing application transaction. We therefore have nicely ab‐
stracted the data grid from the perspective of the caller; it’s just another transactionally
aware persistence engine representing itself as a Repository.

Validating Relationships
Armed with our Neo4j-backed RelationRepository, we’re able to draw relationships
between entities that are not otherwise related in the schema, or may even be in separate
data stores. Let’s construct a test to validate that our Relation edges in the graph are
serving us well. We’ll do this in org.cedj.geekseek.domain.relation.test.integra
tion.RelationTestCase:

@RunWith(Arquillian.class)
public class RelationTestCase {

This will be another relatively simple Arquillian test case, running inside the container.
We’ll again define a deployment, this time including Neo4j as a dependency in place of
Infinispan:

 @Deployment
 public static WebArchive deploy() {
 return ShrinkWrap.create(WebArchive.class)
 .addAsLibraries(
 RelationDeployments.relationWithNeo(),
 CoreDeployments.core())
 .addAsLibraries(RelationDeployments.neo4j())
 .addPackage(SourceObject.class.getPackage())
 .addAsWebInfResource(EmptyAsset.INSTANCE, "beans.xml");
 }

Requirement Test Scenarios | 127

This deployment will include our GraphDatabaseProducer, so we’ll be able to inject a
GraphRelationRepository in our test case to create, remove, and find Relation edges.
We’ll obtain this easily via injection into the test instance:

 @Inject
 private GraphRelationRepository repository;

Now we’ll set up some constants and instance members, then populate them before each
test runs using a JUnit lifecycle annotation:

 private static final String SOURCE_ID = "11";
 private static final String TARGET_ID = "1";

 private SourceObject source;
 private TargetObject target;
 private String type;

 @Before
 public void createTypes() {
 source = new SourceObject(SOURCE_ID);
 target = new TargetObject(TARGET_ID);
 type = "SPEAKING";
 }

SourceObject and TargetObject are test-only objects we’ve introduced to represent
entities. Again, we only care about relationships here, so there’s no sense tying this test
to one of our real entities at this level of integration. At this point we want to test the
Relation and its persistence mechanisms in as much isolation as possible, so it’s ap‐
propriate to tie together test-only entities.

Now we’ll want to run our tests to:

• Create a relationship
• Find the created relationship
• Delete the relationship
• Only find valid targets remaining

Rather than do this in one large test, we’ll make separate tests for each case. There are
dependencies however, because the state of the system will change after each test is run.
Therefore we need to make sure that these tests run in the proper order using Arquillian’s
@InSequence annotation:

 @Test @InSequence(0)
 public void shouldBeAbleToCreateRelation() {

 Relation relation = repository.add(source, type, target);

 Assert.assertEquals("Verify returned object has same source id",
 relation.getSourceId(), source.getId());

128 | Chapter 6: NoSQL: Data Grids and Graph Databases

 Assert.assertEquals("Verify returned object has same target id",
 relation.getTargetId(), target.getId());
 Assert.assertEquals("Verify returned object has same type",
 relation.getType(), type);

 Assert.assertNotNull("Verify created date was set",
 relation.getCreated());
 }

 @Test @InSequence(1)
 public void shouldBeAbleToFindTargetedRelations(
 Repository<TargetObject> targetRepo,
 Repository<SourceObject> sourceRepo) {...}

 @Test @InSequence(2)
 public void shouldBeAbleToDeleteRelations() {...}

 @Test @InSequence(3)
 public void shouldOnlyFindGivenRelation() {...}

With these passing, it’s now proven that we can perform all the contracted operations
of RelationRepository against a real Neo4j graph database backend.

Our GeekSeek application now has many database layers at its disposal: CRUD opera‐
tions in an RDBMS for most entities, a key/value store to hold onto Attachment objects,
and a graph to draw ties among the entities such that their relationships can be explored
in an efficient manner.

Requirement Test Scenarios | 129

CHAPTER 7

Business Logic and the Services Layer

The best way to find yourself is to lose yourself in the service of others.
— Mahatma Gandhi

The code we’ve developed and tested up to this point has dealt with data: organizing,
accessing, mutating, and transforming it into formats more comfortable to us as appli‐
cation developers. We’ve mentioned that these are the nouns of our GeekSeek project;
now it’s time to put these to some good use and take action.

Business logic governs the behaviors that power our applications. As compared with
more generic (and cross-cutting) concerns that can be abstracted—security, transac‐
tions, object-relational mapping, resource management—business logic lies at the heart
of our projects. It is unique to our needs, and no one else can write it for us.

That said, the cross-cutting concerns just mentioned (and many more!) are all com‐
monly demanded by our business needs. For instance, imagine we have a series of serv‐
ices, each of which needs to be accessed by an authenticated and authorized user, and
in the context of a transaction. If we were diligently applying proper modularization
and encapsulation, we might implement separate functions for the transactional and
security enforcement, and then call these from our services.

A glaring problem with this approach is that, although we’ve nicely extracted out the
logic for our security and transactions for reuse, we must still manually invoke them,
sprinkling these method calls at the head and foot of every function requiring their use.
Additionally, we may have to pass around contextual objects that know about the state
of the current user or transactional registration (though in practice, these are commonly
associated with a Thread, and thus are able to fly under the visible API radar in an
obfuscated context).

Things get more complicated when we introduce dependent services. A UserRegistra
tion function may in turn call many finer-grained services like SendEmail, PutUserIn

131

Database, and GenerateHashOfPassword. This composition is desirable because it sep‐
arates concerns, but we’re left with the problem of looking up or locating each of these
disparate services from UserRegistration. Ultimately this adds to the “plumbing”
code, which provides no benefit to us aside from hooking our cleanly decoupled mod‐
ules together. Although this has historically been addressed by employing a technique
known as the Service Locator Pattern, for reasons we’ll soon see, this is a largely outdated
and inferior approach.

A more subtle, yet very important, issue that arises with pure POJO programming in a
multiuser environment is one of shared state. Consider the following code:

public class UserService {

 /** Cached flag denoting if our current user has logged in **/
 private boolean isLoggedIn;

 public boolean authenticate(final String userName,
 final String password){

 // First check if we're already logged in
 if(isLoggedIn){
 return true;
 }

 // Else hash the password, check against the hash
 // in the database, and return true if and
 // only if they match
 /** Omitted for brevity **/

 }
}

This UserService is clearly meant to be associated with a current user session, and thus
has what we call conversational scope confined to that session. When writing manual
POJO services, the onus is upon us as developers to ensure that this is enforced; imagine
if UserB were to come along and receive the object for which UserA had already set
isLoggedIn to true? Scope confinement is vitally important to the integrity of our
system, and we have to be very careful when rolling our own solutions.

In this chapter we’ll be examining each of these complications and a proposed solution
when tackling the testable development of a common, and seemingly innocuous, busi‐
ness requirement: sending email from a Java EE-based application.

Use Cases and Requirements
As always, before digging into the implementation, we’ll define some requirements
based on our desired use cases.

132 | Chapter 7: Business Logic and the Services Layer

Send Email on New User Signup
Web-based applications offer few avenues to push information to their users once off‐
line; perhaps the most prevalent is through the use of email. We see this in a variety of
user stories: “Confirm Email Address,” “Reset Password,” and “Welcome New User” are
all subject lines we’ve grown to expect from the sites we use. It’s fitting, then, that we
devise a simple strategy to send email from our application that can be easily reused by
the more coarsely grained operations.

Our GeekSeek application will therefore introduce the requirement: “Send an Email to
the New User Upon Successful Signup.”

At first blush, this seems like a fairly trivial problem to solve. The JavaMail API is
straightforward enough to use (though a bit dated), and is included as part of the Java
EE Platform.

Unfortunately, there are many issues to consider beyond the boilerplate code required
to send the email itself:
Should we block (wait) while the mail message is sent to the SMTP server?

Connecting to an external service can take some time, depending on how it handles
open connections. The delivery of the email isn’t designed to be immediate, so
there’s not much sense forcing the user to wait while we connect to an SMTP server,
construct a MimeMessage, and send.

What if sending the email fails? Should the enclosing user registration action that called
the email service fail, too?

Sending the email is, in our case, part of a welcome operation. A new user regis‐
tration doesn’t strictly need this to succeed because we won’t be relying on email to
validate the user’s identity. Still, we’d like to make every available effort to ensure
that the email goes through, independent of the user registration action. And we’d
like to have some notification and options to handle emails that were attempted to
be sent, but have failed.

How do we test to ensure that the emails we’ve sent are received? How do we validate
that the email’s contents are correct?

Even if we don’t dispatch the communication with the SMTP server to a new
Thread, interacting with this external process makes for an asynchronous action.
Asynchronous testing is not always the simplest process to set up, but this does not
excuse us from the responsibility of ensuring that our email service works as
designed.

Use Cases and Requirements | 133

http://bit.ly/1noNtRq

Implementation
We’ll begin our example with the construction of a generic SMTPMailService. As the
name implies, its job will be to act as our Java interface to perform SMTP operations.
Specifically, we’ll write this to send email.

First we’ll make a self-explanatory value object to encapsulate the fields needed to send
an email message. This is implemented as a mutable builder for ease of use:

public class MailMessageBuilder implements Serializable {

 private static final long serialVersionUID = 1L;

 private static final String[] EMPTY = new String[]{};
 private String from;
 private String subject;
 private String body;
 private String contentType;
 private final Collection<String> toAddresses = new HashSet<String>();

 public MailMessageBuilder from(final String from)
 throws IllegalArgumentException {
 if (from == null || from.length() == 0) {
 throw new IllegalArgumentException("from address must be specified");
 }
 this.from = from;
 return this;
 }
 // Other fluent API methods omitted for brevity; see full source for details

MailMessageBuilder has a build method that can then return an immutable view:

public MailMessage build() throws IllegalStateException {

 // Validate
 if (from == null || from.length() == 0) {
 throw new IllegalStateException("from address must be specified");
 }
 if (toAddresses.size() == 0) {
 throw new IllegalStateException(
 "at least one to address must be specified");
 }
 if (subject == null || subject.length() == 0) {
 throw new IllegalStateException("subject must be specified");
 }
 if (body == null || body.length() == 0) {
 throw new IllegalStateException("body must be specified");
 }
 if (contentType == null || contentType.length() == 0) {
 throw new IllegalStateException("contentType must be specified");
 }

134 | Chapter 7: Business Logic and the Services Layer

 // Construct immutable object and return
 return new MailMessage(from, toAddresses.toArray(EMPTY),
 subject, body, contentType);

 }

It’s this immutable MailMessageBuilder.MailMessage that will be safely passed be‐
tween our services.

With our value object defined, we can now create our SMTPMailService. We know that
we’ll need to connect to some external SMTP server via the JavaMail API, and Java EE
allows injection of these via the @Resource annotation (though the mechanics of exactly
where some services are bound is vendor-dependent). Also, we know that this SMTPMail
Service is meant to be shared by all users running the application, and won’t have any
session-specific state. For these reasons, we’ll implement the SMTPMailService as a
Singleton Session EJB. Note that a Stateless Session Bean (for use of a pool of instances)
might work in an equally appropriate fashion:

@Singleton
@LocalBean
@TransactionAttribute(value = TransactionAttributeType.SUPPORTS)
public class SMTPMailService {

This is our Singleton bean declaration. Of particular note is the TransactionAttribu
teType.SUPPORTS value for @TransactionAttribute, which will apply to all business
methods of this EJB.

An SMTP server is an external resource that is not transactionally aware. Therefore,
we’ll have to make note of any exceptions and ensure that if we want a transaction rolled
back, we either explicitly tell that to the TransactionManager or throw an unchecked
exception, which will signal the EJB container to mark any currently executing trans‐
action for rollback.

We’re making a general-purpose SMTP service here, so we may not always know the
appropriate actions to take with regard to transactions. The default for EJB is @Trans
actionAttributeType.MANDATORY, which creates a transaction if one is not already in
flight. That’s not really appropriate here: the SMTP server with which we interact is not
transactional; it would be silly to sacrifice the overhead of starting a transaction when
we’re not even dealing with a resource that will respect its semantics! @TransactionAt
tributeType.SUPPORTS, which we’ve used here, will accept existing transactions if one
is in play, or do nothing if the service is invoked outside of a transactional context.

Now we need to define a method to do the dirty work: accept our MailMessage as a
parameter and send it along to the SMTP server. The JavaMail API will act as our
conduit to connect to the SMTP server, so we’ll take advantage of Java EE’s @Resource
annotation to inject some relevant supporting services into our SMTPMailService.

Implementation | 135

With our service and class declaration handled, we’re now ready to inject the external
hooks we’ll need to send email. The Java EE container will provide these for us:

@Resource(lookup = SMTPMailServiceConstants.JNDI_BIND_NAME_MAIL_SESSION)
private javax.mail.Session mailSession;

@Resource(lookup = "java:/ConnectionFactory")
private javax.jms.ConnectionFactory connectionFactory;

@Resource(lookup = SMTPMailServiceConstants.JNDI_BIND_NAME_SMTP_QUEUE)
private javax.jms.Queue smtpQueue;

The @Resource.lookup attribute has vendor-specific function but most often maps to
a JNDI name. This use case has been coded to run specifically on the JBoss family of
application servers, so some adjustment to these values may be necessary in your en‐
vironment. To that end we’ve centralized some JNDI names in a small interface:

public interface SMTPMailServiceConstants {

 /**
 * Name in JNDI to which the SMTP {@link javax.mail.Session} will be bound
 */
 String JNDI_BIND_NAME_MAIL_SESSION = "java:jboss/mail/GeekSeekSMTP";

 /**
 * Name in JNDI to which the SMTP Queue is bound
 */
 String JNDI_BIND_NAME_SMTP_QUEUE = "java:/jms/queue/GeekSeekSMTP";
}

Note that we have put into place a field called smtpQueue, of type javax.jms.Queue.
This is how we’ll handle two of the “hidden” problems with testable development of
sending email raised earlier.

First, sending a message to a JMS Queue is a “fire and forget” operation. Once the message
is received by the queue (which is in process, unlike our production SMTP server),
control is returned to the caller and the handling of the message is processed asynchro‐
nously. If we create a listener to pull messages off the queue and send emails, we won’t
have to wait for this process to complete. This gives us asynchrony for free.

The other tangible benefit to using a JMS Queue to send messages is in the guaranteed
processing afforded by JMS. If there’s a temporary error in sending the email, for in‐
stance a connection problem with the remote SMTP server, the messaging server will
dutifully retry (as configured) a number of times. This process will even survive server
restarts; if for some reason all of these retries fail to yield a successful result (again, after
some configured number of tries or timeout), messages can be forwarded to the DLQ
(dead-letter queue) for manual inspection by system administrators later. This gives us
some assurance that we won’t lose messages we intended to send, and we also won’t have

136 | Chapter 7: Business Logic and the Services Layer

to fail our user registration process entirely if there’s some issue with sending the wel‐
come email.

In WildFly/JBoss AS7/JBoss EAP, we deploy a JMS Queue with the deployment de‐
scriptor geekseek-smtp-queue-jms.xml (the filename may be anything located in the EJB
JAR’s META-INF and ending with the suffix -jms.xml):

<?xml version="1.0" encoding="UTF-8"?>
<messaging-deployment xmlns="urn:jboss:messaging-deployment:1.0">
 <hornetq-server>
 <jms-destinations>
 <jms-queue name="GeekSeekSMTP">
 <entry name="jms/queue/GeekSeekSMTP"/>
 </jms-queue>
 </jms-destinations>
 </hornetq-server>
</messaging-deployment>

This will bind a new JMS Queue to the JNDI address java:/jms/queue/GeekSeekSMTP,
which we referenced earlier in the @Resource.lookup attribute.

With our supporting services and resources hooked in and available to our EJB, we can
code the sendMail method. As noted before, this is likely the least interesting part of
the use case, even though it’s technically the code that drives the entire feature:

public void sendMail(final MailMessageBuilder.MailMessage mailMessage)
 throws IllegalArgumentException {

 // Precondition check
 if (mailMessage == null) {
 throw new IllegalArgumentException("Mail message must be specified");
 }

 try {
 // Translate
 final MimeMessage mime = new MimeMessage(mailSession);
 final Address from = new InternetAddress(mailMessage.from);
 final int numToAddresses = mailMessage.to.length;
 final Address[] to = new InternetAddress[numToAddresses];
 for (int i = 0; i < numToAddresses; i++) {
 to[i] = new InternetAddress(mailMessage.to[i]);
 }
 mime.setFrom(from);
 mime.setRecipients(Message.RecipientType.TO, to);
 mime.setSubject(mailMessage.subject);
 mime.setContent(mailMessage.body, mailMessage.contentType);
 Transport.send(mime);
 } // Puke on error
 catch (final javax.mail.MessagingException e) {
 throw new RuntimeException("Error in sending " + mailMessage, e);
 }
}

Implementation | 137

There’s nothing special going on here: we translate our own value object MailMessage
Builder.MailMessage into fields required by JavaMail’s MimeMessage, and send. We’ll
wrap any errors in a RuntimeException to be handled by the EJB container (resulting
in transaction rollback if one is being used).

This method, of course, is synchronous up until the mail message is delivered to the
SMTP server. We noted earlier that it’s likely better in a multiuser environment to queue
the mail for sending such that we don’t have to wait on interaction with this external
resource, so we’ll also supply a queueMailForDelivery method to send our desired
message to a JMS Queue:

public void queueMailForDelivery(
 final MailMessageBuilder.MailMessage mailMessage)
 throws IllegalArgumentException {

 // Precondition check
 if (mailMessage == null) {
 throw new IllegalArgumentException("Mail message must be specified");
 }

 try {
 final Connection connection = connectionFactory.createConnection();
 final javax.jms.Session session = connection
 .createSession(false, javax.jms.Session.AUTO_ACKNOWLEDGE);
 final MessageProducer producer = session.createProducer(smtpQueue);
 final ObjectMessage jmsMessage =
 session.createObjectMessage(mailMessage);
 producer.send(jmsMessage);
 } catch (final JMSException jmse) {
 throw new RuntimeException(
 "Could not deliver mail message to the outgoing queue", jmse);
 }
}

Sending the JMS message doesn’t fully get our mail delivered, however; it just sends it
to a JMS Queue. We still need a component to pull this JMS message off the queue,
unwrap the MailMessage it contains, and call upon our sendMail method to send the
mail. For this we can again turn to EJB, which provides listeners to any JCA (Java Con‐
nector Architecture) backend by means of the Message-Driven Bean (MDB). Our MDB
will be configured as a JMS Queue listener, and is defined as:

org.cedj.geekseek.service.smtp.SMTPMessageConsumer

@MessageDriven(activationConfig = {
 @ActivationConfigProperty(propertyName = "acknowledgeMode",
 propertyValue = "Auto-acknowledge"),
 @ActivationConfigProperty(propertyName = "destinationType",
 propertyValue = "javax.jms.Queue"),
 @ActivationConfigProperty(propertyName = "destination",

138 | Chapter 7: Business Logic and the Services Layer

 propertyValue = SMTPMailServiceConstants.JNDI_BIND_NAME_SMTP_QUEUE)})
public class SMTPMessageConsumer implements MessageListener {

The ActivationConfigProperty annotations are in place to tell the EJB container how
to connect to the backing JCA resource, in this case our queue. Because MBDs are
business components just like EJB Session Beans, we have injection at our disposal,
which we’ll use to obtain a reference back to the SMTPMailService:

@EJB
private SMTPMailService mailService;

Now, our SMTPMessageConsumer is registered by the EJB container as a listener on our
queue; when a new message arrives, we’ll receive a callback to the onMessage method.
By implementing this, we can unwrap the MailMessage and send it directly to the
SMTPMailService to be sent:

@Override
public void onMessage(final javax.jms.Message message) {

 // Casting and unwrapping
 final ObjectMessage objectMessage;
 try {
 objectMessage = ObjectMessage.class.cast(message);
 } catch (final ClassCastException cce) {
 throw new RuntimeException(
 "Incorrect message type sent to object message consumer; got:"
 + message.getClass().getSimpleName(), cce);
 }
 final MailMessageBuilder.MailMessage mailMessage;
 try {
 final Object obj = objectMessage.getObject();
 mailMessage = MailMessageBuilder.MailMessage.class.cast(obj);
 } catch (final JMSException jmse) {
 throw new RuntimeException("Could not unwrap JMS Message", jmse);
 } catch (final ClassCastException cce) {
 throw new RuntimeException("Expected message contents of type "
 + MailMessageBuilder.MailMessage.class.getSimpleName(), cce);
 }

 // Send the mail
 mailService.sendMail(mailMessage);
}

These comprise all the working pieces of the business logic supporting this feature.
However, the true challenge lies in verifying that everything works as expected.

Requirement Test Scenarios
Testing the SMTP service will involve a few moving pieces.

Requirement Test Scenarios | 139

A Test-Only SMTP Server
The JavaMail API nicely abstracts out connections to an SMTP server, and we’ve built
our SMTPMailService to pull any configured JavaMail Session from JNDI. This gives
us the option to provide a test-only SMTP server for use in development and staging
environments with only configuration changes differing between these and the pro‐
duction setup. Although it’s true that this text has generally discouraged the use of mock
objects and services, that’s a guideline. In this instance, we’ll absolutely need a hook that
differs from production in order to validate that emails are being delivered as expected.
Otherwise, we’d be using a real SMTP service that could send emails out to real email
addresses.

For our own testing, we’ll aim not to change the code in our SMTPMailService, but to
configure it to point to an embeddable SMTP server: one that will allow us to see which
messages were received and do some assertion checking to be sure the contents are as
expected. For this we look to the SubEtha project, an open source Java SMTP server that
fulfills our requirements nicely.

We’ll let our SMTP server run in the same process as our application server and tests;
this will allow us to use shared memory and set guards to handle the asynchrony implicit
in dispatching messages to an SMTP server.

A nice technique is to install SubEtha to come up alongside our application. In Java EE,
the mechanism for creating application-start events is to implement a PostConstruct
callback on a Singleton Session EJB that’s configured to eagerly load. We do this by
defining a new service:

org.cedj.geekseek.service.smtp.SMTPServerService

import javax.ejb.LocalBean;
import javax.ejb.Singleton;
import javax.ejb.Startup;
import javax.ejb.TransactionAttribute;

/**
 * Test fixture; installs an embedded SMTP Server on startup, shuts it down on
 * undeployment. Allows for pluggable handling of incoming messages for use in
 * testing.
 */
@Singleton
@Startup
@LocalBean
@TransactionAttribute(TransactionAttributeType.SUPPORTS)
public class SMTPServerService {

The @Startup annotation will trigger this EJB bean instance to be created alongside
application start, which in turn will lead to the container invoking the PostConstruct
method:

140 | Chapter 7: Business Logic and the Services Layer

https://code.google.com/p/subetha/

private SMTPServer server;
private final PluggableReceiveHandlerMessageListener listener =
 new PluggableReceiveHandlerMessageListener();

@javax.annotation.PostConstruct
public void startup() throws Exception {
 server = new SMTPServer(new SimpleMessageListenerAdapter(listener));
 server.setBindAddress(InetAddress.getLoopbackAddress());
 server.setPort(BIND_PORT);
 server.start();
}

This gives us an opportunity to create a new SMTPServer instance, register a handler
(which defines what will be done when a new message is received), and start it on our
configured port on localhost. The companion PreDestroy callback method provides
for graceful shutdown of this server when the application is undeployed and the Sin‐
gleton EJB instance is brought out of service:

@javax.annotation.PreDestroy
public void shutdown() throws Exception {
 server.stop();
}

In our test SMTPServerService, we also define an inner TestHandler interface; the
simple type our tests can implement, containing one method called handle(String):

interface TestReceiveHandler {
 void handle(String data) throws AssertionFailedError;
}

The TestReceiveHandler will serve as our extension point for tests to apply behavior
fitting their requirements. We do this via the setHandler(TestReceiveHandler) meth‐
od on our test EJB:

public void setHandler(final TestReceiveHandler handler) {
 this.listener.setHandler(handler);
}

Pluggable handling in our SMTP server can then be set up on the fly by tests. When a
new message is received by the SMTP server, our listener will read in the contents, log
them for our convenience, then call upon our TestReceiveHandler:

private class PluggableReceiveHandlerMessageListener
 implements SimpleMessageListener {

 private TestReceiveHandler handler;

 @Override
 public boolean accept(String from, String recipient) {
 return true;
 }

Requirement Test Scenarios | 141

 @Override
 public void deliver(final String from,
 final String recipient, final InputStream data)
 throws TooMuchDataException, IOException {

 // Get contents as String
 byte[] buffer = new byte[4096];
 int read;
 final StringBuilder s = new StringBuilder();
 while ((read = data.read(buffer)) != -1) {
 s.append(new String(buffer, 0, read, CHARSET));
 }
 final String contents = s.toString();
 if (log.isLoggable(Level.INFO)) {
 log.info("Received SMTP event: " + contents);
 }

 // Pluggable handling
 if (handler == null) {
 log.warning("No SMTP receive handler has been associated");
 } else {
 handler.handle(contents);
 }
 }
 void setHandler(final TestReceiveHandler handler) {
 this.handler = handler;
 }
}

The Test
Our test will again use Arquillian for the container interaction as we’ve seen before, but
it will require no extra extensions. Therefore, the declaration here is fairly simple:

org.cedj.geekseek.service.smtp.SMTPMailServiceTestCase

@RunWith(Arquillian.class)
public class SMTPMailServiceTestCase {

Unlike in previous examples, this time we’ll handle deployment and undeployment
operations manually. This is because we’d first like to configure the server before de‐
ployment, but after it has started. Because Arquillian currently does not provide for a
lifecycle operation between the server startup and deployment, we’ll use ordered test
methods to clearly delineate which actions should be handled when. This is what we’d
like to see:

• Server start (handled automatically by Arquillian)
• Server configuration
• Deployment

142 | Chapter 7: Business Logic and the Services Layer

• Test methods
• Undeployment
• Reset server configuration
• Server shutdown

We do manual deployment in Arquillian by associating a name with the deployment,
then creating a @Deployment method just like we’ve seen before.

The following code is used to define the deployment:

/**
 * Name of the deployment for manual operations
 */
private static final String DEPLOYMENT_NAME = "mailService";

/**
 * Deployment to be tested; will be manually deployed/undeployed
 * such that we can configure the server first
 *
 * @return
 */
@Deployment(managed = false, name = DEPLOYMENT_NAME)
public static WebArchive getApplicationDeployment() {
 final File[] subethamailandDeps = Maven.resolver().
 loadPomFromFile("pom.xml").resolve("org.subethamail:subethasmtp")
 .withTransitivity().asFile();
 final WebArchive war = ShrinkWrap.create(WebArchive.class)
 .addAsLibraries(subethamailandDeps)
 .addClasses(SMTPMailService.class, MailMessageBuilder.class,
 SMTPMailServiceConstants.class,
 SMTPMessageConsumer.class, SMTPServerService.class)
 .addAsWebInfResource(EmptyAsset.INSTANCE, "beans.xml")
 .addAsWebInfResource("META-INF/geekseek-smtp-queue-jms.xml");
 System.out.println(war.toString(true));
 return war;
}

Of special note is the Deployment.managed attribute, which when set to false will tell
Arquillian that we’ll handle the act of deployment on our own. The preceding method
constructs a deployment with the following layout:

/WEB-INF/
/WEB-INF/geekseek-smtp-queue-jms.xml
/WEB-INF/lib/
/WEB-INF/lib/subethasmtp-3.1.7.jar
/WEB-INF/lib/slf4j-api-1.6.1.jar
/WEB-INF/lib/activation-1.1.jar
/WEB-INF/lib/mail-1.4.4.jar
/WEB-INF/lib/jsr305-1.3.9.jar
/WEB-INF/beans.xml

Requirement Test Scenarios | 143

/WEB-INF/classes/
/WEB-INF/classes/org/
/WEB-INF/classes/org/cedj/
/WEB-INF/classes/org/cedj/geekseek/
/WEB-INF/classes/org/cedj/geekseek/service/
/WEB-INF/classes/org/cedj/geekseek/service/smtp/
/WEB-INF/classes/org/cedj/geekseek/service/smtp/SMTPMessageConsumer.class
/WEB-INF/classes/org/cedj/geekseek/service/smtp/SMTPMailServiceConstants.class
/WEB-INF/classes/org/cedj/geekseek/service/smtp/SMTPMailService.class
/WEB-INF/classes/org/cedj/geekseek/service/smtp/SMTPServerService$1.class
/WEB-INF/classes/org/cedj/geekseek/service/smtp/
 MailMessageBuilder$MailMessage.class
/WEB-INF/classes/org/cedj/geekseek/service/smtp/
 SMTPServerService$TestReceiveHandler.class
/WEB-INF/classes/org/cedj/geekseek/service/smtp/SMTPServerService.class
/WEB-INF/classes/org/cedj/geekseek/service/smtp/
 SMTPServerService$PluggableReceiveHandlerMessageListener.class
/WEB-INF/classes/org/cedj/geekseek/service/smtp/MailMessageBuilder.class

As you can see, the SubEtha project and its dependencies are dutifully added to the
WEB-INF/lib folder because we’ve requested ShrinkWrap Resolver to fetch these as
configured from the project POM.

With the deployment accounted for, we can inject both the SMTPMailService EJB and
our test SMTPServerService EJB into the test:

/**
 * Service which sends email to a backing SMTP Server
 */
@Inject
private SMTPMailService mailService;

/**
 * Hook into the embeddable SMTP server so we can customize its handling from
 * the tests
 */
@Inject
private SMTPServerService smtpServerService;

We can also inject a hook to manually deploy and undeploy our deployment, such that
we can configure the server before our @Deployment is sent to the server. We do this
with the @ArquillianResource annotation:

@ArquillianResource
private Deployer deployer;

At this point, Arquillian is set to run and start the server, and the deployment is defined
but not yet deployed. Next on our agenda is to configure the server; we’ll ensure this is
done in the proper order by creating a test method to run first by using Arquillian’s
@InSequence annotation. Also, we don’t want this test method running inside the

144 | Chapter 7: Business Logic and the Services Layer

container (as is the default), but rather on the client process, so we’ll flag this method
with @RunAsClient:

/*
 * Lifecycle events; implemented as tests, though in truth they perform no
 * assertions. Used to configure the server and deploy/undeploy the @Deployment
 * archive at the appropriate times.
 */

@RunAsClient
@InSequence(value = 1)
@Test
public void configureAppServer() throws Exception {

 /*
 * First configure a JavaMail Session for the Server to bind into JNDI; this
 * will be used by our MailService EJB. In a production environment, we'll
 * likely have configured the server before it was started to point to a real
 * SMTP server.
 */
 // Code omitted for brevity, not really relevant to
 // our objectives here

 /*
 * With the config all set and dependencies in place, now we can deploy
 */
 deployer.deploy(DEPLOYMENT_NAME);

}

Yes, the preceding code is technically implemented as a test method, and it’d be much
cleaner to fully separate out our tests from our harness. Future versions of Arquillian
may provide more fine-grained handling of lifecycle events to accommodate that kind
of separation, but for the time being, this is our mechanism to configure running servers
before issuing a deployment.

Now with server configuration completed and our application deployed, we’re free to
write our test logic.

The test is fairly simple from a conceptual standpoint, though the steps we’ve taken to
achieve it have admittedly involved some more work. We’d like to:

• Construct a mail message
• Set a handler on the test SMTP service to ensure the email is in the proper form,

then signal to the test that we’re ready to proceed
• Send the email asynchronously
• Wait on the handler to let us know that the message was received and that we can

now proceed

Requirement Test Scenarios | 145

The test logic looks like this:

 @InSequence(value = 2)
 @Test
 public void testSmtpAsync() {

 // Set the body of the email to be sent
 final String body = "This is a test of the async SMTP Service";

 // Define a barrier for us to wait upon while email is sent through the
 // JMS Queue
 final CyclicBarrier barrier = new CyclicBarrier(2);

 // Set a handler which will ensure the body was received properly
 smtpServerService.setHandler(new SMTPServerService.TestReceiveHandler() {
 @Override
 public void handle(final String contents) throws
 AssertionFailedError {
 try {

 // Perform assertion
 Assert.assertTrue(
 "message received does not contain body sent in email",
 contents.contains(body));

 // Should probably be the second and last to arrive, but this
 // Thread can block indefinitely w/ no timeout needed. If
 // the test waiting on the barrier times out, it'll trigger a
 // test failure and undeployment of the SMTP Service
 barrier.await();
 } catch (final InterruptedException e) {
 // Swallow, this would occur if undeployment were triggered
 // because the test failed (and we'd get a proper
 // AssertionFailureError on the client side)
 } catch (final BrokenBarrierException e) {
 throw new RuntimeException("Broken test setup", e);
 }
 }
 });

 // Construct and send the message async
 final MailMessageBuilder.MailMessage message =
 new MailMessageBuilder().from("alr@continuousdev.org")
 .addTo("alr@continuousdev.org")
 .subject("Test").body(body).contentType("text/plain")
 .build();
 mailService.queueMailForDelivery(message);

 // Wait on the barrier until the message is received by the SMTP
 // server (pass) or the test times out (failure)
 try {
 barrier.await(5, TimeUnit.SECONDS);
 } catch (final InterruptedException e) {

146 | Chapter 7: Business Logic and the Services Layer

 throw new RuntimeException("Broken test setup", e);
 } catch (final BrokenBarrierException e) {
 throw new RuntimeException("Broken test setup", e);
 } catch (final TimeoutException e) {
 // If the SMTP server hasn't processed the message in the allotted
 // time
 Assert.fail(
 "Test did not receive confirmation message in the allotted time");
 }
 }

Walking through this, we see that first we define the subject of the email to be sent. Then
we create a java.util.concurrent.CyclicBarrier initialized to a count of 2; this will
be the mutual waiting point between the test and the SMTP server to coordinate that
both parties have completed their actions and that control should not continue until
each caller (Thread) has arrived at this waiting point.

The handler will perform our assertions to validate the message contents, then wait at
the barrier until the test is done with its processing.

Meanwhile, the test will send the email via the SMTPMailService, then wait for the
handler to receive the mail message and carry through the logic we put in place.

When both the test client and the handler arrive at the CyclicBarrier and no Asser
tionErrors or other issues have cropped up, we know that we’re free to proceed; the
test method can continue its execution until invocation is complete and it reports a
success.

Finally, we need to be sure to undeploy the archive (remember, we opted for manual
deployment this time around) and reset the server’s configuration. Again, we’ll run this
code in the client/test process:

@RunAsClient
@InSequence(value = 3)
@Test
public void resetAppServerConfig()
 throws Exception
{
 deployer.undeploy(DEPLOYMENT_NAME);

 // Server config code omitted for brevity,
 // not really relevant to our objectives here
 }

Requirement Test Scenarios | 147

This example serves to illustrate a common and often undertested aspect of enterprise
development. Though the techniques we’ve applied here deal with external, non-
transactional resources, asynchronous calling, and server configurations, this should
serve as proof that even difficult cases can be adequately tested given a little thought
and effort. It’s our belief that this will pay dividends in avoiding production runtime
errors and peace of mind in being armed with one more weapon in the battle to maintain
a comprehensive, automated test suite.

148 | Chapter 7: Business Logic and the Services Layer

CHAPTER 8

REST and Addressable Services

Rest and be thankful.
— Inscription at a rest stop along

Scotland’s Highway A83

The concepts guiding the makeup of the modern Web could be considered a happy
accident, or at least an implementation of ideas that had general applicability far beyond
their initial design criteria. In the late 1980s we had the hardware and software necessary
for networking; these were low-level tools for transmitting data from one computer to
another. We even had some payload protocols and application layers available including
IRC for chat, POP for email, and Usenet for general discussions. We were communi‐
cating, albeit over relatively constrained channels.

Out of necessity for his own research, Tim Berners-Lee of the European Organization
for Nuclear Research (CERN) concocted a small recipe for publishing documents in a
manner that would make his findings more accessible between departments and en‐
courage updates over time. Called the “WorldWideWeb” (WWW), this project proposed
a series of simple constructs:
Addressable resources

A unique key or address assigned to each document

Hypertext
A unidirectional pointer to an addressable resource

Browser
A client program capable of reading hypertext-enabled documents

We take these concepts lightly now, but it’s worthwhile considering the paradigm shift
this evoked in the early 1990s; in only 10 years’ time, most of the world’s university
students and many homes were connected to a Web that contained a marketing presence
for an overwhelming majority of the Fortune 500. These ideas ushered innovation and

149

http://bit.ly/1e8h4rh
http://bit.ly/1e8h4rh

communication at a rate never before seen in the history of mankind. This was instant,
global publishing, and it was free.

Central to the makeup of the WWW was the introduction of the Uniform Resource
Identifier, or URI. The URI defined by RFC 3986 forms the basis of an addressable
resource, and has the following makeup:

scheme ":" hierarchical-part ["?" query] ["#" fragment]

Examples from the RFC include:

foo://example.com:8042/over/there?name=ferret#nose

and:

urn:example:animal:ferret:nose

In a short time, Berners-Lee introduced the first version of the HyperText Markup
Language (HTML), aimed at providing a more concise vernacular for incorporating
links into a common markup that browsers could format for viewing. The WWW was
built as a mechanism for document exchange, sharing of published material over a com‐
monly understood protocol and payload format (commonly HTML).

In 2000, University of California at Irvine’s Roy Fielding published his dissertation
“Architectural Styles and the Design of Network-based Software Architectures”, which
expanded the notion of addressing documents to include services among the data ex‐
changed on the Web, and defined a system of REpresentational State Transfer (REST).
With his background in coauthoring RFC-2616, which defined the HTTP/1.1 protocol,
Fielding was in a position of expertise to rethink how the principles of the Web might
be applied to services.

By addressing services and applying a set of conventions to these URIs, we’re able to
compose a wide array of operations on services with the following key benefits:

• Loose coupling
• Interoperability
• Encapsulation
• Distributed programming
• Modularization

Clearly the study of REST is worthy of its own text, and we’ll recom‐
mend REST in Practice by Webber, et al. (O’Reilly, 2010) to those
looking to explore in greater depth.

150 | Chapter 8: REST and Addressable Services

http://bit.ly/1e8haPu
http://bit.ly/1e8hbTD
http://bit.ly/1e8he1T
http://shop.oreilly.com/product/9780596805838.do

REST is certainly not the first distributed architecture: Remote Procedure Call (RPC)
variants have been used in various forms (i.e., SOAP, XML-RPC) for a long while. In
recent years, the trend toward REST has been largely attributed to its ease of use and
slim profile when coupled with the HyperText Transfer Protocol (HTTP), an established
communication protocol providing for methods, headers, and return status codes that
map well to the objectives of the caller. In practice, the success of the WWW is inherently
linked to HTTP, though this is only one protocol (scheme) that can be applied to the
general guidelines of the Web. Due to its widespread usage and versatility, we’ll be em‐
ploying HTTP throughout this chapter.

Because of its success, REST has become an abused buzzword in some circles. It’s helpful
for us to clarify the stages of compliance with a truly RESTful system, and a maturity
model developed by Leonard Richardson presents four rungs of evolution. Martin
Fowler aptly sums these up in a blog post, and we’ll outline them here:

Stage 0 Using HTTP as a transport system for arbitrary payloads; typically used in plain RPC where a caller may wish to invoke
upon a server over a network.

Stage 1 Addressable Resources; each domain object may be assigned to an address, and client requests contain all the necessary
metadata needed to carry out the invocation.

Stage 2 HTTP Verbs; in addition to assigning each domain object or service an address, we use the conventions of the HTTP
methods to differentiate between a “Create,” “Update,” “Delete,” or other actions.

Stage 3 HATEOAS, or “Hypermedia As The Engine Of Application State”; a request upon a resource can return a list of links to
the client in order to proceed to the next available actions. For instance, after “creating a user,” the client may be given
a success confirmation and shown links to “view the user,” “edit the user,” “view all users.” Additionally, projects with
Stage 3 maturity will utilize media types (content types) as part of content negotiation; an XML-based request should
likely yield an XML-based response, while a JSON request might imply a JSON response. With media types set in the
request, these can all take place using the same URI. Stage 3 is about workflow and transition; it guides the client
through the stages of the application.

A RESTful system is always Stage 3, though this is an often-misunderstood and neglected
understanding of the REST architecture, particularly for newcomers. In layman’s terms,
a Stage 3 exchange may sound a little like this:
Server

You’ve just created an order. Do you want to pay? Do you want to add more items?
Do you want to save your cart for later? Here are the links for each of these actions.

Client
I’m following the link to save my cart, here is the request.

Server
Your cart is saved. Do you want to continue shopping? Do you want to view your
cart? Here are the links for these actions.

REST and Addressable Services | 151

http://www.crummy.com/self/
http://bit.ly/1fh2AGt

It’s important to consider that REST is an architectural style, agnostic of any particular
programming model or language. At its core, REST is most simply explained as an API
for accessing services and domain objects over the Web.

As the Java community has come to understand the REST principles, it has provided a
mapping layer between requests and backend services: JAX-RS.

REST in Enterprise Java: The JAX-RS Specification
The Java API for RESTful Web Services, or JAX-RS, is a specification under the direction
of the Java Community Process, defined by JSR-339 in its latest 2.0 version. Java EE6
incorprates the 1.1 revision, as defined by JSR-311; this is the version we’ll be covering
here. From the specification document, its goals are to be/have:
POJO-based

API will provide a set of annotations and associated classes/interfaces that may be
used with POJOs in order to expose them as web resources. The specification will
define object lifecycle and scope.

HTTP-centric
The specification will assume HTTP is the underlying network protocol and will
provide a clear mapping between HTTP and URI elements and the corresponding
API classes and annotations. The API will provide high-level support for common
HTTP usage patterns and will be sufficiently flexible to support a variety of HTTP
applications, including WebDAV and the Atom Publishing Protocol.

Format independence
The API will be applicable to a wide variety of HTTP entity body content types. It
will provide the necessary pluggability to allow additional types to be added by an
application in a standard manner.

Container independence
Artifacts using the API will be deployable in a variety of web-tier containers. The
specification will define how artifacts are deployed in a Servlet container and as a
JAX-WS Provider.

Inclusion in Java EE
The specification will define the environment for a web resource class hosted in a
Java EE container and will specify how to use Java EE features and components
within a web resource class.

152 | Chapter 8: REST and Addressable Services

http://bit.ly/1e8hjT0
http://bit.ly/1e8hkXe

Because it’s not our aim to provide a comprehensive overview of JAX-
RS, we recommend RESTful Java with JAX-RS by Bill Burke (O’Reil‐
ly, 2009), a member of the JSR-339 Expert Group and lead of the JBoss
Community’s RESTEasy implementation. The second revision of the
book, covering the latest 2.0 version of the specification, is now on
sale.

The JAX-RS Specification API provides a set of annotations helpful to developers seek‐
ing to map incoming HTTP-based requests to backend services. From the docs, these
include:

Application

Path

Identifies the application path that serves as the base URI for all resource URIs provided by Path.

Consumes Defines the media types that the methods of a resource class or MessageBodyReader can accept.

CookieParam Binds the value of an HTTP cookie to a resource method parameter, resource class field, or resource class
bean property.

DefaultValue Defines the default value of request metadata that is bound using one of the following annotations:
PathParam, QueryParam, MatrixParam, CookieParam, FormParam, or HeaderParam.

DELETE Indicates that the annotated method responds to HTTP DELETE requests.

Encoded Disables automatic decoding of parameter values bound using QueryParam, PathParam,
FormParam, or MatrixParam.

FormParam Binds the value(s) of a form parameter contained within a request entity body to a resource method
parameter.

GET Indicates that the annotated method responds to HTTP GET requests.

HEAD Indicates that the annotated method responds to HTTP HEAD requests.

HeaderParam Binds the value(s) of an HTTP header to a resource method parameter, resource class field, or resource
class bean property.

HttpMethod Associates the name of an HTTP method with an annotation.

MatrixParam Binds the value(s) of a URI matrix parameter to a resource method parameter, resource class field, or
resource class bean property.

OPTIONS Indicates that the annotated method responds to HTTP OPTIONS requests.

Path Identifies the URI path that a resource class or class method will serve requests for.

PathParam Binds the value of a URI template parameter or a path segment containing the template parameter to
a resource method parameter, resource class field, or resource class bean property.

POST Indicates that the annotated method responds to HTTP POST requests.

Produces Defines the media type(s) that the methods of a resource class or MessageBodyWriter can produce.

PUT Indicates that the annotated method responds to HTTP PUT requests.

QueryParam Binds the value(s) of an HTTP query parameter to a resource method parameter, resource class field, or
resource class bean property.

REST in Enterprise Java: The JAX-RS Specification | 153

http://shop.oreilly.com/product/9780596158057.do
http://www.jboss.org/resteasy
http://oreil.ly/restful_java_jax-rs_2_0
http://oreil.ly/restful_java_jax-rs_2_0
http://jsr311.java.net/nonav/javadoc/

These can be composed together to define the mapping between a business object’s
methods and the requests it will service, as shown in the API documentation:

@Path("widgets/{widgetid}")
@Consumes("application/widgets+xml")
@Produces("application/widgets+xml")
public class WidgetResource {

 @GET
 public String getWidget(@PathParam("widgetid") String id) {
 return getWidgetAsXml(id);
 }

 @PUT
 public void updateWidget(@PathParam("widgetid") String id,Source update) {
 updateWidgetFromXml(id, update);
 }
 ...
 }

This defines an example of a business object that will receive requests to $application
Root/widgets/$widgetid, where $widgetid is the identifier of the domain object to be
acted upon. HTTP GET requests will be serviced by the getWidget method, which will
receive the $widgetid as a method parameter; HTTP PUT requests will be handled by
the updateWidget method. The class-level @Consumes and @Produces annotations des‐
ignate that all business methods of the class will expect and return a media type (content
type) of application/widgets+xml.

Because the specification supplies only a contract by which JAX-RS implementations
must behave, the runtime will vary between application server vendors. For instance,
the Reference Implementation, Jersey, can be found in the GlassFish Application Serv‐
er, while WildFly from the JBoss Community uses RESTEasy.

Use Cases and Requirements
Thus far, we’ve visited and described the internal mechanisms with which we interact
with data. Now we’re able to work on building an API for clients to access the domain
state in a self-describing fashion, and RESTful design coupled with JAX-RS affords us
the tools to expose our application’s capabilities in a commonly understood way.

We’d like to encourage third-party integrators—clients about whom we may not have
any up-front knowledge—to view, update, and create domain objects within the Geek‐
Seek application. Therefore, our use case requirements will be simply summed up as
the following:

• As a third-party integrator, I should be able to perform CRUD operations upon:
— A Conference

154 | Chapter 8: REST and Addressable Services

http://jersey.java.net/
http://glassfish.java.net/
http://glassfish.java.net/
http://www.wildfly.org/
http://www.jboss.org/resteasy

— Sessions within Conferences
— Attachments within Sessions
— Attachments within Conferences
— A Venue (and associate with a Conference and/or Session)

Additionally, we want to lay out a map of the application as the client navigates through
state changes. For instance, at the root, a client should know what operations it’s capable
of performing. Once that operation is complete, a series of possible next steps should
be made available to the client such that it may continue execution. This guide is known
as the Domain Application Protocol (DAP), and it acts as a slimming agent atop the wide
array of possible HTTP operations in order to show the valid business processes that
are available to a client as it progresses through the application’s various state changes.
It’s this DAP layer that grants us the final HATEOAS step of the Richardson Maturity
Model. Our DAP will define a series of addressable resources coupled with valid HTTP
methods and media types to determine what actions are taken, and what links are to
come next in the business process:

• / application/vnd.ced+xml;type=root

— GET → Links
— Link → conference application/vnd.ced+xml;type=conference
— Link → venue application/vnd.ced+xml;type=venue

• /conference application/vnd.ced+xml;type=conference

— GET → List
— POST → Add

• /conference/[c_id] application/vnd.ced+xml;type=conference

— GET → Single
— PUT → Update
— DELETE → Remove
— Link → session application/vnd.ced+xml;type=session
— Link → venue application/vnd.ced+xml;type=venue
— Link → attachments application/vnd.ced+xml;type=attachment

• /conference/[c_id]/session application/vnd.ced+xml;type=session

— GET → List
— POST → Add

Use Cases and Requirements | 155

• /conference/[c_id/session/[s_id] application/vnd.ced+xml;type=ses

sion

— GET → Single
— PUT → Update
— DELETE → Remove
— Link → venue application/vnd.ced+xml;type=room
— Link → attachments application/vnd.ced+xml;type=attachment
— Link → parent application/vnd.ced+xml;type=conference

• /venue application/vnd.ced+xml;type=venue

— GET → List
— POST → Add

• /venue/[v_id] application/vnd.ced+xml;type=venue

— GET → Single
— PUT → Update
— DELETE → Remove
— Link → room application/vnd.ced+xml;type=room

• /venue/[v_id]/room application/vnd.ced+xml;type=room

— GET → List
— POST → Add
— Link → attachments application/vnd.ced+xml;type=attachment

• /venue/[v_id]/room/[r_id] application/vnd.ced+xml;type=room

— GET → Single
— PUT → Update
— DELETE → Remove
— Link → attachments application/vnd.ced+xml;type=attachment

• /attachment application/vnd.ced+xml;type=attachment

— GET → List
— POST → Add

• /attachment/[a_id] application/vnd.ced+xml;type=attachment

— GET → List
— POST → Add

156 | Chapter 8: REST and Addressable Services

The preceding DAP can be conceptually understood as a site map for services, and it
defines the API for users of the system. By designing to the DAP, we provide clients with
a robust mechanism by which the details of attaining each resource or invoking the
application’s services can be read as the client navigates from state to state.

Implementation
With our requirements defined, we’re free to start implementation. Remember that our
primary goal here is to create HTTP endpoints at the locations defined by our DAP, and
we want to ensure that they perform the appropriate action and return the contracted
response. By using JAX-RS we’ll be making business objects and defining the mapping
between the path, query parameters, and media types of the request before taking action
and supplying the correct response.

The first step is to let the container know that we have a JAX-RS component in our
application; we do this by defining a javax.ws.rs.ApplicationPath annotation atop
a subclass of javax.ws.rs.core.Application. Here we provide this in org.geek
seek.rest.GeekSeekApplication:

import javax.ws.rs.ApplicationPath;
import javax.ws.rs.core.Application;

@ApplicationPath("api")
public class GeekSeekApplication extends Application {

}

This will be picked up by the container and signal that requests to paths under the
$applicationRoot/api pattern will be serviced by JAX-RS.

Repository Resources
Looking over our requirements, we see that all paths in our DAP are capable of per‐
forming CRUD operations. Therefore, it makes sense for us to define a base upon which
individual resources can build, while giving persistence capabilities to create, read, up‐
date, and delete. In GeekSeek, we’ll handle this by making a generic RepositoryRe
source base to give us a hook into the Repository abstractions detailed in Chapter 5.
Let’s walk through org.cedj.geekseek.web.rest.core.RepositoryResource:

public abstract class RepositoryResource<
 DOMAIN extends Identifiable&Timestampable,
 REP extends Representation<DOMAIN>>
 implements Resource {

Simple enough; an abstract class notes we’ll be extending this later for more specific
resources that interact with a Respository. Let’s define the base media types our ap‐
plication will be using. Remember, media types are a key part of the maturity model in

Implementation | 157

handling the types of responses to be returned, given the input from the request. For
example, a JSON request should yield a JSON response in our known format:

protected static final String BASE_XML_MEDIA_TYPE = "application/vnd.ced+xml";
protected static final String BASE_JSON_MEDIA_TYPE = "application/vnd.ced+json";

Next up, some fields that will be set later by subclasses; this composes our abstraction
point, which will need specialization later:

private Class<? extends Resource> resourceClass;
private Class<DOMAIN> domainClass;
private Class<REP> representationClass;

We’ll also use some instance members to be injected by either the CDI (@Inject) or
JAX-RS (@Context) containers:

@Context
private UriInfo uriInfo;

@Context
private HttpHeaders headers;

@Inject
private Repository<DOMAIN> repository;

@Inject
private RepresentationConverter<REP, DOMAIN> converter;

The @Context annotation will help us gain access to the context of the request in flight:
information about the URI or HTTP headers. The Repository is how we’ll access the
persistence layer, and the RepresentationConverter will be responsible for mapping
between the client payload and our own entity object model.

Now let’s make sure that subclasses set our extension fields properly:

public RepositoryResource(Class<? extends Resource> resourceClass,
 Class<DOMAIN> domainClass,
 Class<REP> representationClass) {
 this.resourceClass = resourceClass;
 this.domainClass = domainClass;
 this.representationClass = representationClass;
 }

That should do it for the fields needed by our RepositoryResource. Time to do some‐
thing interesting; we want to map HTTP POST requests of our JSON and XML media
types defined earlier to create a new entity. With a couple of annotations and a few lines
of logic in a business method, JAX-RS can handle that for us:

@POST
@Consumes({ BASE_JSON_MEDIA_TYPE, BASE_XML_MEDIA_TYPE })
public Response create(REP representation) {
 DOMAIN entity = getConverter().to(

158 | Chapter 8: REST and Addressable Services

 uriInfo, representation);
 getRepository().store(entity);
 return Response.created(
 UriBuilder.fromResource(
 getResourceClass())
 .segment("{id}")
 .build(entity.getId())).build();
}

The @POST annotation defines that this method will service HTTP POST requests, and
the @Consumes annotation designates the valid media types. The JAX-RS container will
then map requests meeting those criteria to this create method, passing along the
Representation of our Domain object. From there we can get a hook to the
Repository, store the entity, and issue an HTTP Response to the client. Of importance
is that we let the client know the ID of the entity that was created as part of the response;
in this case, the ID is the URI to the newly created resource, which may take a form
similar to Response: 201 Location: resource-uri.

We’ll handle the other CRUD operations in similar fashion:

@DELETE
@Path("/{id}")
public Response delete(@PathParam("id") String id) {
 DOMAIN entity = getRepository().get(id);
 if (entity == null) {
 return Response.status(Status.NOT_FOUND).build();
 }
 getRepository().remove(entity);
 return Response.noContent().build();
}

@GET
@Path("/{id}")
@Produces({ BASE_JSON_MEDIA_TYPE, BASE_XML_MEDIA_TYPE })
public Response get(@PathParam("id") String id) {
 DOMAIN entity = getRepository().get(id);
 if (entity == null) {
 return Response.status(Status.NOT_FOUND).type(
 getMediaType()).build();
 }

 return Response.ok(
 getConverter().from(uriInfo, entity))
 .type(getMediaType())
 .lastModified(entity.getLastModified())
 .build();
}

@PUT
@Path("/{id}")
@Consumes({ BASE_JSON_MEDIA_TYPE, BASE_XML_MEDIA_TYPE })

Implementation | 159

public Response update(@PathParam("id") String id,
 REP representation) {
 DOMAIN entity = getRepository().get(id);
 if (entity == null) {
 return Response.status(Status.BAD_REQUEST)
 .build();
 }

 getConverter().update(
 uriInfo, representation, entity);
 getRepository().store(entity);

 return Response.noContent().build();
}

Note that for GET, PUT, and DELETE operations we must know which entity to work with,
so we use the @Path annotation to define a path parameter as part of the request, and
pass this along as a PathParam to the method when it’s invoked. We also are sure to use
the correct HTTP response codes when the situation warrants:

• OK(200) on GET of an entity
• NotFound(404) on GET of an entity with an ID that does not exist
• Created(201) with Header: “Location $resourceUri” on successful POST and cre‐

ation of a new entity
• NoContent(204) on DELETE or successful update
• BadRequest(400) on attemped PUT of a missing resource

With this base class in place, we have effectively made a nice mapping between the DAP
API as part of our requirements and the backend Repository and JPA. Incoming client
requests are mapped to business methods, which in turn delegate the appropriate action
to the persistence layer and supply a response.

Let’s have a look at a concrete implementation of the RepositoryResource, one that
handles interaction with User domain objects. We’ve aptly named this the org.cedj.
geekseek.web.rest.user.UserResource:

@ResourceModel
@Path("/user")
public class UserResource
 extends RepositoryResource<User, UserRepresentation> {

 private static final String USER_XML_MEDIA_TYPE =
 BASE_XML_MEDIA_TYPE + "; type=user";
 private static final String USER_JSON_MEDIA_TYPE =
 BASE_JSON_MEDIA_TYPE + "; type=user";

 public UserResource() {

160 | Chapter 8: REST and Addressable Services

 super(UserResource.class, User.class, UserRepresentation.class);
 }

 @Override
 public String getResourceMediaType() {
 return USER_XML_MEDIA_TYPE;
 }

 @Override
 protected String[] getMediaTypes() {
 return new String[]{USER_XML_MEDIA_TYPE, USER_JSON_MEDIA_TYPE};
 }
}

Because we inherit all the support to interact with JPA from the parent RepositoryRe
source, this class needs to do little more than:

• Note that we are an @ResourceModel, a custom type that is a CDI @Stereotype to
add interceptors. We explain this in greater depth in “The @ResourceModel” on
page 163.

• Define a path for the resource, in this case, “/user” under the JAX-RS application
root.

• Supply the custom media types for user representations.
• Set the resource type, the domain object type, and the representation type in the

constructor.

Now we can handle CRUD operations for User domain objects; similar implementations
to this are also in place for Conference, Session, etc.

The Representation Converter
We’ve seen that the underlying domain model implemented in JPA is not the same as
the REST model we’re exposing to clients. Although EE allows us to annotate JPA models
with JAX-B bindings etc., we likely would like to keep the two models separate because
the REST model may:

• Contain less data
• Combine JPA models into one unified view
• Link resources
• Render itself in multiple different representations and formats

Additionally, some resources act as proxies and have no representation on their own.
To allow these resources to operate in a modular fashion, we need a way to describe
conversion—for example, the relation resource links users to a conference (attendees,

Implementation | 161

speakers). The relation itself knows nothing about the source or target types, but it
knows how to get a converter that supports converting between these types. To handle
this, we supply the org.cedj.geekseek.web.rest.core.RepresentationConverter:

public interface RepresentationConverter<REST, SOURCE> {

 Class<REST> getRepresentationClass();

 Class<SOURCE> getSourceClass();

 REST from(UriInfo uriInfo, SOURCE source);

 Collection<REST> from(UriInfo uriInfo, Collection<SOURCE> sources);

 SOURCE to(UriInfo uriInfo, REST representation);

 SOURCE update(UriInfo uriInfo, REST representation, SOURCE target);

 Collection<SOURCE> to(UriInfo uriInfo, Collection<REST> representations);

Inside the preceding interface is also a base implementation to handle the conversion,
RepresentationConverter.Base:

public abstract static class Base<REST, SOURCE>
 implements RepresentationConverter<REST, SOURCE> {

 private Class<REST> representationClass;
 private Class<SOURCE> sourceClass;

 protected Base() {}

 public Base(Class<REST> representationClass,
 Class<SOURCE> sourceClass) {
 this.representationClass = representationClass;
 this.sourceClass = sourceClass;
 }

 @Override
 public Collection<REST> from(UriInfo uriInfo,
 Collection<SOURCE> ins) {
 Collection<REST> out = new ArrayList<REST>();
 for(SOURCE in : ins) {
 out.add(from(uriInfo, in));
 }
 return out;
 }

 @Override
 public Collection<SOURCE> to(UriInfo uriInfo,
 Collection<REST> ins) {
 Collection<SOURCE> out = new ArrayList<SOURCE>();
 for(REST in : ins) {

162 | Chapter 8: REST and Addressable Services

 out.add(to(uriInfo, in));
 }
 return out;
 }

 ...
}

CDI will dutifully inject the appropriate instance of this converter where required; for
instance, in this field of the org.cedj.geekseek.web.rest.conference.Conference
Resource:

@Inject
private RepresentationConverter<SessionRepresentation,
 Session> sessionConverter;

Through these converters we can easily delegate the messy business of parsing the
media-type payload formats to and from our own internal domain objects.

The @ResourceModel
Because JAX-RS 1.x does not define an interceptor model, we need to apply these on
our own to activate cross-cutting concerns such as security, validation, and resource
linking to our JAX-RS endpoints. This is easily enough accomplished using the stereo‐
type feature of CDI, where we can create our own annotation type (which itself has
annotations): wherever our custom type is applied, the metadata we specify upon the
stereotype will propagate. So we can create an annotation to apply all of the features
we’d like upon a RepositoryResource, and we call it org.cedj.geekseek.web.rest.
core.annotation.ResourceModel:

@REST
@RequestScoped
@Stereotype
@Retention(RetentionPolicy.RUNTIME)
@Target(ElementType.TYPE)
public @interface ResourceModel {

}

By placing this @ResourceModel annotation atop, for instance, UserResource as we’ve
done here, this JAX-RS resource will now be marked as @REST via the CDI @Stereo
type. This is a nice shortcut provided by CDI to compose behaviors together in one
definition.

The @org.cedj.geekseek.web.rest.core.annotation.REST annotation is defined as
a CDI @InterceptorBinding:

@InterceptorBinding
@Retention(RetentionPolicy.RUNTIME)
@Target(ElementType.TYPE)

Implementation | 163

public @interface REST {

}

To avoid having to define the entire interceptor chain for the REST layer in piecemeal
fashion for each module that wants to use it, we create only one CDI Interceptor and
define our own chain using pure CDI beans, which is handled in org.cedj.geek
seek.web.rest.core.interceptor.RESTInterceptorEnabler:

@REST
@Interceptor
public class RESTInterceptorEnabler {

 @Inject
 private Instance<RESTInterceptor> instances;

 @AroundInvoke
 public Object intercept(final InvocationContext context) throws Exception {
 final List<RESTInterceptor> interceptors = sort(instances);
 InvocationContext wraped = new InvocationContext() {
 // Omitted for brevity
 }
 return wraped.proceed();

 }
...
}

Marking the RESTInterceptorEnabler with @REST and @Interceptor binds the RESTI
nterceptorEnabler to the use of the @REST annotation; then we can inject all valid
RESTInterceptor instances and invoke them according to a sorted order in the
intercept method annotated with @AroundInvoke. With our custom chain, we can rely
on CDI to provide an Instance<X> of our desired custom interceptor type dynamically
based on what is deployed rather then what is configured.

In practice, this means that our SecurityInterceptor, LinkedInterceptor, and Vali
datedInterceptor (our implementations of type RESTInterceptor) will all be invoked
for business methods on classes marked @ResourceModel.

LinkableRepresentation
As you may have noticed from our DAP, we have a series of paths that accept a source
media type and return another media type representing the data in question. These are
modeled by our org.cedj.geekseek.web.rest.core.Representation:

164 | Chapter 8: REST and Addressable Services

public interface Representation<X> {

 Class<X> getSourceType();

 String getRepresentationType();
}

Some paths are linkable; they contain pointers to resources that aren’t in the domain
model itself. For example, a Session in a Conference is in the Conference domain,
because a Conference contains N Session entities. A Conference may have a tracker
(User), someone “following” the Conference for updates; this further links into the User
domain via a Relation domain. Although each domain entity is separate, once we start
to draw relationships between them, it’s helpful to consider a mechanism to link together
these bonds.

So while domain model links are handled directly by JPA, the Representation, and a
RepresentationConverter into the target formats, the relationships need to be ad‐
dressed slightly differently.

For this we can introduce the notion of a org.cedj.geekseek.web.rest.core.Linka
bleRepresentation; a Representation type capable of coupling a source type with a
series of links:

public abstract class LinkableRepresentation<X>
 implements Representation<X> {

 private List<ResourceLink> links;
 private Class<X> sourceType;
 private String representationType;
 private UriInfo uriInfo;

 protected LinkableRepresentation() {}

 public LinkableRepresentation(Class<X> sourceType,
 String representationType, UriInfo uriInfo) {
 this.sourceType = sourceType;
 this.representationType = representationType;
 this.uriInfo = uriInfo;
 }

 @XmlElement(name = "link", namespace = "urn:ced:link")
 public List<ResourceLink> getLinks() {
 if (this.links == null) {
 this.links = new ArrayList<ResourceLink>();
 }
 return links;
 }

 public void addLink(ResourceLink link) {
 getLinks().add(link);

Implementation | 165

 }

 public boolean doesNotContainRel(String rel) {
 return !containRel(rel);
 }

 public boolean containRel(String rel) {
 if(links == null || links.size() == 0) {
 return false;
 }
 for(ResourceLink link : links) {
 if(rel.equals(link.getRel())) {
 return true;
 }
 }
 return false;
 }

 @Override @XmlTransient
 public Class<X> getSourceType() {
 return sourceType;
 }

 @Override @XmlTransient
 public String getRepresentationType() {
 return representationType;
 }

 @XmlTransient
 public UriInfo getUriInfo() {
 return uriInfo;
 }
}

In “The @ResourceModel” on page 163, we see that our @ResourceModel stereotype is
marked with @REST. This implies that we’ll apply an interceptor called org.cedj.geek
seek.web.rest.core.interceptor.LinkedInterceptor to anything with this anno‐
tation. LinkedInterceptor has the responsibility of determining if the invocation has
a linkable representation, and if so, link all of the LinkableRepresentation views to‐
gether, as demonstrated in the preceding code sample. Anything with the @REST anno‐
tation will run this interceptor.

The reasoning behind this approach is: some Representation objects are linkable. Via
the @ResourceModel (which contains @REST), a link provider can link a given resource
to some other resource. This way, we can draw relationships between resources (entities)
that are not described by JPA. The interceptor is implemented like so:

public class LinkedInterceptor implements RESTInterceptor {

 @Inject

166 | Chapter 8: REST and Addressable Services

 private Instance<LinkProvider> linkProviers;

 @Override
 public int getPriority() {
 return -10;
 }

 @Override
 public Object invoke(InvocationContext ic) throws Exception {
 Object obj = ic.proceed();
 if(hasLinkableRepresentations(obj)) {
 linkAllRepresentations(obj);
 }
 return obj;
 }

 private boolean hasLinkableRepresentations(Object obj) {
 return locateLinkableRepresentations(obj) != null;
 }

 private LinkableRepresentation<?> locateLinkableRepresentations(
 Object obj) {
 if(obj instanceof Response) {
 Object entity = ((Response)obj).getEntity();
 if(entity instanceof LinkableRepresentation) {
 return (LinkableRepresentation<?>)entity;
 }
 }
 return null;
 }

 private void linkAllRepresentations(Object obj) {
 LinkableRepresentation<?> linkable = locateLinkableRepresentations(obj);
 for(LinkProvider linker : linkProviers) {
 linker.appendLinks(linkable);
 }
 }
}

ResourceLink
Recall from our DAP that many requests are to return a link to other resources as the
client makes its way through state changes in the application. A link is really a value
object to encapsulate a media type, href (link), and relation. We provide this in
org.cedj.geekseek.web.rest.core.ResourceLink:

public class ResourceLink {

 private String rel;
 private URI href;
 private String type;

Implementation | 167

 public ResourceLink(String rel, URI href, String media) {
 this.rel = rel;
 this.href = href;
 this.type = media;
 }

 @XmlAttribute
 public String getHref() {
 if (href == null) {
 return null;
 }
 return href.toASCIIString();
 }

 @XmlAttribute
 public String getRel() {
 return rel;
 }

 @XmlAttribute
 public String getMediaType() {
 return type;
 }

 public void setHref(String href) {
 this.href = URI.create(href);
 }

 public void setRel(String rel) {
 this.rel = rel;
 }

 public void setType(String type) {
 this.type = type;
 }
}

LinkableRepresentation will use this value object in particular to handle its linking
strategy between disparate entities that are not related in the JPA model.

Requirement Test Scenarios
With our implementation in place, leveraging JAX-RS to map our DAP to business
methods, we’re set to test our endpoints. The core areas we want to assert are the expected
responses from requests to:

• PUT data
• GET data

168 | Chapter 8: REST and Addressable Services

• POST data
• DELETE data
• Obtain the appropriate links

A Black-Box Test
The general flow of our first test will be to model a user’s actions as she navigates through
the site. To accomplish execution of the test methods in sequence, we’ll use Arquillian’s
@InSequence annotation to signal the order of test execution. This will really position
the test class as more of a “test scenario,” with each test method acting as the separate
tests that must maintain a proper order. In this fashion, we will follow the normal REST
client flow from point A to B to C and so on. We’re going to execute requests to:

• GET the Root resource
• Locate the Conference link
• POST to create a new Conference
• GET to read the created Conference
• Locate the Session link
• POST to create a new Session
• GET to read the created Session
• PUT to update the Session
• DELETE to delete the Session
• PUT to update the Conference
• DELETE to delete the Conference

This will be a pure client-side test; it requires something deployed that will talk to the
REST APIs. We have provided this logic in org.cedj.geekseek.web.rest.confer
ence.test.integration.story.CreateConferenceAndSessionStory:

@RunWith(Arquillian.class)
public class CreateConferenceAndSessionStory {

 private static String uri_conference = null;
 private static String uri_conferenceInstance = null;
 private static String uri_session = null;
 private static String uri_sessionInstance = null;

 @ArquillianResource
 private URL base;

Requirement Test Scenarios | 169

 @BeforeClass
 public static void setup() {
 RestAssured.filters(
 ResponseLoggingFilter.responseLogger(),
 new RequestLoggingFilter());
 }

The @RunWith annotation should be familiar by now; Arquillian will be handling the
test lifecycle for us. As noted previously, it’s good practice to allow Arquillian to inject
the base URL of the application by using @ArquillianResource. And because we’re not
bound to any frameworks in particular, we can also use the REST-assured project to
provide a clean DSL to validate our REST services.

Notably missing from this declaration is the @Deployment method, which we supply in
CreateConferenceAndSessionStoryTestCase so we can decouple the test scenario
from the test deployment logic; this encourages re-use for running the same tests with
different deployments, so we can further integrate other layers later. The deployment
method for our purposes here looks like this:

@Deployment(testable = false)
public static WebArchive deploy() {
 return ConferenceRestDeployments.conference()
 .addAsWebInfResource(new File("src/main/resources/META-INF/beans.xml"));
}

Because this is a black-box test, we set testable to false to tell Arquillian not to equip
the deployment with any additional test runners; we don’t want to test in-container here,
but rather run requests from the outside of the server and analyze the response. The
test should verify a behavior, not any internal details. We could likely write a test where
we employ sharing of objects, and this might be easier to code and update, but it could
also sneak in unexpected client changes that should have been caught by the tests. We’re
interested only in testing the contract between the client and the server, which is speci‐
fied by our DAP. Thus, black-box testing is an appropriate solution in this case.

In this deployment, we’ll also use “fake” implementations for the Repository/JPA layer;
these are provided by the TestConferenceRepository and TestSessionRepository
test classes, which simulate the JPA layer for testing purposes. We won’t be hitting the
database for the tests at this level of integration. Later on, when we fully integrate the
application, we’ll bring JPA back into the picture:

@ApplicationScoped
public abstract class TestRepository<T extends Identifiable>
 implements Repository<T> { .. }

public class TestConferenceRepository extends
 TestRepository<Conference> { .. }

On to the tests:

170 | Chapter 8: REST and Addressable Services

https://code.google.com/p/rest-assured/

// Story: As a 3rd party Integrator I should be able to locate
// the Conference root Resource
@Test @InSequence(0)
public void shouldBeAbleToLocateConferenceRoot() throws Exception {
 //uri_conference = new URL(base, "api/conference").toExternalForm();
 uri_conference =
 given().
 then().
 contentType(BASE_MEDIA_TYPE).
 statusCode(Status.OK.getStatusCode()).
 root("root").
 body(
 "link.find {it.@rel == 'conference'}.size()",
 equalTo(1)).
 when().
 get(new URL(base, "api/").toExternalForm()).
 body().
 path("root.link.find {it.@rel == 'conference'}.@href");
 }

Our first test is charged with locating the conference root at the base URL + “api” (as
we configured the path using the @ApplicationPath annotation in our application). We
set the media type and expect to have our links for the conference returned to the client
matching the @Path annotation we have sitting atop our ConferenceResource class
(baseURL + “api” + “conference”). The @InSequence annotation set to a value of 0 will
ensure that this test is run first.

Assuming that’s successful, we can move on to our next test, creating a conference:

// Story: As a 3rd party Integrator I should be able to create a Conference
@Test @InSequence(1)
public void shouldBeAbleToCreateConference() throws Exception { .. }
...

The rest of the test class contains test logic to fulfill our test requirements.

Validating the HTTP Contracts with Warp
We’ve ensured that the responses from the server are in expected form. We’d additionally
like to certify that our service is obeying the general contracts of HTTP. Because by
definition this will involve a lot of client-side requests and parsing of server responses,
it’ll be helpful for us to avoid writing a lot of custom code to negotiate the mapping. For
these tasks, we introduce an extension to Arquillian that is aimed at making this type
of testing easier.

Arquillian Warp
Arquillian Warp fills the void between client- and server-side testing.

Requirement Test Scenarios | 171

Using Warp, we can initiate an HTTP request using a client-side testing tool such as
WebDriver and, in the same request cycle, execute in-container server-side tests. This
powerful combination lets us cover integration across client and server.

Warp effectively removes the need for mocking and opens new possibilities for debug‐
ging. It also allows us to know as little or as much of the application under test as we
want.

Gray-box testing
Initially, Warp can be used from any black-box testing tool (like HttpClient, REST client,
Selenium WebDriver, etc.). But it allows us to hook into the server request lifecycle and
verify what happens inside the box (referred to as white-box testing). Thus, we identify
Warp as a hybrid “gray-box” testing framework.

Integration testing
No matter the granularity of our tests, Warp fits the best integration level of testing with
an overlap to functional testing. We can either test components, application API, or
functional behavior.

Technology independence
Whatever client-side tools we use for emitting an HTTP request, Warp allows us to
assert and verify logic on the most appropriate place of client-server request lifecycle.

Use cases
Warp can:

• Send a payload to a server
• Verify an incoming request
• Assert the state of a server context
• Verify that a given event was fired during request processing
• Verify a completed response
• Send a payload to a client

Deploying Warp
Thanks to an ability to bring an arbitrary payload to a server and hook into server
lifecycles, we can use Warp in partially implemented projects. We do not require the
database layer to be implemented in order to test UI logic. This is especially useful for
projects based on loosely coupled components (e.g., CDI).

172 | Chapter 8: REST and Addressable Services

Supported tools and frameworks

Cross-protocol. Warp currently supports only the HTTP protocol, but conceptually it
can be used with any protocol where we are able to intercept client-to-server commu‐
nication on both the client and the server.

Client-side testing tools. Warp supports any client-side tools if you are using them in a
way that requests can be intercepted (in the case of an HTTP protocol, you need to
communicate through a proxy instead of direct communication with a server).

Examples of such libraries/frameworks include:

• URL#openStream()

• Apache HTTP Client
• Selenium WebDriver

To use Warp, you should inject an @ArquillianResource URL into
the test case, which points to the proxy automatically.

Frameworks
Warp currently focuses on frameworks based on the Servlets API, but it provides special
hooks and additional support for:

• JSF
• JAX-RS (REST)
• Spring MVC

For more information about Warp, visit http://arquillian.org/.

Test Harness Setup
We’ll start by enabling the Arquillian Warp in the POM’s dependencyManagement
section:

<dependency>
 <groupId>org.jboss.arquillian.extension</groupId>
 <artifactId>arquillian-warp-bom</artifactId>
 <version>${version.arquillian_warp}</version>
 <scope>import</scope>

Requirement Test Scenarios | 173

http://arquillian.org/

 <type>pom</type>
</dependency>

This will lock down the versions correctly such that all Warp modules are of the expected
version. A dependency declaration in the dependencies section will make Warp avail‐
able for our use:

<dependency>
 <groupId>org.jboss.arquillian.extension</groupId>
 <artifactId>arquillian-warp-impl</artifactId>
 <scope>test</scope>
</dependency>

The HTTP Contracts Test
Now we’d like to test details of the REST service behavior; we’ll use Warp to allow easy
control over permutations of data. Again, we’ll be swapping out alternate Repository
implementations to bypass JPA and real peristence; we’re just interested in the HTTP
request/response interactions at this stage.

What we’d like to do in this test is create Conference domain objects on the client side
and transfer them to the server. Warp will allow us to control which data to fetch through
the JAX-RS layer. We can look at the abstract base class of ConferenceResourceSpeci
ficationTestCase as an example:

@Test
public void shouldReturnOKOnGETResource() throws Exception {
 final DOMAIN domain = createDomainObject();

 Warp.initiate(new Activity() {
 @Override
 public void perform() {
 responseValidation(
 given().
 then().
 contentType(getTypedMediaType())
 , domain).when().
 get(createRootURL() + "/{id}",
 domain.getId()).body();
 }
 }).inspect(
 new SetupRepository<DOMAIN>(
 getDomainClass(), domain));
}

Here we use Warp to produce the data we want the REST layer to receive, and validate
that we obtain the correct HTTP response for a valid GET request.

Running this test locally, we’ll see that Warp constructs an HTTP GET request for us:

174 | Chapter 8: REST and Addressable Services

GET /9676980f-2fc9-4103-ae28-fd0261d1d7c3/api/conference/
ac5390ad-5483-4239-850c-62efaeee7bf1 HTTP/1.1[\r][\n]
Accept: application/vnd.ced+xml; type=conference[\r][\n]
Host: 127.0.1.1:18080[\r][\n]
Connection: Keep-Alive[\r][\n]
Accept-Encoding: gzip,deflate[\r][\n]

Because we’ve coded our JAX-RS endpoints and backing business objects correctly, we’ll
receive the expected reply (an HTTP 200 OK status):

HTTP/1.1 200 OK
X-Arq-Enrichment-Response=3778738317992283532
Last-Modified=Wed, 21 Aug 2013 04:14:44 GMT
Content-Type=application/vnd.ced+xml; type=conference
Content-Length=564
Via=1.1.overdrive.home

<ns3:conference xmlns:ns3="urn:ced:conference">
 <ns2:link xmlns:ns2="urn:ced:link"
 href="http://127.0.1.1:18080/9676980f-2fc9-4103-ae28-fd0261d1d7c3/api/
 conference/ac5390ad-5483-4239-850c-62efaeee7bf1"
 rel="self"/>
 <ns2:link xmlns:ns2="urn:ced:link"
 href="http://127.0.1.1:18080/9676980f-2fc9-4103-ae28-fd0261d1d7c3/api/
 conference/ac5390ad-5483-4239-850c-62efaeee7bf1/session"
 rel="session"/>
 <end>
 2013-08-21T00:14:44.159-04:00
 </end>
 <name>
 Name
 </name>
 <start>
 2013-08-21T00:14:44.159-04:00
 </start>
 <tagLine>
 TagLine
 </tagLine>
</ns3:conference>

The response will contain our links to related resources, as well as information about
the requested Conference object in the XML xmlns:ns3="urn:ced:conference" for‐
mat. Using Warp, we can interact with and perform validations upon these types of
payloads with ease.

There are plenty of other detailed Warp examples throughout the tests of the REST
modules in the GeekSeek application code; we advise readers to peruse the source for
additional ideas on using this very powerful tool for white-box testing of the request/
response model.

Requirement Test Scenarios | 175

CHAPTER 9

Security

There is no real security except for whatever you build inside yourself.
— Gilda Radner

In a utopian society, we’d leave our homes unlocked in the morning. We’d park our cars
at the office with the windows open, and after dark we’d be free to walk unlit alleyways
without concern.

Unfortunately, the small percentage of those looking to take advantage of others ne‐
cessitates taking some measures to protect ourselves. We look after our belongings and
each other. In the digital arena, our vulnerable currency is data—not everyone is entitled
to see or edit everything. Although our systems are built to support a large number of
users, we cannot simply allow anyone to take any action they please. In software and
life, security amounts to controlling access.

The process by which we grant or restrict access is reflected in our security model; this
defines the criteria by which we judge access attempts. If someone is asking to enter the
office, should we ensure he’s an employee? Is it after business hours, and how does that
affect our decision? Access may be permitted or denied based on contextual information,
and the way we value those contexts is what comprises our security model.

When we permit access to a resource, this is the process of authorization. A commonly
employed approach involves role-based security, where functions and actions on the
system are linked to a role. For instance, the task of unlocking an office’s front doors
may be permitted to someone with the “janitor” role. A staffer, Jim, may in turn be
assigned to the “janitor” role; thus Jim will have permission to unlock the office’s front
doors. Role-based security decouples the user from the task; if Jim leaves the company
and no longer is noted as the janitor, the permissions he’d had when assigned to that
role would disappear as well.

177

Coupled with authorization, which is the act of granting or denying access, is ensuring
that the requesting party is who they say they are. Surely the CEO of a company is privy
to all sorts of details that wouldn’t be available to the general public; if anyone could
claim to be CEO, they’d be permitted to browse the whole system! The process of vali‐
dating identity is called authentication.

Use Cases and Requirements
Because GeekSeek is intended to communicate its users’ conference schedules publicly,
we’re not concerned with locking down read operations. However, it’s still important
that writes are done by authorized users, so our requirements will generally state “limit
unauthorized users’ access to create or change data”:

• As a third-party integrator, I should not be able to:
— Add/Change/Delete a Conference without being authorized
— Add/Change/Delete a Session of a Conference without being authorized
— Add/Change/Delete an Attachment to Sessions and Conferences without being

authorized
— Add/Change/Delete a Venue (and associate with a Conference and Session)

without being authorized

In practice, this means we’ll need to lock down the resources for these actions with a
layer to inspect incoming requests, analyze the calling user and other contextual infor‐
mation, and determine whether or not we allow the invocation to proceed.

Implementation
Our security solution will rely on some third-party assistance to provide the imple‐
mentation pieces.

Supporting Software
It likely doesn’t benefit us much to build bespoke solutions for generalized and impor‐
tant layers such as security, so we’ll be relying on integration with a few frameworks to
help us fulfill our requirements.

PicketLink: application-level security
PicketLink is an umbrella project for security and identity management for Java appli‐
cations. It provides the backbone of security for a variety of JBoss products, but it also
can be used standalone, as we’ll do with GeekSeek. PicketLink components are available
to support the following:

178 | Chapter 9: Security

http://www.picketlink.org

IDM
Universal identity management with pluggable backends like LDAP or RDBMS

Federation
Federated Identity and Single-Sign-On (SSO)

XACML
Oasis XACML v2.0–compliant access control engine

We’ll be leveraging PicketLink in GeekSeek to supply us with an identity manager that
we can use for authentication. This comes in the form of the PicketLink API’s org.pick
etlink.Identity, which has operations to support checking the current login state,
logging in, logging out, and checking access permission:

public interface Identity extends Serializable
{
 public enum AuthenticationResult {
 SUCCESS, FAILED
 }

 boolean isLoggedIn();

 Account getAccount();

 AuthenticationResult login() throws AuthenticationException;

 void logout();

 boolean hasPermission(Object resource, String operation);

 boolean hasPermission(Class<?> resourceClass, Serializable identifier,
 String operation);
}

We can use the Identity API to lock down all requests that match the URL pat‐
tern /auth via our org.cedj.geekseek.service.security.oauth.AuthServlet:

@WebServlet(urlPatterns={"/auth"})
public class AuthServlet extends HttpServlet {

The @WebServlet annotation and urlPatterns attribute assign this servlet to handle
all requests to context paths matching the /auth pattern:

 private static final long serialVersionUID = 1L;

 private static final String SESSION_REDIRECT = "auth_redirect";
 private static final String REFERER = "Referer";
 private static final String LOCATION = "Location";

 @Inject
 private HttpObjectHolder holder;

Implementation | 179

http://www.jboss.org/picketlink/IDM.html
http://www.jboss.org/picketlink/Fed
http://www.jboss.org/picketlink/XACML.html

 @Inject
 private Identity identity;

Here we define some constants and inject the PicketLink @Identity. We can then use
these in our servlet’s service method, called by the container on incoming client
requests:

 @Override
 public void service(ServletRequest req, ServletResponse resp)
 throws IOException, ServletException {

 HttpServletRequest request = (HttpServletRequest)req;
 HttpServletResponse response = (HttpServletResponse)resp;
 HttpSession session = request.getSession();
 holder.setup(request, response);

 if(!identity.isLoggedIn()) {
 if(session.getAttribute(SESSION_REDIRECT) == null) {
 session.setAttribute(SESSION_REDIRECT,
 request.getHeader(REFERER));
 }

 try {
 AuthenticationResult status = identity.login();
 if(status == AuthenticationResult.FAILED) {
 if(response.getStatus() == 302) { // Authenticator is
 // requesting a redirect
 return;
 }
 response.setStatus(400);
 response.getWriter().append("FAILED");
 } else {
 String url = String.valueOf(
 request.getSession().getAttribute(SESSION_REDIRECT));
 response.setStatus(302);
 response.setHeader(LOCATION, url);
 request.getSession().removeAttribute(SESSION_REDIRECT);
 }
 } catch(AuthenticationException e) {
 response.setStatus(400);
 response.getWriter().append(e.getMessage());
 e.printStackTrace();
 }
 }
 else {
 response.setStatus(302);
 response.setHeader("Location", request.getHeader("Referer"));
 response.getWriter().append("ALREADY_LOGGED_IN");
 }
 }
}

180 | Chapter 9: Security

By using the operations permitted by the Identity API to check the login state and
perform a login if necessary, we can set the appropriate HTTP status codes and au‐
thentication redirect attributes.

CDI beans will also be interested in knowing the current logged-in User. A PicketLink
Identity is associated with an implementation of org.picketlink.idm.model.Ac
count, and we link an Identity to a User via our org.cedj.geekseek.service.secu
rity.picketlink.UserAccount:

public class UserAccount implements Account {

 private User user;

 public UserAccount(User user) {
 Validate.requireNonNull(user, "User must be specified");
 this.user = user;
 }

 public User getUser() {
 return user;
 }
 ...

With the line between an Identity and our own User object now drawn, we can make
the current User available as an injection target by supplying a CDI producer method,
scoped to the current request. This is handled by org.cedj.geekseek.service.secu
rity.CurrentUserProducer:

import javax.enterprise.context.RequestScoped;
import javax.enterprise.inject.Produces;
import javax.inject.Inject;

import org.cedj.geekseek.domain.Current;
import org.cedj.geekseek.domain.user.model.User;
import org.cedj.geekseek.service.security.picketlink.UserAccount;
import org.picketlink.Identity;

@RequestScoped
public class CurrentUserProducer {

 @Inject
 private Identity identity;

 @Produces @Current
 public User getCurrentUser() {
 if(identity.isLoggedIn()) {
 return ((UserAccount)identity.getAccount()).getUser();
 }
 return null;
 }
}

Implementation | 181

This class will supply a User to fields annotated with @Current, or null if no one is
logged in. As we’ve seen, our UserAccount implementation will allow us to call getUs
er() on the current Identity.

Here we’ve shown the use of PicketLink as a handy security abstraction, but we haven’t
done any real authentication or authorization yet. For that, we’ll need to implement a
provider that will power the IDM requirements we have to enable social login via Twitter.

Agorava and social authentication
Agorava is a library consisting of CDI beans and extensions for interaction with the
predominant social networks. Its featureset touts:

• A generic and portable REST client API
• A generic API to work with OAuth 1.0a and 2.0 services
• A generic API to interact with JSON serialization and deserialization
• A generic identification API to retrieve basic user information from a social service
• Specific APIs for Twitter, Facebook, and LinkedIn

In short, we’ll be using Agorava to handle our authentication process and do the behind-
the-scenes interaction with Twitter, powering our sign-in integration.

Because the Twitter authentication mechanism is via OAuth, it’ll benefit us to produce
an Agorava OAuthSession to represent the current user. Again, we turn to a CDI pro‐
ducer method to handle the details in org.cedj.geekseek.service.security.
oauth.SessionProducer:

import javax.enterprise.context.SessionScoped;
import javax.enterprise.inject.Default;
import javax.enterprise.inject.Produces;

import org.agorava.Twitter;
import org.agorava.core.api.oauth.OAuthSession;
import org.agorava.core.cdi.Current;

public class SessionProducer implements Serializable {
 @SessionScoped
 @Produces
 @Twitter
 @Current
 public OAuthSession produceOauthSession(
 @Twitter @Default OAuthSession session) {
 return session;
 }
}

182 | Chapter 9: Security

http://agorava.org/

The @Twitter annotation from Agorava supplies us with an injection point to map the
OAuthSession into the @Produces method.

We also need a mechanism to initialize Agorava’s settings for the OAuth application, so
we have org.cedj.geekseek.service.security.oauth.SettingsProducer to pro‐
vide these:

import javax.annotation.PostConstruct;
import javax.ejb.Singleton;
import javax.ejb.Startup;
import javax.enterprise.context.ApplicationScoped;
import javax.enterprise.inject.Produces;

import org.agorava.Twitter;
import org.agorava.core.api.oauth.OAuthAppSettings;
import org.agorava.core.oauth.SimpleOAuthAppSettingsBuilder;

@ApplicationScoped
@Startup @Singleton
public class SettingsProducer implements Serializable {

 private static final long serialVersionUID = 1L;

 private static final String PROP_API_KEY = "AUTH_API_KEY";
 private static final String PROP_API_SECRET = "AUTH_API_SECRET";
 private static final String PROP_API_CALLBACK = "AUTH_CALLBACK";

 @Produces @Twitter @ApplicationScoped
 public static OAuthAppSettings createSettings() {
 String apiKey = System.getenv(PROP_API_KEY);
 String apiSecret = System.getenv(PROP_API_SECRET);
 String apiCallback = System.getenv(PROP_API_CALLBACK);
 if(apiCallback == null) {
 apiCallback = "auth";
 }

 SimpleOAuthAppSettingsBuilder builder =
 new SimpleOAuthAppSettingsBuilder();
 builder.apiKey(apiKey).apiSecret(apiSecret).callback(apiCallback);

 return builder.build();
 }

 @PostConstruct
 public void validateEnvironment() {
 String apiKey = System.getenv(PROP_API_KEY);
 if(apiKey == null) {
 throw new IllegalStateException(
 PROP_API_KEY + " env variable must be set");
 }
 String apiSecret = System.getenv(PROP_API_SECRET);
 if(apiSecret == null) {

Implementation | 183

 throw new IllegalStateException(
 PROP_API_SECRET + " env variable must be set");
 }
 }
}

This @Singleton EJB is scoped application-wide and available to all sessions needing
configuration to create OAuth sessions. We store the config data in environment vari‐
ables to not couple secrets into our application, and allow our various deployment tar‐
gets (local dev, staging, production, etc.) to have independent configurations.

Now we can move to the business of authenticating a user via the Twitter OAuth service
via Agorava. We can extend PicketLink’s BaseAuthenticator to provide the necessary
logic in org.cedj.geekseek.service.security.picketlink.OAuthAuthenticator:

@ApplicationScoped
@PicketLink
public class OAuthAuthenticator extends BaseAuthenticator {

 private static final String AUTH_COOKIE_NAME = "auth";
 private static final String LOCATION = "Location";

 @Inject @PicketLink
 private Instance<HttpServletRequest> requestInst;

 @Inject @PicketLink
 private Instance<HttpServletResponse> responseInst;

 @Inject
 private Repository<User> repository;

 @Inject
 private OAuthService service;

 @Inject @Twitter @Current
 private OAuthSession session;

 @Inject
 private Event<SuccessfulAuthentication> successful;

 @Override
 public void authenticate() {
 HttpServletRequest request = requestInst.get();
 HttpServletResponse response = responseInst.get();

 if(request == null || response == null) {
 setStatus(AuthenticationStatus.FAILURE);
 } else {
 if(session.isConnected()) { // already got an active session going
 OAuthSession session = service.getSession();
 UserProfile userProfile = session.getUserProfile();

184 | Chapter 9: Security

 User user = repository.get(userProfile.getId());
 if(user == null) { // can't find a matching account, shouldn't
 // really happen
 setStatus(AuthenticationStatus.FAILURE);
 } else {
 setAccount(new UserAccount(user));
 setStatus(AuthenticationStatus.SUCCESS);
 }
 } else {
 // Callback
 String verifier = request.getParameter(
 service.getVerifierParamName());
 if(verifier != null) {
 session.setVerifier(verifier);
 service.initAccessToken();

 // https://issues.jboss.org/browse/AGOVA-53
 successful.fire(new SuccessfulAuthentication(
 service.getSession().getUserProfile(),
 service.getAccessToken()));

 String screenName = ((TwitterProfile)service.
 getSession().getUserProfile()).getScreenName();
 User user = repository.get(screenName);
 if(user == null) { // can't find a matching account
 setStatus(AuthenticationStatus.FAILURE);
 } else {
 setAccount(new UserAccount(user));
 setStatus(AuthenticationStatus.SUCCESS);
 response.addCookie(new Cookie(
 AUTH_COOKIE_NAME, user.getApiToken()));
 }

 } else {
 // initiate redirect request to 3. party
 String redirectUrl = service.getAuthorizationUrl();

 response.setStatus(302);
 response.setHeader(LOCATION, redirectUrl);
 setStatus(AuthenticationStatus.DEFERRED);
 }
 }
 }
 }
}

Annotating the OAuthAuthenticator with @PicketLink denotes that this is the au‐
thenticator instance to be used by PicketLink.

The authenticate method uses the current (injected) OAuthSession to determine
whether or not we have a logged-in user, and further may extract profile information

Implementation | 185

from there. If the session is not yet connected, we can issue the redirect to the provider
for access.

Upon a SuccessfulAuthentication event, we can take further action to store this user’s
information from Twitter in our data store by observing the event in org.cedj.geek
seek.service.security.user.UserRegistration:

import javax.enterprise.event.Observes;
import javax.inject.Inject;

import org.agorava.core.api.oauth.OAuthToken;
import org.agorava.twitter.model.TwitterProfile;
import org.cedj.geekseek.domain.Repository;
import org.cedj.geekseek.domain.user.model.User;
import org.cedj.geekseek.service.security.oauth.SuccessfulAuthentication;

public class UserRegistration {

 @Inject
 private Repository<User> repository;

 public void registerUser(@Observes SuccessfulAuthentication event) {
 TwitterProfile profile = (TwitterProfile)event.getProfile();

 User user = repository.get(profile.getScreenName());
 if(user == null) {
 user = new User(profile.getScreenName());
 }
 user.setName(profile.getFullName());
 user.setBio(profile.getDescription());
 user.setAvatarUrl(profile.getProfileImageUrl());
 OAuthToken token = event.getToken();
 user.setAccessToken(token.getSecret() + "|" + token.getToken());
 if(user.getApiToken() == null) {
 user.setApiToken(UUID.randomUUID().toString());
 }

 repository.store(user);
 }
}

When the SuccessfulAuthentication event is fired from the OAuthAuthenticator,
our UserRegistration bean will set the appropriate fields in our own data model, then
persist via the injected Repository.

Requirement Test Scenarios
With our resources secured by URL patterns, it’s time to ensure that the barriers we’ve
put in place are protecting us as we’d expect.

186 | Chapter 9: Security

Overview
We must validate that for each of the operations we invoke upon secured resources,
we’re getting back the appropriate response. As we’ve seen before, in Chapter 8, this will
pertain to:

• PUT data
• GET data
• POST data
• PATCH data
• DELETE data
• OPTIONS filtered
• Login

— Handling exceptional cases

Setup
By making use of CDI’s producers, we can swap in some test-only implementations to
provide our tests with a logged-in User; this will mimic the true @CurrentUser behavior
we’ll see in production. For instance, org.cedj.geekseek.service.security.test.
model.TestCurrentUser contains:

public class TestCurrentUserProducer {

 @Produces @Current
 private static User current;

 public void setCurrent(User current) {
 TestCurrentUserProducer.current = current;
 }
}

This setCurrent method is invoked by Warp during our test execution via a class called
org.cedj.geekseek.service.security.test.model.SetupAuth:

public class SetupAuth extends Inspection {

 private User user;

 public SetupAuth(User user) {
 this.user = user;
 }

 @BeforeServlet
 public void setup(TestCurrentUserProducer producer) {

Requirement Test Scenarios | 187

 producer.setCurrent(this.user);
 }
}

Security Tests

Secured options

The whole picture comes together in org.cedj.geekseek.service.security.test.
integration.SecuredOptionsTestCase. This will test that the Allow HTTP header is
not returned for unauthorized users issuing state-changing requests upon a protected
URL. Additionally, it’ll ensure that if a user is logged in, the state-changing methods will
be allowed and the Allow header will be present:

@RunAsClient
@WarpTest
@RunWith(Arquillian.class)
public class SecuredOptionsTestCase {

 @Deployment
 public static WebArchive deploy() {
 return ShrinkWrap.create(WebArchive.class)
 .addClasses(
 SecuredOptionsExceptionMapper.class,
 SecuredOptionsTestCase.class,
 SetupAuth.class,
 TestResource.class,
 TestApplication.class,
 TestCurrentUserProducer.class)
 .addAsLibraries(RestCoreDeployments.root())
 .addAsLibraries(UserDeployments.domain())
 .addAsWebInfResource(EmptyAsset.INSTANCE, "beans.xml");
 }

 @ArquillianResource
 private URL baseURL;

We start by defining a @WarpTest to run from the client side (as denoted by @RunA
sClient), and provide an @Deployment with test-double elements like our TestCurren
tUserProducer, as explained earlier. Arquillian will inject the baseURL of our deploy‐
ment because we’ve annotated it with @ArquillianResource:

188 | Chapter 9: Security

 @Test
 public void shouldNotContainStateChangingMethodsForUnauthorizedAccess()
 throws Exception {
 final URL testURL = createTestURL();
 Warp.initiate(new Activity() {
 @Override
 public void perform() {
 given().
 then().
 statusCode(Status.OK.getStatusCode()).
 header("Allow", allOf(
 not(containsString("POST")),
 not(containsString("PUT")),
 not(containsString("DELETE")),
 not(containsString("PATCH")))).
 when().
 options(testURL.toExternalForm());
 }
 }).inspect(new SetupAuth(null));
 }

Warp’s fluent syntax allows us to construct a test to ensure that the Allow header is not
returned for the state-changing HTTP requests POST, PUT, DELETE, and PATCH. The use
of a null user in SetupAuth is where we set no current user.

Conversely, we can ensure that we do obtain the Allow header for all methods when we
are logged in:

 @Test
 public void shouldContainStateChangingMethodsForAuthorizedAccess()
 throws Exception {
 final URL testURL = createTestURL();
 Warp.initiate(new Activity() {
 @Override
 public void perform() {
 given().
 then().
 statusCode(Status.OK.getStatusCode()).
 header("Allow", allOf(
 containsString("GET"),
 containsString("OPTIONS"),
 containsString("POST"),
 containsString("PUT"),
 containsString("DELETE"),
 containsString("PATCH"))).
 when().
 options(testURL.toExternalForm());
 }
 }).inspect(new SetupAuth(new User("testuser")));
 }
}

Requirement Test Scenarios | 189

Here we use SetupAuth to set ourselves a testuser for use in this test.

We can take a similar approach to validating that we receive an HTTP Unauthorized
401 status response when attempting to POST, PUT, PATCH, or DELETE a resource if we’re
not an authorized user; we do this in org.cedj.geekseek.service.security.test.in
tegration.SecuredMethodsTestCase:

 @Test
 public void shouldNotAllowPUTForUnauthorizedAccess() throws Exception {
 final URL testURL = createTestURL();
 Warp.initiate(new Activity() {
 @Override
 public void perform() {
 given().
 then().
 statusCode(Status.UNAUTHORIZED.getStatusCode()).
 when().
 put(testURL.toExternalForm());
 }
 }).inspect(new SetupAuth(null));
 }

 @Test
 public void shouldAllowPUTForAuuthorizedAccess() throws Exception {
 final URL testURL = createTestURL();
 Warp.initiate(new Activity() {
 @Override
 public void perform() {
 given().
 then().
 statusCode(Status.OK.getStatusCode()).
 when().
 put(testURL.toExternalForm());
 }
 }).inspect(new SetupAuth(new User("testuser")));
 }
...

We accomplish the requirements to lock down access to unauthorized users via our own
org.cedj.geekseek.service.security.interceptor.SecurityInterceptor:

public class SecurityInterceptor implements RESTInterceptor {

 @Inject @Current
 private Instance<User> user;

 @Override
 public int getPriority() {
 return 0;
 }

 @Override

190 | Chapter 9: Security

 public Object invoke(InvocationContext ic) throws Exception {

 Method target = ic.getMethod();
 if(isStateChangingMethod(target)) {
 if(user.get() != null) {
 return ic.proceed();
 }
 else {
 return Response.status(Status.UNAUTHORIZED).build();
 }
 }
 return ic.proceed();
 }

 private boolean isStateChangingMethod(Method target) {
 return target.isAnnotationPresent(PUT.class) ||
 target.isAnnotationPresent(POST.class) ||
 target.isAnnotationPresent(DELETE.class) ||
 target.isAnnotationPresent(PATCH.class);
 }
}

This interceptor prohibits access and returns an HTTP 401 if the request is for a state-
changing method and there is no currently logged-in user.

Testing the current user

Our user interface will be using the WhoAmIResource to determine the login information;
it issues an HTTP 302 redirect to a User resource if authorized and an HTTP 401
“Unauthorized” response if not. The org.cedj.geekseek.service.security.test.in
tegration.WhoAmIResourceTestCase asserts this behavior, with test methods:

 @Test
 public void shouldReponseWithNotAuthorizedWhenNoUserFound()
 throws Exception {
 final URL whoAmIURL = createTestURL();
 Warp.initiate(new Activity() {
 @Override
 public void perform() {
 given().
 then().
 statusCode(Status.UNAUTHORIZED.getStatusCode()).
 when().
 get(whoAmIURL.toExternalForm());
 }
 }).inspect(new SetupAuth(null));
 }

 @Test
 public void shouldReponseSeeOtherWhenUserFound() throws Exception {
 final URL whoAmIURL = createTestURL();
 Warp.initiate(new Activity() {

Requirement Test Scenarios | 191

 @Override
 public void perform() {
 given().
 redirects().
 follow(false).
 then().
 statusCode(Status.SEE_OTHER.getStatusCode()).
 when().
 get(whoAmIURL.toExternalForm());
 }
 }).inspect(new SetupAuth(new User("testuser")));
 }

 private URL createTestURL() throws MalformedURLException {
 return new URL(baseURL, "api/security/whoami");
 }

Again we use Warp in the shouldReponseWithNotAuthorizedWhenNoUserFound and
shouldReponseSeeOtherWhenUserFound test methods to execute a request and ensure
that the response fits our requirements.

OAuth
Assuming a successful OAuth login, we should redirect back to the user’s initial entry
point. Additionally, we must handle exceptional cases and authorization responses from
our PicketLink Authenticator implementation.

Our test case will use a custom Authenticator to control the various scenarios; we
implement these in org.cedj.geekseek.service.security.test.integration.Con
trollableAuthenticator:

@RequestScoped
@PicketLink
public class ControllableAuthenticator extends BaseAuthenticator {

 private boolean wasCalled = false;
 private boolean shouldFailAuth = false;

 @Override
 public void authenticate() {
 wasCalled = true;
 if(shouldFailAuth) {
 setStatus(AuthenticationStatus.FAILURE);
 } else {
 setStatus(AuthenticationStatus.SUCCESS);
 setAccount(new User());
 }
 }

 public boolean wasCalled() {
 return wasCalled;

192 | Chapter 9: Security

 }

 public void setShouldFailAuth(boolean fail) {
 this.shouldFailAuth = fail;
 }

}

This gives us a hook to programmatically control whether or not this Authenticator
type will permit success via a call to the setShouldFailAuth method.

Our org.cedj.geekseek.service.security.test.integration.AuthServletTest
Case can then use this ControllableAuthenticator in testing to ensure our handling
of various authentication outcomes is correct, independently of the authentication pro‐
cess itself:

@RunAsClient
@WarpTest
@RunWith(Arquillian.class)
public class AuthServletTestCase {

 @Deployment
 public static WebArchive deploy() {
 return ShrinkWrap.create(WebArchive.class)
 .addClasses(AuthServlet.class, HttpObjectHolder.class,
 ControllableAuthenticator.class)
 .addAsWebInfResource(EmptyAsset.INSTANCE, "beans.xml")
 .addAsLibraries(
 Maven.resolver()
 .loadPomFromFile("pom.xml")
 .resolve("org.picketlink:picketlink-impl")
 .withTransitivity()
 .asFile());
 }

 @ArquillianResource
 private URL baseURL;

 @Test
 public void shouldRedirectToRefererOnAuthSuccess() throws Exception {
 Warp.initiate(new Activity() {

 @Override
 public void perform() {
 try {
 final HttpURLConnection conn = (HttpURLConnection)new URL(
 baseURL, "auth").openConnection();
 conn.setRequestProperty("Referer", "http:/geekseek.com");
 conn.setInstanceFollowRedirects(false);
 Assert.assertEquals(302, conn.getResponseCode());
 Assert.assertEquals(
 conn.getHeaderField("Location"), "http:/geekseek.com");

Requirement Test Scenarios | 193

 } catch(Exception e) {
 throw new RuntimeException(e);
 }
 }
 }).inspect(new Inspection() {
 private static final long serialVersionUID = 1L;

 @Inject @PicketLink
 private ControllableAuthenticator auth;

 @BeforeServlet
 public void setup() {
 auth.setShouldFailAuth(false);
 }

 @AfterServlet
 public void validate() {
 Assert.assertTrue(auth.wasCalled());
 }
 });
 }

 @Test
 public void shouldReturnUnAuthorizedOnAuthFailure() throws Exception {
 Warp.initiate(new Activity() {

 @Override
 public void perform() {
 try {
 final HttpURLConnection conn = (HttpURLConnection)new URL(
 baseURL, "auth").openConnection();
 conn.setInstanceFollowRedirects(false);
 Assert.assertEquals(400, conn.getResponseCode());
 } catch(Exception e) {
 throw new RuntimeException(e);
 }
 }
 }).inspect(new Inspection() {
 private static final long serialVersionUID = 1L;

 @Inject @PicketLink
 private ControllableAuthenticator auth;

 @BeforeServlet
 public void setup() {
 auth.setShouldFailAuth(true);
 }

 @AfterServlet
 public void validate() {
 Assert.assertTrue(auth.wasCalled());
 }

194 | Chapter 9: Security

 });
 }
}

Here we have two test methods, shouldRedirectToRefererOnAuthSuccess and shoul
dReturnUnAuthorizedOnAuthFailure, which issue plain HTTP requests and assert that
the response code returned is correct depending on how we’ve configured the Control
lableAuthenticator.

Although it’s thematic that this text does not promote the usage of mocks in situations
where real runtime components may be used, these test fixtures give us a hook into the
greater runtime and allow tests to control backend responses normally out of their reach.
In this case, we advocate on behalf of their utility.

Requirement Test Scenarios | 195

CHAPTER 10

The User Interface

Beauty is a sign of intelligence.
— Andy Warhol

To this point, we’ve focused entirely on elements that cannot be seen. In this chapter we
bring everything home by exposing our backend services to the end user.

When it comes to Enterprise Java, we have our fill of options for display technologies.
The Java EE Specification provides JavaServer Faces (JSF), a component-based frame‐
work for web applications. This approach takes advantage of server-side rendering: that
is, the final response returned to the client is created on the server from source templates
(typically Facelets).

In our GeekSeek example, however, we’ll be going off the beaten path a bit and rolling
our own single-page application in pure HTML. The dynamic elements backed by data
will be supplied via JavaScript calls to the backend via the RESTful interface we exposed
earlier.

In general, our requirements remain simply to expose our operations in a human-
consumable format.

Use Cases and Requirements
On a high level, we’re looking to allow a user to take advantage of the application’s
primary purpose: we’d like to modify the state of our domain objects in a consistent
fashion. We can state these:

• As a User I should be able to Add/Change/Delete a Conference
• As a User I should be able to Add/Change/Delete a Session to Conferences

197

• As a User I should be able to Add/Change/Delete an Attachment to Sessions and
Conferences

• As a User I should be able to Add/Change/Delete a Venue (and attach to Confer‐
ences and Sessions)

Implementation
Our frontend is written using the popular JavaScript framework AngularJS: a framework
that lets us extend the HTML syntax, write client-side components in the familiar Model,
View, Controller (MVC) pattern, and allow for a two-way binding of our data models.

AngularJS has a built-in abstraction to work with Resources like REST, but it lacks built-
in support for HATEOAS. The AngularJS Resource can easily operate on a single
Resource, but with no automatic link support or knowledge of the OPTIONS that the
Resource might support. For our frontend view to be completely driven by the backend
services, we need this extra layer of support.

To address HATEOAS in the client view we’ve created a simple object we call Rest
Graph. The main responsibility of this object is to discover linked Resources in the
Response and determine what we’re allowed to do with the given Resource.

Without exposing too much of how exactly the RestGraph is implemented, we’ll just
give you a short overview of what it can do and how it is useful.

To start, the RestGraph requires you to define a root Resource URL, the top-level
Resource of the graph:

var root = RestGraph('http://geekseek.continuousdev.org/api').init();

This is similar to how it’s done when you visit a web page in a web browser; you give
yourself and the browser a starting point by typing an address (URL) in the address bar.

Based on the Response from the root Resource we can determine what can be done
next:

{
 "link": [
 {
 "rel": "conference",
 "href": "http://geekseek.continuousdev.org/api/conference",
 "mediaType": "application/vnd.ced+json; type=conference"
 },
 {
 "rel": "whoami",
 "href": "http://geekseek.continuousdev.org/api/security/whoami",
 "mediaType": "application/vnd.ced+json; type=user"
 }

198 | Chapter 10: The User Interface

http://angularjs.org/

]
}

In this example the start Resource only contains links to other resources and contains
no data itself. We can choose to discover where to go next by looking at all available
links. Maybe let the user decide what path to take?

var paths = root.links

Or choose to follow the graph down a desired path by fetching a named relation:

var conference = root.getLink('conference')

Some function calls on the conference instance can be mapped directly to the REST
verbs for the given Resource: GET, DELETE, PATCH, PUT:

conference.get()
conference.remove()
conference.add({})
conference.update({})

Now we have the basics. But, we still don’t know if we’re allowed to perform all of those
operations on all discovered Resources. Certain security constraints and possible other
limitations are implemented on the server side that we need to take into consideration
before/when we make a Request. In the same way we can discover related Resources
and Actions via links in the Response, we can query the Resource for the OPTIONS it
supports:

> OPTIONS /api/conference

< Allow: GET, OPTIONS, HEAD

If the user performing the Request is authenticated, the Response to the OPTIONS query
might look like this:

> OPTIONS /api/conference

< Allow: GET, PATCH, OPTIONS, HEAD

The server just told us that an authenticated user is allowed to perform a PATCH operation
on this Resource as well as a GET operation. Now the user is no longer restricted to a
read-only view, but has full read/write access.

The RestGraph hides the usage of OPTIONS to query the server for allowed actions behind
a meaningful API:

conference.canGet()
conference.canUpdate()
conference.canRemove()
conference.canCreate()

This gives us the complete picture of what the API and the backend, under the current
circumstances, will allow us to do. While the communication with the backend is up

Implementation | 199

and running, the user still can’t see anything. We need to convert the raw data into a
suitable user interface.

We choose to map the MediaTypes described in the DAP to HTML templates in the UI:

{
 "rel": "conference",
 "href": "http://geekseek.continuousdev.org/api/conference",
 "mediaType": "application/vnd.ced+json; type=conference"
}

By combining the current Action (View, Update, Create) with the MediaType subtype
argument, we can identify a unique template for how to represent the current Resource
as HTML.

As an example, the Conference MediaType in View mode could look like this:

<div class="single" data-ng-if="isSingle">
 <div class="well">
 <div class="pull-right">
 <a data-ng-show="resource.canUpdate()" data-ng-click="edit()">
 <i class="icon-edit-sign"></i>
 <a data-ng-show="resource.canRemove()" data-ng-click="remove()">
 <i class="icon-remove-sign"></i>
 </div>

 <h1>{{resource.data.name}} <small>{{resource.data.tagLine}}</small></h1>

 <p class="date">
 <abbr title="{{resource.data.start|date:medium}}" class="start">
 {{resource.data.start|date:'d'}}
 </abbr>
 -
 <abbr title="{{resource.data.end|date:medium}}" class="end">
 {{resource.data.end|date:'d'}}
 {{resource.data.end|date:'MMMM'}}
 {{resource.data.end|date:'yyyy'}}
 </abbr>
 </p>
 <div class="attendees pull-right">
 <subresource parent="resource" link="attendees" />
 </div>
 </div>
 <subresource parent="resource" link="session" />
</div>

200 | Chapter 10: The User Interface

Requirement Test Scenarios
The UI for our GeekSeek application is based on a JavaScript frontend talking to a REST
backend. In this scenario, there are some different approaches and types of testing we
can do: one is for the pure JavaScript code (e.g., client controllers) and the other part is
the interaction with the browser and REST endpoints on the backend.

Pure JavaScript
For the pure client JavaScript we’re going to use QUnit, a JavaScript Unit Testing frame‐
work. And handily enough, Arquillian has an extension that can invoke QUnit execu‐
tion within our normal Java build system.

Although the QUnit tests themselves do not require any Java code, the Arquillian QUnit
extension uses a normal JUnit test class to configure and report on the QUnit execution.

Our UI code contains a graph that can hold the state of the various REST responses and
their links. In this test scenario we want to test that the graph can understand the re‐
sponse returned from a REST service given an OPTIONS request.

We start by configuring the QUnit Arquillian runner in a simple JUnit Java class:

@RunWith(QUnitRunner.class)
@QUnitResources("src")
public class GraphTestCase {

 @QUnitTest("test/resources/assets/tests/graph/graph-assertions.html")
 public void testGraph() {
 // empty body
 }
}

In this example we introduce two new annotations that are specific to the Arquillian
QUnit extension:

• @QUnitResources defines the root source of the JavaScript files.
• @QUnitTest defines which HTML page to run for this @Test.

The graph-assertions.html referenced in the @QUnitTest annotation is the HTML page
that contains the <script> tag, which includes the QUnit JavaScript tests and any other
JavaScript dependencies we might need:

<html>
<head>
<title>QUnit Test Suite</title>
<link rel="stylesheet" href="http://code.jquery.com/qunit/qunit-1.12.0.css"
 type="text/css" media="screen">

Requirement Test Scenarios | 201

http://qunitjs.com/

<script src="http://code.jquery.com/jquery-1.8.2.min.js"></script>
<script type="text/javascript"
 src="http://code.jquery.com/qunit/qunit-1.12.0.js"></script>
<script type="text/javascript"
 src="http://ajax.googleapis.com/ajax/libs/angularjs/1.2.0rc1/angular.js">
 </script>
<script type="text/javascript"
 src="http://ajax.googleapis.com/ajax/libs/angularjs/1.2.0rc1/angular-route.js">
 </script>
<script type="text/javascript"
 src="http://ajax.googleapis.com/ajax/libs/angularjs/1.2.0rc1/angular-mocks.js">
 </script>
<script type="text/javascript"
 src="../../../../../main/resources/META-INF/resources/webjars/core/graph.js">
 </script>
<script type="text/javascript" src="assert.js"></script>
</head>
<body>
 <h1 id="qunit-header">QUnit Test Suite</h1>
 <h2 id="qunit-banner"></h2>
 <div id="qunit-testrunner-toolbar"></div>
 <h2 id="qunit-userAgent"></h2>
 <ol id="qunit-tests">
</body>
</html>

Our assert.js is then free to contain the QUnit functions that define our client-side test
suite:

module("Service OPTIONS", optionsInit)
asyncTest("can get?", 1, function() {
 this.$initGraph('GET', function(node) {
 ok(node.canGet(), "Should be able to create Resource")
 })
});
asyncTest("can remove?", 1, function() {
 this.$initGraph('DELETE', function(node) {
 ok(node.canRemove(), "Should be able to remove Resource")
 })
});

When we execute the GraphTestCase Java class as part of the test execution, Arquillian
QUnit will create and configure Drone and Graphene to represent our defined envi‐
ronment. It then parses the QUnit JavaScript to extract the real test names and replace
the Java JUnit defined ones. That means that in our test results we’ll see test names like
“can remove?” and “can get?” as opposed to “testGraph.”

We have configured Drone to use the PhantomJS browser; this headless browser allows
us to run on a CI server without a graphical environment. This is easily configurable
via arquillian.xml.

202 | Chapter 10: The User Interface

https://docs.jboss.org/author/display/ARQ/Drone
https://community.jboss.org/wiki/ArquillianGraphene2
http://phantomjs.org/

With this setup we now have control over our JavaScript client code and can integrate
JavaScript tests in our test pipeline.

Functional Behavior
We still have functional behavior in our application that goes beyond how the JavaScript
code itself runs. Are the page elements displaying properly? Does the end user see what
is expected?

One could argue that we’re now moving over from integration into functional testing.
Either way, we need to set up our functional tests to be maintainable, robust, and easy
to read.

We use Drone to control the lifecycle of the browser and Graphene to wrap the browser
and provide client-side object injection.

We rely on a pattern called PageObjects from Selenium to encapsulate the logic within
a page in a type-safe and programmable API. With Graphene we can take the PageObject
concept one step further and use PageFragments. PageFragments are reusable compo‐
nents that you might find within a page. We might have a Conference object displayed
on multiple different pages or a Login controller repeated in all headers.

By encapsulating the references to the HTML IDs and CSS rules within PageObjects
and PageFragments, we can create reusable TestObjects that represent our application.

We start out by creating a PageObject for our application in org.cedj.geekseek.test.
functional.ui.page.MainPage:

@Location("app/")
public class MainPage {

 @FindBy(id = "action-links")
 private ActionLinks actionLinks;

 @FindBy(id = "user-action-links")
 private ActionLinks userActionLinks;

 @FindBy(id = "resource")
 private WebElement resource;

 public ActionLinks getActionLinks() {
 return actionLinks;
 }

 public ActionLinks getUserActionLinks() {
 return userActionLinks;
 }

 ...
}

Requirement Test Scenarios | 203

http://bit.ly/1noOxoo

We use Graphene’s @Location to define the relative URL where this page can be found.
By combining Graphene with Drone we can now simply inject the MainPage object into
our @Test method. The injection will carry the state navigated to the correct URL and
be fully powered by WebDriver in the background. With this arrangement, our test class
will end up with the following structure:

@RunWith(Arquillian.class)
public class MyUITest {

 @Drone
 private WebDriver driver;

 @Test
 public void testSomething(@InitialPage MainPage page) { ...}

The testSomething method accepts a MainPage object with proper state intact.

When Graphene initializes the MainPage instance for injection, it scans the PageObject
for @FindBy annotations to inject proxies that represent the given element. In our case
we use a second layer of abstraction, ActionLinks, which is our PageFragment. Each
page has a menu of “what can be done next?” following the flow of the underlying REST
backend. These are split in two; actionLinks and userActionLinks. The differentiator:
is this a general action against a Resource or an action against a Resource that involves
the User? An example of an action is Add Conference, and a User action example would
be Add me as a Tracker to this Conference.

We add an ActionLinks abstraction to simply expose a nicer API around checking if a
link exists and how to retrieve it:

public class ActionLinks {

 @Root
 private WebElement root;

 @FindBy(tagName = "button")
 private List<WebElement> buttons;

 public WebElement getLink(String name) {
 for(WebElement elem : buttons) {
 if(elem.getText().contains(name) && elem.isDisplayed()) {
 return elem;
 }
 }
 return null;
 }

 public boolean hasLink(String name) {
 return getLink(name) != null;
 }
}

204 | Chapter 10: The User Interface

The ActionLinks PageFragment is very similar in how the PageObject works. The main
difference is the use of the @Root annotation. Both Actions and UserActions are mod‐
eled as the PageFragment type ActionLinks. They are two lists of links in different
locations on the page. In the PageObject MainPage we have the following two injection
points:

 @FindBy(id = "action-links")
 private ActionLinks actionLinks;

 @FindBy(id = "user-action-links")
 private ActionLinks userActionLinks;

The ActionsLinks @Root WebElement is injected based on the parent @FindBy element
and represents where on the page this fragment was found. When working within a
PageFragment, all of our @FindBy expressions are relative to the @Root element.

You might remember that our application is a single page, so everything happens within
the same physical URL and the content is only manipulated via JavaScript. With this in
mind we’ve modeled in a concept of a fragment being SelfAware. This allows us to
encapsulate the logic of knowing how to find certain fragments within the fragment
itself:

org.cedj.geekseek.test.functional.ui.page.SelfAwareFragment:

public interface SelfAwareFragment {

 boolean is();
}

The MainPage PageObject implements the discovery logic like so:

 public <T extends SelfAwareFragment> boolean isResource(Class<T> fragment) {
 try {
 return getResource(fragment).is();
 } catch (NoSuchElementException e) {
 return false;
 }
 }

 public <T extends SelfAwareFragment> T getResource(Class<T> fragment) {
 return PageFragmentEnricher.createPageFragment(fragment, resource);
 }

Within the MainPage we want to set up PageFragments so they can be created dynam‐
ically based on the requested type. This is to avoid having to create a @FindBy injection
point for all possible combinations within our application. But we still want our on-
demand PageFragments to have the same features as the injected ones, so we delegate
the actual creation of the instance to Graphene’s PageFragmentEnricher, giving it the
requested type and the @Root element we expect it to be found within.

Requirement Test Scenarios | 205

After discovering and executing ActionLinks we can now ask the MainPage: “Are we
within a given subpage?” by referring just to the class itself:

public static class Form implements SelfAwareFragment {
 @Root
 private WebElement root;

 @FindBy(css = ".content.conference")
 private WebElement conference;

 @FindBy(tagName = "form")
 private WebElement form;

 @FindBy(css = "#name")
 private InputComponent name;

...

 @FindBy(tagName = "button")
 private List<WebElement> buttons;

 @Override
 public boolean is() {
 return conference.isDisplayed() && form.isDisplayed();
 }

 public Form name(String name) {
 this.name.value(name);
 return this;
 }

 public InputComponent name() {
 return name;
 }

...

 public void submit() {
 for(WebElement button : buttons) {
 if(button.isDisplayed()) {
 button.click();
 break;
 }
 }
 }
}

As shown in this example in one of our SelfAwareFragment types, Conference.Form,
we continue nesting PageFragments to encapsulate more behavior down the stack
(mainly the InputComponent). Whereas an HTML Form <input> tag knows how to
input data, the InputComponent goes a level up:

206 | Chapter 10: The User Interface

textfield.html:

<div class="col-md-8 form-group" data-ng-class="{'has-error':error}">
 <label class="control-label" for="{{id}}_field">{{name}}</label>
 <input class="form-control" type="text" id="{{id}}_field"
 data-ng-model="field"
 required placeholder="{{help}}" />
 <div class="has-error" data-ng-show="error">{{error}}</div>
</div>

The complete state of the input is required—not only where to put data, but also the
defined name, “help” text, and, most importantly, is it in an error state after submitting?

We also have a custom extension to Drone and Arquillian: we need to ensure that “click”
and “navigate” events wait for the loading of async calls before doing their time check.
For this, we have the org.cedj.geekseek.test.functional.arquillian.AngularJS
DroneExtension, which defines:

public static class AngularJSEventHandler
 extends AbstractWebDriverEventListener {

 @Override
 public void afterNavigateTo(String url, WebDriver driver) {
 waitForLoad(driver);
 }

 @Override
 public void afterNavigateBack(WebDriver driver) {
 waitForLoad(driver);
 }

 @Override
 public void afterNavigateForward(WebDriver driver) {
 waitForLoad(driver);
 }

 @Override
 public void afterClickOn(WebElement element, WebDriver driver) {
 waitForLoad(driver);
 }

 private void waitForLoad(WebDriver driver) {
 if(JavascriptExecutor.class.isInstance(driver)) {
 JavascriptExecutor executor = (JavascriptExecutor)driver;
 executor.executeAsyncScript(
 "var callback = arguments[arguments.length - 1];" +
 "var el = document.querySelector('body');" +
 "if (window.angular) {" +
 "angular.element(el).injector().get('$browser').
 notifyWhenNoOutstandingRequests(callback);" +
 "} else {callback()}");
 }

Requirement Test Scenarios | 207

 }

 }

The waitForLoad method, triggered by all of the action handlers, contains the logic to
wait on an async call to return.

With all the main abstractions in place, we are now free to start validating the applica‐
tion’s functional behavior:

• Given the User is Creating a new Conference
• When the Conference has no start/end date
• Then an error should be displayed

To satisfy these test requirements we have, for example, org.cedj.geekseek.test.func
tional.ui.AddConferenceStory:

@RunWith(Arquillian.class)
public class AddConferenceStory {

 @Drone
 private WebDriver driver;

 @Test @InSequence(1)
 public void shouldShowErrorMessageOnMissingDatesInConferenceForm(
 @InitialPage MainPage page) {

 ActionLinks links = page.getActionLinks();
 Assert.assertTrue(
 "Add Conference action should be available",
 links.hasLink("conference"));

 links.getLink("conference").click();

 Assert.assertTrue(
 "Should have been directed to Conference Form",
 page.isResource(Conference.Form.class));

 Conference.Form form = page.getResource(Conference.Form.class);
 form
 .name("Test")
 .tagLine("Tag line")
 .start("")
 .end("")
 .submit();

 Assert.assertFalse("Should not display error", form.name().hasError());
 Assert.assertFalse(
 "Should not display error", form.tagLine().hasError());
 Assert.assertTrue(
 "Should display error on null input", form.start().hasError());

208 | Chapter 10: The User Interface

 Assert.assertTrue(
 "Should display error on null input", form.end().hasError());
 }

The shouldShowErrorMessageOnMissingDatesInConferenceForm test method takes
the following actions:

• Go to the MainPage (as injected).
• Get all ActionLinks.
• Verify there is an ActionLink named conference.
• Click the conference ActionLink.
• Verify we’re on the Conference.Form.
• Input given data in the form and submit it.
• Verify that name and tagLine input are not in error state.
• Verify that start and end input are in error state.

As we can see, Arquillian Drone, together with Selenium and QUnit, makes for an
integrated solution to testing frontend code with a Java object model. Running the full
suite on your own locally should be instructive.

Requirement Test Scenarios | 209

CHAPTER 11

Assembly and Deployment

The road to success is always under construction.
— Lily Tomlin

To this point, we’ve focused primarily on the testable development of our modules and
have taken some selective slices out for examination and testing. The time has come for
us to address full integration by bringing everything together into a single deployable
unit.

Additionally, we’ll look at some alternative (and arguably more enterprise-ready) run‐
times for our application. Ideally, we’d like to be in a position where our test environment
is aligned as closely as possible to what will be run in production, and we’ll further aim
to automate the process of deployment. By removing human interaction as much as
possible, our potential for mistakes decreases and we learn to rely instead on our test
suite as a guardian of code quality.

This chapter will ultimately link a git push to validate new commits in a continuous
integration server before deploying the new version of our application into the publicly
accessible Web. Whether you go straight to production or first to a staging environment,
these steps should outline a smooth transition from development to real application
use.

Obtaining JBoss EAP
JBoss Enterprise Application Platform (EAP) is Red Hat’s supportable application server
distribution born from the community open source WildFly project (formerly known
as the JBoss Application Server). A full discussion of the relationship and differences
between community and supportable middleware is detailed by Red Hat, and some of
the most important points are as follows:

211

http://red.ht/1noPPQf

• The community projects are built to innovate quickly and push new features at a
rapid rate.

• Supportable products are intended to have a multiyear life span, and receive updates
and bug fixes over this time period.

• A support contract and SLA can be purchased for supportable products.

In March of 2013, the JBoss Senior Director of Engineering announced that EAP bi‐
naries and their dependencies will be made freely available (at no monetary cost) via a
0-dollar subscription through Red Hat. Because this runtime comes with no obligation
and allows us a migration path to support if our little GeekSeek business were to need
it, we’ll opt for EAP as our target runtime.

EAP has some additional differences with WildFly, which become very apparent during
our development experience. Though EAP is available for free, there is a Terms and
Conditions prerequisite to its use, and therefore it is not currently available in the JBoss
Nexus or Maven Central repositories. We’ll have to perform some extra steps to set up
our environments for EAP before we can enable this option in our builds.

First, let’s obtain the EAP distribution and private JBoss EAP Maven repository from
the JBoss Downloads page, as shown in Figure 11-1.

Figure 11-1. Download JBoss EAP

Once we agree to the Terms and Conditions, the links to download will begin the pro‐
cess. Both the EAP distribution and the EAP Maven Repository are bundled as ZIP files.

Let’s install EAP by unzipping it into a location on the filesystem. Anywhere will do; for
instance, in *nix-like systems we can handle this from the command line:

~ $> mkdir -p /home/alr/opt/jboss/eap; cd /home/alr/opt/jboss/eap
eap $> mv /home/alr/Downloads/jboss-eap-6.1.0.zip .
eap $> unzip jboss-eap-6.1.0.zip

Using this, we’d now have EAP installed at /home/alr/opt/jboss/eap/jboss-eap-6.1/.

212 | Chapter 11: Assembly and Deployment

https://community.jboss.org/blogs/mark.little/2013/03/07/eap-binaries-available-for-all-developers
http://www.jboss.org/jbossas/downloads/

Now let’s place our EAP Maven repository somewhere useful. It might be enticing to
mix in these artifacts with our default Maven repository (typically located at
USER_HOME/.m2/repository), but let’s keep things separated and create a new exten‐
sion repo for our product bits. This way we’ll have the option of enabling this repository
explicitly in our builds and won’t ever have to worry about placing these artifacts along‐
side ones found in Maven Central. We’ll choose USER_HOME/.m2/jboss-eap-6.1.0.GA-
maven-repository (the default folder name contained inside the ZIP, under our user’s
Maven directory):

Downloads $> unzip jboss-eap-6.1.0-maven-repository.zip
Downloads $> mv jboss-eap-6.1.0-maven-repository ~/.m2/
Downloads $> rm jboss-eap-6.1.0-maven-repository.zip

Running Against JBoss EAP
With our EAP installation in place, we’re now in a position to exercise our application
against this server instead of WildFly, which we’ve used up to this point as a convenient
default.

Using the EAP Remote Container
First we’ll run EAP as a standalone process. Opening a terminal or console window, let’s
cd into the directory in which we unzipped the distribution. From there we can export
an environment variable to set JBOSS_HOME to the present working directory (using
the export command on *nix systems or simply set on Windows machines):

$> cd /home/alr/opt/jboss/eap/jboss-eap-6.1/
jboss-eap-6.1 $> export JBOSS_HOME=`pwd`

Now we’ll launch the EAP server in standalone (nondomain) mode by using the pro‐
vided scripts in the bin directory:

jboss-eap-6.1 $> cd bin
bin $> ./standalone.sh
=================================
 JBoss Bootstrap Environment
 JBOSS_HOME: /home/alr/opt/jboss/eap/jboss-eap-6.1
 JAVA: /home/alr/opt/oracle/java/jdk7/bin/java
 JAVA_OPTS: -server -XX:+UseCompressedOops -Xms1303m
 -Xmx1303m -XX:MaxPermSize=256m -Djava.net.preferIPv4Stack=true
 -Djboss.modules.system.pkgs=org.jboss.byteman
 -Djava.awt.headless=true
=================================
...output trimmed
02:57:43,593 INFO [org.jboss.as] (Controller Boot Thread) JBAS015874:
 JBoss EAP 6.1.0.GA
 (AS 7.2.0.Final-redhat-8) started in 2404ms -
 Started 123 of 177 services (53 services
 are passive or on-demand)

Running Against JBoss EAP | 213

And with that, we have our server process running and ready to receive deployments
or service requests. As noted in the preceding output, the startup sequence is complete
on our machines in about 2.4 seconds. You can ensure that everything is working cor‐
rectly or find links to the web-based management interface by pointing your browser
to http://localhost:8080, as shown in Figure 11-2.

Figure 11-2. EAP home page

Let’s leave this as is for the time being, and open a new console window (or tab) in the
GeekSeek application’s source root.

Our experience with Arquillian up to this point has been using a managed container
configuration; this has ceded the responsibility of server startup and shutdown to Ar‐
quillian during the Before Suite and After Suite test lifecycle events. Now that we’ve
already got a server booted, we can let Arquillian bypass these steps to use a previously
bootstrapped process, which gives us some benefits:

• We save the time needed to start and/or stop a server alongside each test suite.
• A server does not have to be running locally; the server process may be housed on

a separate physical machine accessible on the network.

We’ve provided a Maven profile, arq-jbosseap-remote, to run our Arquillian tests
against a running EAP process on the local machine. From the GeekSeek source code

214 | Chapter 11: Assembly and Deployment

root, simply pass this profile as an argument using the -P switch to the mvn command,
and instead of using the default WildFly managed container (which will automatically
start and stop), we’ll instead use the running server that we started earlier:

code $> mvn clean install -Parq-jbosseap-remote

The build will run as we’ve seen before, only this time we’ll be able to see some activity
in the server console resulting from the deployments made and tests run. For instance:

03:35:30,984 INFO [org.jboss.as.server]
 (management-handler-thread - 1) JBAS018559:
 Deployed "015c84ea-1a41-4e37-957a-f2433f201a23.war"
 (runtime-name : "015c84ea-1a41-4e37-957a-f2433f201a23.war")

This may be a preferable technique to employ while developing; at the start of the day
you can launch the server and keep it running as an external process, and run your tests
without the overhead of waiting for server start and stop, as well as the unzipping process
(and resulting file I/O) to create local WildFly installation directories under target for
testing. On our machines, this cuts the total build time from around 3:30 to 2:11, as we
exercise quite a few test suites and hence remove a good number of start/stop lifecycle
events by using the remote container.

Because we’re done with the EAP instance we started earlier, let’s end the process:

bin $> ^C
03:45:58,876 INFO [org.jboss.as]
 (MSC service thread 1-5) JBAS015950:
 JBoss EAP 6.1.0.GA (AS 7.2.0.Final-redhat-8)
 stopped in 127ms

Using the EAP Managed Container
Of course, the GeekSeek examples also make EAP available for use in managed mode,
as we’ve used before. Because EAP is not currently available as a distribution in a Maven
repository, it’ll take a few extra steps for us to enable this layout.

Remember that we downloaded the EAP Maven repository earlier. This is an exten‐
sion repo; it’s meant to serve as an addition to a standard repo like that offered by JBoss
Nexus or Maven Central. As such, it contains EAP-specific artifacts and dependencies
only.

Let’s begin by unpacking this into a new repository alongside the default ~/.m2/repos
itory repo:

~ $> cd ~/.m2/
.m2 $> mv /home/alr/Downloads/jboss-eap-6.1.0-maven-repository.zip .
.m2 $> unzip jboss-eap-6.1.0-maven-repository.zip
.m2 $> rm jboss-eap-6.1.0-maven-repository.zip

Running Against JBoss EAP | 215

This will leave us with the new EAP extension repository jboss-eap-6.1.0.GA-maven-
repository under our .m2/ directory.

Now we must let Maven know about our new repository, so we can define it in the
default user-level ~/.m2/settings.xml. Note that we’re actually free to use any settings file
we choose, though if we opt outside of the default settings file we’ll have to manually
specify our settings configuration to the mvn command using the -s /path/to/
settings/file switch.

We’ll add our repository definition inside a profile, so that we can enable this at will
without affecting other projects. In this case we create the jboss-eap-6.1.0 profile:

<?xml version="1.0" encoding="UTF-8"?>
<settings xmlns="http://maven.apache.org/SETTINGS/1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/SETTINGS/1.0.0
 http://maven.apache.org/xsd/settings-1.0.0.xsd">
...
<profiles>
 <profile>
 <id>jboss-eap-6.1.0</id>
 <repositories>
 <repository>
 <id>jboss-eap-6.1.0-maven-repository</id>
 <name>JBoss EAP 6.1.0 Repository</name>
 <url>file://${user.home}/.m2/jboss-eap-6.1.0.GA-maven-repository</url>
 <layout>default</layout>
 <releases>
 <enabled>true</enabled>
 <updatePolicy>never</updatePolicy>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 <updatePolicy>never</updatePolicy>
 </snapshots>
 </repository>
 </repositories>
 </profile>
 ...
</profiles>
...
</settings>

Now, we’ll need to again find our EAP ZIP. Then, using the profile we’ve created, we’ll
deploy our EAP distribution ZIP as a proper Maven artifact into the repository using
the Maven deploy plug-in. We must remember to pass in our profile using the -P switch:

mvn deploy:deploy-file -DgroupId=org.jboss.as \
 -DartifactId=jboss-as-dist \
 -Dversion=eap-6.1.0 \
 -Dpackaging=zip \

216 | Chapter 11: Assembly and Deployment

 -Dfile=/home/alr/Downloads/jboss-eap-6.1.0.zip \
 -DrepositoryId=jboss-eap-6.1.0-maven-repository \
 -Durl=file:///home/alr/.m2/jboss-eap-6.1.0.GA-maven-repository \
 -Pjboss-eap-6.1.0

If we’ve set everything up correctly, we’ll see output:

[INFO] Scanning for projects...
...
[INFO]
[INFO] --- maven-deploy-plugin:2.7:deploy-file (default-cli) @ standalone-pom ---
Uploading: file:///home/alr/.m2/jboss-eap-6.1.0.GA-maven-repository/
org/jboss/as/jboss-as-dist/eap-6.1.0/jboss-as-dist-eap-6.1.0.zip
Uploaded: file:///home/alr/.m2/jboss-eap-6.1.0.GA-maven-repository/
org/jboss/as/jboss-as-dist/eap-6.1.0/jboss-as-dist-eap-6.1.0.zip
(112789 KB at 50828.7 KB/sec)
Uploading: file:///home/alr/.m2/jboss-eap-6.1.0.GA-maven-repository/
org/jboss/as/jboss-as-dist/eap-6.1.0/jboss-as-dist-eap-6.1.0.pom
Uploaded: file:///home/alr/.m2/jboss-eap-6.1.0.GA-maven-repository/
org/jboss/as/jboss-as-dist/eap-6.1.0/jboss-as-dist-eap-6.1.0.pom
(431 B at 420.9 KB/sec)
Downloading: file:///home/alr/.m2/jboss-eap-6.1.0.GA-maven-repository/
org/jboss/as/jboss-as-dist/maven-metadata.xml
Uploading: file:///home/alr/.m2/jboss-eap-6.1.0.GA-maven-repository/
org/jboss/as/jboss-as-dist/maven-metadata.xml
Uploaded: file:///home/alr/.m2/jboss-eap-6.1.0.GA-maven-repository/
org/jboss/as/jboss-as-dist/maven-metadata.xml (313 B at 305.7 KB/sec)
...
[INFO] BUILD SUCCESS
[INFO] Total time: 2.911s
[INFO] Finished at: Mon Jun 03 05:30:53 MST 2013
[INFO] Final Memory: 5M/102M

And in the ~/.m2/jboss-eap-6.1.0.GA-maven-repository/org/jboss/as/jboss-as-dist direc‐
tory, we should see our EAP distribution ZIP along with some Maven-generated
metadata files:

$> ls -R
.:
eap-6.1.0 maven-metadata.xml.md5
maven-metadata.xml maven-metadata.xml.sha1

./eap-6.1.0:
jboss-as-dist-eap-6.1.0.pom
jboss-as-dist-eap-6.1.0.pom.md5
jboss-as-dist-eap-6.1.0.pom.sha1
jboss-as-dist-eap-6.1.0.zip
jboss-as-dist-eap-6.1.0.zip.md5
jboss-as-dist-eap-6.1.0.zip.sha1

Now, assuming we enable the jboss-eap-6.1.0 profile in our builds, we’ll be able to
use EAP just as we did for WildFly, because we’ve assigned it to a proper Maven artifact
in the coordinate space org:jboss.as:jboss-as-dist:eap-6.1.0.

Running Against JBoss EAP | 217

To run our GeekSeek build with tests against EAP in managed mode, we apply the
jboss-eap-6.1.0 profile to enable our custom repository, and the arq-jbosseap-
managed profile to configure Arquillian with the proper adaptors:

code $> mvn clean install -Parq-jbosseap-managed,jboss-eap-6.1.0

In this fashion, we can now automate our testing with EAP just as with WildFly.

Continuous Integration and the Authoritative Build Server
The practice of continuous integration involves the frequent pushing of code to a shared
mainline, then executing a robust test suite against it. Ideally, each commit will be tested
in this fashion, and though we should strive to run as many tests as are appropriate
locally before pushing code to the source repository for all to see, the most reliable agent
to verify correctness is our authoritative build server.

Our goal here is to set up a continuous integration environment that will serve two
primary purposes:

• Run the test suite in a controlled environment when a git push is made to the
authoritative source repository

• Trigger the deployment of the latest version of our application upon build success

In this way we chain events together in order to automate the human action of a code
commit all the way through deployment to a publicly accessible application server.

Although we have our choice of build servers and cloud services backing them, we’ve
chosen for our examples the Jenkins CI Server (the project forked off Hudson) run by
the CloudBees service. Of course, we could install a CI server and maintain it ourselves,
but the excellent folks at CloudBees have proven more than capable at keeping our
infrastructure running, patched, and updated. Additionally, they offer a few extension
services (which we’ll soon see) that fit well with our desired use cases.

It’s worth noting that the CloudBees team has kindly provided the Arquillian and
ShrinkWrap communities with gratis service and support over the past several years,
so we’d like to thank them for their contributions in keeping the open source ecosystem
running smoothly.

Configuring the GeekSeek Build on CloudBees
Because our eventual deployment target will be EAP, we’re going to configure CloudBees
as our authoritative build server to execute Arquillian tests against the EAP runtime.
Just as we ran a few extra steps on our local environment to equip the backing Maven
repositories with an EAP distribution, we’ll have to make the same artifacts available to
our CloudBees Jenkins instance. Luckily, we’ve already done most of that work locally,

218 | Chapter 11: Assembly and Deployment

http://jenkins-ci.org/
http://hudson-ci.org/
http://www.cloudbees.com/

so this will mainly be an issue of copying over the EAP Maven repository we already
have.

First we’ll log in to our CloudBees account and click Select to enter the Jenkins Dash‐
board from within CloudBees Central, as shown in Figure 11-3.

Figure 11-3. CloudBees Jenkins

We’ll create a new job, assigning it our project name of GeekSeek and selecting a Maven2/
Maven3 Build configuration template, as shown in Figure 11-4.

Figure 11-4. CloudBees new job

The next step is to configure the build parameters, as shown in Figure 11-5. First let’s
set the SCM section to point to our authoritative Git repository; this is where the build
will pull code.

Figure 11-5. CloudBees SCM

Now we’ll tell Maven how to run the build; remember, we want to enable the arq-
jbosseap-managed profile, so we’ll note that in the “Goals and options” section (see

Continuous Integration and the Authoritative Build Server | 219

Figure 11-6). Also, we’ll enable our alternative settings file, which will expose our
private repository to our build.

Figure 11-6. CloudBees build config

Populating CloudBees Jenkins with the EAP Repository
CloudBees offers a series of Maven repositories associated with each Jenkins domain.
These are documented here, and of particular note is the private repository that is
made available to us. We’ll be able to write to it and place in artifacts demanded by our
builds, yet the visibility permissions associated with the private repo will block the rest
of the world from seeing or accessing these resources.

To copy our EAP Maven Repository into the CloudBees Jenkins private repo, we’ll
make use of the WebDAV protocol, an extension of HTTP that permits writing to
WWW resources. There are a variety of system-dependent tools to mount DAV vol‐
umes, and CloudBees addresses some known working techniques in its documenta‐
tion. For illustrative purposes, we’ll apply *nix-specific software in this guide, loosely
based off the CloudBees Linux Documentation.

First we need to install the davfs2 project, a set of libraries enabling the mounting of a
WebDAV resource as a standard logical volume. In most Linux-based systems with a
package manager, installation can be done using apt-get or yum:

$> sudo apt-get install davfs2

or:

$> sudo yum install davfs2

Next we’ll ensure that our /etc/conf/davfs2/davfs2.conf configuration file is set up ap‐
propriately; be sure to edit yours to match the following:

$> cat /etc/davfs2/davfs2.conf
use_locks 0
ask_auth 1
if_match_bug 1

The last line is unique to Ubuntu-based x64 systems.

220 | Chapter 11: Assembly and Deployment

http://bit.ly/1noQ7Xh
http://bit.ly/1noQ91B
http://bit.ly/1noQ91B
http://bit.ly/1noQaCq
http://bit.ly/1noQelN
http://bit.ly/1noQj95

Now we can create a directory that will act as our mounting point; we’ve chosen /mnt/
cloudbees/arquillian/private:

$> mkdir -p /mnt/cloudbees/arquillian/private

The fstab utility on *nix systems acts to automatically handle mounting to registered
endpoints. It’s configured in /etc/fstab, so using your favorite text editor, add the fol‐
lowing line (replacing your own parameters) to the configuration:

Arquillian WebDAV on CloudBees
https://repository-{domainId}.forge.cloudbees.com/private/ {/mnt/location/path}
 davfs rw,user,noauto,conf=/etc/davfs2/davfs2.conf,uid=$UID 0 0

The private repository requires authentication, so we must add authentication infor‐
mation to /etc/davfs2/secrets:

{/mnt/location/path} {cloudbees username} {password}

Note the CloudBees username here is available on the details page under “Authenticated
access” (as shown in Figure 11-7), located at https://forge.cloudbees.com/a/domainId/
repositories/private.

Figure 11-7. CloudBees Authenticated access

Now we should be ready to mount our volume (subsequent reboots to the system should
do this automatically due to our fstab configuration):

$> sudo mount /mnt/cloudbees/arquillian/private/

With our volume mounted, any file activities we make under /mnt/cloudbees/arquillian/
private/ will be reflected in our remote private CloudBees Maven Repository. Let’s copy
the contents of the JBoss EAP Maven Repository into private:

sudo cp -Rv ~/.m2/jboss-eap-6.1.0.GA-maven-repository/* \
 /mnt/cloudbees/arquillian/private/

This may take some time as we copy all artifacts and the directory structure over the
network.

Continuous Integration and the Authoritative Build Server | 221

https://forge.cloudbees.com/a/domainId/repositories/private
https://forge.cloudbees.com/a/domainId/repositories/private

We must also enable this private repository in our build configuration. In the private
repo (which we have mounted) is a file called maven/settings.xml. We’ll edit it to add
the following sections.

Under <servers>:

<server>
 <id>cloudbees-private-maven-repository</id>
 <username>{authorized_username}</username>
 <password>{authorized_password}</password>
 <filePermissions>664</filePermissions>
 <directoryPermissions>775</directoryPermissions>
</server>

And under <profiles>:

<profile>
 <id>cloudbees.private.maven.repository</id>
 <activation>
 <property>
 <name>!cloudbees.private.maven.repository.off</name>
 </property>
 </activation>
 <repositories>
 <repository>
 <id>cloudbees-private-maven-repository</id>
 <url>https://repository-arquillian.forge.cloudbees.com/private</url>
 <releases>
 <enabled>true</enabled>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </repository>
 </repositories>
</profile>

Keep in mind that some mounting systems (including davfs2) may cache content lo‐
cally, and avoid flushing bytes to the remote CloudBees DAV repository immediately
for performance reasons. To force a flush, we can unmount, then remount the volume:

$> sudo umount /mnt/cloudbees/arquillian/private
$> sudo mount -a

Note that it’s not atypical for large hold times while the cache synchronizes over the
network:

/sbin/umount.davfs: waiting while mount.davfs (pid 11125) synchronizes the cache
....

Now we can manually trigger a build of our project, and if all’s set up correctly, we’ll see
our test result come out clear.

222 | Chapter 11: Assembly and Deployment

Automatic Building on Git Push Events
Let’s take things one step further in terms of automation. We don’t have to click the Build
Now button on our CI server every time we’d like to run a build. With some extra
configuration we can set up a trigger for new git push events on the authoritative source
repository to start a new CI build.

CloudBees documents this process, and we’ll follow along these guidelines.

First we must log in to the CloudBees Jenkins home and select the GitHub plug-in for
installation at the Manage Jenkins → Manage Plugins screen. Jenkins will download and
install the plug-in, then reboot the instance. Then we can go to Manage Jenkins →
Configure System and select “Manually manage hook URLs” under the “GitHub Web
Hook” setting. Save and exit the screen.

With our Jenkins instance configured, now we should enable GitHub triggers in our
build job configuration. Check the box “Build when a change is pushed to GitHub”
under “Build Triggers” on the build configuration page, then save.

That will handle the CloudBees Jenkins side of the integration.

In GitHub, we can now visit our repository’s home, and select Settings → Service Hooks
→ WebHook URLs (see Figure 11-8). Add a URL with the format https://domai
nId.ci.cloudbees.com/github-webhook. This will instruct GitHub to send an HTTP
POST request to CloudBees containing information about the new push, and CloudBees
will take it from there.

Figure 11-8. GitHub WebHook URLs

From here on out, new commits pushed to the GitHub repository will trigger a build
on the CloudBees Jenkins instance. In this way we can nicely create a pipeline of build-
related actions, triggered easily by our committing new work upstream.

Note that this is simply one mechanism of chaining together actions from a git push,
and it relies on the GitHub and CloudBees services specifically. Of course, there are
many other custom and third-party services available, and the choice will ultimately be

Continuous Integration and the Authoritative Build Server | 223

http://bit.ly/1noQQYE

yours based on your needs. This configuration is offered merely to prove the concept
and provide a base implementation (and it also drives the software examples for this
book).

Pushing to Staging and Production
With a working build to validate our tests and assemble the final deployable unit(s),
we’re now free to push our application out to a publicly accessible runtime. In most
cases, we’d like to first target a staging server that can be accessed only by members of
our team before going public, but the choice for that extra stage is left to the reader’s
discretion. For the purposes of our GeekSeek application, we’ll allow commits that pass
the test suite to go straight to the public WWW on OpenShift.

Setting Up the OpenShift Application
First, let’s create our new application by logging in to OpenShift and selecting Add
Application, as shown in Figure 11-9.

Figure 11-9. Add Application

Because EAP will be our target runtime, we’ll select the “JBoss Enterprise Application
Platform 6.0” cartridge, a prebuilt environment for applications targeting EAP (see
Figure 11-10).

Figure 11-10. JBoss EAP cartridge

Next we’ll assign our application with a name unique to our account’s domain, as shown
in Figure 11-11.

224 | Chapter 11: Assembly and Deployment

Figure 11-11. New app name

And when we’ve reviewed the configuration, clicking Create Application, as shown in
Figure 11-12, will instruct OpenShift to provision a new namespace and backing in‐
frastructure for our application.

Figure 11-12. Create Application

When the process is completed, a default landing page will be accessible to us (and
anyone in the world) from the browser, as shown in Figure 11-13.

Figure 11-13. Welcome to OpenShift

Pushing to Staging and Production | 225

The default DNS record will be in the format http://appName-domainId.rhcloud.com.
It’s likely that this isn’t really the name we desire for public consumption, so let’s add
our own custom DNS name.

This is a two-step process:

1. Create a DNS entry with your domain registrar or DNS Management interface to
point to http://appName-domainId.rhcloud.com. In our case, we’ll opt for a sub‐
domain, which amounts to a CNAME record. Consult your domain authority for the
specifics of this step, but generally you might be presented with a screen that looks
similar to Figure 11-14.

Figure 11-14. Add CNAME

2. Add an “alias” in your OpenShift application’s configuration. You can do this via
the web interface shown in Figure 11-15.

Figure 11-15. Add alias

Alternatively, you can acquire the OpenShift client-side command-line tools. These rely
on a Ruby installation of 1.8.7 or greater on your system, and are obtained by installing
a Ruby gem:

$> sudo gem install rhc

Once the gem is installed, you can add the domain record to OpenShift using the com‐
mand rhc alias add appName alias -l username. For instance:

$> $ rhc alias add geekseek geekseek.continuousdev.org -l admin@continuousdev.org
Password: *****************

Alias 'geekseek.continuousdev.org' has been added.

Assuming the CNAME is properly set up with your domain registrar, the record has
percolated through the network’s DNS tree (which may or may not take some time),
and the alias is set up correctly, your application should now be available directly at the
provided alias. In our case, this is http://geekseek.continuousdev.org/.

226 | Chapter 11: Assembly and Deployment

https://www.openshift.com/developers/rhc-client-tools-install

Removing the Default OpenShift Application
Now let’s clear the way for our real application. First we’ll clone the OpenShift applica‐
tion repository into our local workspace. The Git URL for your application is displayed
on the application’s status screen on your OpenShift account. The git clone command
will look a little like this:

$> git clone ssh://(somehash))@geekseek-continuousdev.
rhcloud.com/~/git/geekseek.git/
Cloning into 'geekseek'...
The authenticity of host 'geekseek-continuousdev.rhcloud.com (72.44.62.62)'
can't be established.
RSA key fingerprint is cf:ee:77:cb:0e:fc:02:d7:72:7e:ae:80:c0:90:88:a7.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added 'geekseek-continuousdev.rhcloud.com,72.44.62.62'
(RSA) to the list of known hosts.
remote: Counting objects: 39, done.
remote: Compressing objects: 100% (31/31), done.
remote: Total 39 (delta 1), reused 0 (delta 0)
Receiving objects: 100% (39/39), 19.98 KiB, done.
Resolving deltas: 100% (1/1), done.

Now we have a full copy of the OpenShift application’s repository on our local disk.
Because we don’t need the default landing page shown in Figure 11-13, we can safely
remove it. We can do this easily by cd-ing into our repository directory, removing the
files in question with git rm, committing the changes, and then pushing the commit
to the remote OpenShift repository:

$> cd geekseek
geekseek $> git rm -rf pom.xml src/
rm 'pom.xml'
rm 'src/main/java/.gitkeep'
rm 'src/main/resources/.gitkeep'
rm 'src/main/webapp/WEB-INF/web.xml'
rm 'src/main/webapp/images/jbosscorp_logo.png'
rm 'src/main/webapp/index.html'
rm 'src/main/webapp/snoop.jsp'
geekseek $> git commit -m 'Remove OpenShift default application structure'
geekseek $> git push origin master

When the git push command concludes and the remote build is complete, reloading
our application in the web browser should now yield us a blank page, because we’ve
deleted the only content in the OpenShift repo. We’ll replace that with fresh content
from our CI builds.

Pushing from the CI Build Job to OpenShift
The final piece of the automated deployment puzzle lies in deploying artifacts built from
our CI server into our runtime environment. In our case, this amounts to configuring

Pushing to Staging and Production | 227

the CloudBees Jenkins instance to perform some Git operations against our OpenShift
repository.

We’ll need to allow access for CloudBees Jenkins to interact with the OpenShift repos‐
itory. On the Configure screen for our CI job is a section named CloudBees DEV@Cloud
Authorization, which contains our public key (see Figure 11-16). Copy this to your OS’s
clipboard.

Figure 11-16. CloudBees SSH public key

Then log in to your OpenShift Management Console and select Settings; there will be
a dialog to manage the public keys allowed access to our repository (see Figure 11-17).
Add the CloudBees Jenkins key by pasting it here.

Figure 11-17. OpenShift public keys

Switching back to our Jenkins job configuration screen, toward the bottom is a section
where we can add “post-build” steps (see Figure 11-18). Let’s create a shell-based action
that will be set to execute only upon successful build.

228 | Chapter 11: Assembly and Deployment

mailto:DEV@Cloud
https://openshift.redhat.com/app/console/settings

Figure 11-18. CloudBees post-build steps

The following script will handle the task for us:

if [-d geekseek]; then
 cd geekseek
 if [-f deployments/ROOT.war]; then
 rm -rf deployments/ROOT.war
 fi
 git pull origin master
else
 git clone ssh://51abd6c84382ec5c160002e2@geekseek-continuousdev.rhcloud.com/
 ~/git/geekseek.git/
 cd geekseek
fi

cp $WORKSPACE/code/application/application/target/*.war deployments/ROOT.war
touch deployments/ROOT.WAR.dodeploy
git add -Av
COMMIT_MESSAGE='Updated application from '
COMMIT_MESSAGE=$COMMIT_MESSAGE$BUILD_URL
git commit -m "$COMMIT_MESSAGE"
git push origin master

Let’s see what’s going on here. First we have some bash logic to either clone the remote
OpenShift repository if this node hasn’t already, or update the existing copy. Then we
copy the final deployable web application. We’ll WAR into the deployments directory
of the repository, renaming it to ROOT.war so that this acts as our application servicing
requests from the web root. Also, we’ll add or update an empty ROOT.war.dodeploy file
to let OpenShift know that we want this application deployed when it’s discovered (full
documentation on this feature is available on the OpenShift site). Finally, we add our
changes to be staged for commit, perform the commit, and then push the changes to
our remote OpenShift repository.

As we’ve seen before, OpenShift will dutifully exercise the remote operations to redeploy
our application and make it available for our use.

Pushing to Staging and Production | 229

http://red.ht/1nop6U6

Using the OpenShift client command-line tools, we can tail the server logs for the ap‐
plication to monitor status:

$> rhc tail {openshift_appname} -l {openshift_username}

If we look closely, we’ll see that the application has deployed, and is ready for use!

2013/06/04 05:38:52,413 INFO [org.jboss.as.server]
 (ServerService Thread Pool -- 36) JBAS018559:
 Deployed "ROOT.war" (runtime-name : "ROOT.war")

230 | Chapter 11: Assembly and Deployment

CHAPTER 12

Epilogue

Now this is not the end. It is not even the beginning of the end.
But it is, perhaps, the end of the beginning.

— Winston Churchill

Enterprise Java is, as technologies go, not a highly opinionated landscape; it does not
prescribe only one way of accomplishing a task. Although Java EE provides a suite of
APIs, we’ve seen in our GeekSeek example that it may be appropriate to look outside
the platform and integrate with external frameworks. This freedom carries with it a
burden of choice: developers new and seasoned alike may find that bringing together a
working application at all layers may carry complexity.

We’ve set out to show one cohesive application, but this is not a book of best practices.
We’ve taken one approach of many, and it fit our requirements.

What we do intend to underscore is the importance the role of testing takes in respon‐
sible development. The applications we deploy into production are composed of much
more than what we write on our own; we need to be sure that all components are working
in concert. Additionally, it’s helpful to isolate business logic where we can, and further
ensure that everything is connected properly when integrated. The Arquillian project
in particular has been a wonderful means for us to explore the bounds of how simple
we can make testing of even the most complex use cases, and its community has been
instrumental in pushing the limits of testability in a landscape that has historically been
cumbersome to manipulate.

We hope that the techniques outlined here, on the companion source repository, and
running proof in production on http://geekseek.continuousdev.org are beneficial to your
own path in building reliable applications in Enterprise Java.

231

http://geekseek.continuousdev.org

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

A
Acceptance testing, 5
account-centric actions, 64
ACID properties, 85
addressable services, 149–152
Agile Software Development, 4, 13
Agorava, 182–186
Amazon, 101
AngularJS, 198
Apache Cassandra, 79
Apache HBase, 79
Apache Maven, 16

actions, 16
experimental ShrinkWrap Resolver inter‐

faces for, 36
resolving coordinates with ShrinkWrap, 30–

34
ShrinkWrap Resolvers plug-in, 36

application assembly, 211–224
authoritative build servers, 218–224
JBoss EAP, 211–218

application deployment, 224–230
logging for, 122
pushing build jobs, 227–230
set up in OpenShift, 224–226
to OpenShift, 224–230

application level security, 178–182
application nouns, 65

application requirements, 63–73
conceptual data models, 65
featureset, defining, 64
logical data models, 66–68
testing, 93–99

application services
JBoss EAP, 211–218
OpenShift, 38
WildFly, 37

application states, 77
Architectural Styles and the Design of Network-

based Software Architectures (Fielding), 150
Arquillian, 20

core principles, 21
Drone, 203–209
Graphene, 203–209
Persistence Extension, 73
QUnit interface, 201
running integration tests, 53
Warp, 171–175
writing integration tests, 48–51

assembly (of applications), 211–224
authoritative build servers, 218–224
JBoss EAP, 211–218

authentication, 178
Agorava, 182–186
OAuth, 184, 192–195
process, 182
social, 178–182

233

authoritative build servers, 218–224
CloudBees, 218–220
configuring, 218–222
Jenkins CI Server, 218

authoritative repositories, 68
authorization, 177

(see also OAuth, authentication)

B
Basically Available, Soft state, Eventual consis‐

tency (BASE), 101
Bean Validation Specification, 44
Beck, Kent, 4
Berners-Lee, Tim, 149
big data, 103
Big Design Up Front development model, 3
binary data and RDBMS, 102
black-box testing, 5

for JAX-RS, 169–171
blocking, 102
Burke, Bill, 82, 153
business logic, 131–148

implementing, 134–139
testing, 142–148

C
cardinality of relationships, 66
cloning repositories, 69
CloudBees, 218–220

configuring, 218–222
documentation, 220
Git push events and, 223
populating with EAP repository, 220–222

clustering, 103
coding, defensive, 2
column-oriented DBMS, 79
committing repositories, 69
compatibility testing, 5
conceptual data models, 65
conceptual weight, 85
concurrent access, 84
concurrent versions systems (CVS), 19
container independence, 152
container services, 8
containers, 8
containment, 2
Context and Dependency Injection (CDI), 7, 20,

73

continuous development, 13–14
continuous integration, 13–14, 211

authoritative build servers and, 218–224
continuous integration server, 11

(see also authoritative build servers)
conversational scope, 132
copying repositories, 68
cross-cutting, 131
CRUD

interface, 47
operations, 84
testing, 95–99

D
data, 77–79

Java Persistence API, 81
requirement test scenarios, 93–99
technical concerns with, 84
user perspective on, 84

data grids, 103
binary data and, 103
Infinispan, 103
RDBMS vs., 103

data models
conceptual, 65
logical, 66–68

data storage, 101–129
data grids, 103
in GeekSeek, 107
graph databases, 105
implementing, 107–129
relational databases and, 102

database management systems (DBMS), 78
role of, 79

davfs2 project, 220
declarative build tool, 16
declarative security, 8
defensive coding, 2
denormalized view, 104
dependency injection, 7
dependency management solutions, 16
dependent services, 131
deploying applications, 224–230

pushing build jobs, 227–230
set up in OpenShift, 224–226
to OpenShift, 224–230

deployments, 229
development, 8

234 | Index

development process, 39–62
deployment, 55–62, 224–230
designing data storage, 101–129
encoding business logic, 131–148
environment for, 39
integration tests, 48–51
projects, creating, 40–48
running applications locally, 51–53
running integration tests, 53
security, 177–195

directory views, 64
distributed version control systems (DVCSs), 19
document store, 73
Domain Application Protocol (DAP), 155
Drone, 75, 203–209

E
Eclipse IDE, 40
EclipseLink, 82
elasticity of data grids, 103
Enterprise Application Archives (EARs), 28, 51
Enterprise Java Beans 3.1, 6E (Rubinger and

Burke), 82
Enterprise JavaBeans (EJB), 28, 73, 85

repository, 90–93
entities

managed, 82
objects, 86–90

error handling, 1
proactive, 2
reactive, 1

Euler, Leonhard, 106
European Organization for Nuclear Research

(CERN), 149
eventual consistency, 101
Eventually Consistent (Vogels), 101
extension repo, 215
Extreme Programming (XP), 4, 13
Extreme Programming Explained: Embrace

Change, 2E (Beck), 4

F
Facebook, 67, 102, 182

(see also authentication, authorization)
Facelet templates, 197
fail-fast policies, 2
fault-tolerance, 84
featuresets, defining, 64

Federation, 179
Fielding, Roy, 150
fire and forget, 136
firefighting, 1
foreign keys, 81
Forge Console view, 41
forking repositories, 68
format independence, 152
Fowler, Martin, 151
functional testing, 6

G
GeekSeek

Attachment, modeling, 107–111
building, 71
business logic, encoding, 133
data use cases/requirements, 107
entity objects in, 86–90
features, 64
issues to consider, 133
LinkableRepresentation, 164–167
obtaining, 68–71
Relation, implementing, 111–119
repository EJBs, 90–93
requirements for, defining, 63–73
ResourceLink, 167
REST implementation in, 164–167
running, 72
security in, 178
services layer in, 133
SMTP server, testing, 140–142
technical concerns, 84
testing, 71
user interface for, 197
user perspective, 84

geometric complexity, 105
Git, 19

push events and CloudBees, 223
GlassFish Application Server, 154
goals, 16
graph databases, 73

Neo4j, 106
RDBMS vs., 105

Graph Databases (Robinson, Webber, and Ei‐
frem), 106

graph DBMS, 79
graph theory, 105
Graphene, 203–209
gray-box testing (Warp), 172

Index | 235

H
HATEOAS, handling with AngularJS, 198
Hibernate, 82
HTTP contracts

testing, 174
validating, 171–175

HyperText Markup Language (HTML), 150
HyperText Transfer Protocol (HTTP), 151

I
identity managers, 179
IDM, 179
Infinispan, 73, 79, 103
Infinispan Data Grid Platform (Marchioni and

Surtani, 104
integration testing, 7, 48–51
invariants, 6
iterative model of software development, 3

J
Java API for RESTful Web Services (JAX-RS),

152–157
Java Archives (JARs), 51
Java Connector Architecture (JCA), 138
Java Persistence API, 43, 73, 81

entity objects in, 86–90
implementing, 85–93
POJO entities, 82
repository EJBs, 90–93
testing, 123–127

Java Persistence Query Language (JPQL), 81
Java Transaction API, 85
JavaMail API, 133
JavaScript, testing, 201
JavaServer Faces (JSF), 197
JAX-RS specification, 152–157

black-box testing for, 169–171
HTTP contracts, validating, 171–175
implementing, 157
repository resources, 157–175
representation converter for, 161–163
@Resource model for, 163

JAX-RS Specification API, 153
JBoss Developer Studio (JBDS), 40

deployment, 55–62
OpenShift and, 55–62

JBoss Enterprise Application Platform (JBoss
EAP), 211–218
managed container, 215–218
obtaining, 211–213
populating CloudBees with, 220–222
remote container, 213–215

JBoss Forge, 17
projects, creating, 40–48
running applications locally, 51–53

JBossForge, 41
Jenkins CI Server, 218
Jersey reference implementation, 154
JMS Queue, 136
JPA (see Java Persistence API)
JTA (see Java Transaction API)
JUnit test framework, 10–12

K
key DBMS, 79
key/value store, 73

L
Lanyrd service, 64
LinkableRepresentation (GeekSeek), 164–167
LinkedIn, 182

(see also authentication, authorization)
load testing, 6
locking, 102
logical data models, 66–68

intended use, 67
relationships, 66

loose coupling, 7

M
managed

container configuration, 214
entities, 82
objects, 83

managed mode, 215
Manifesto for Agile Software Development, 4
many-to-many relationships, 66
Marchioni, Francesco, 104
MariaDB, 101
master instances, 103
Maven (see Apache Maven)
MavenImporter, 36
Message-Driven Bean (MDB), 138

236 | Index

mock objects, 7, 20
Model, View, Controller (MVC) pattern, 198
modulars, 18
MongoDB, 73, 79
multiuser access, 84
MySQL, 79, 101

N
Neo4j, 73, 79, 106
nodes, 106
normalized forms, 67
NoSQL systems, 102

O
OAuth, 192–195

Agorva and, 182
sessions, 184

object relational mapping, 82
objects, managed, 83
one-to-many relationships, 66
one-to-one relationships, 66
OpenJPA, 82
OpenShift application service, 38

default application, removing, 227
deploying applications to, 224–230
deploying to, via JBDS, 55–62
pushing build jobs to, 227–230
set up, 224–226

optional dependencies, 32
Oracle, 101

P
PageFragments, 203
PageObjects, 203
performance testing, 6
persistence, 78

unit, 83
PhantomJS browser, 202
PicketLink, 178–182

project source, 74
Platform as a Service (PaaS), 38
POJO (Plain Old Java Object), 7

entities, 82
programming model, 20

POM
files, resolving artifacts with ShrinkWrap, 34
models, 34

post-conditions, 8
PostgreSQL, 79, 101
precondition checks, 2
primary key, 81
proactive quality policies, 2
projects, creating, 40–48
provided scopes, 32
pull models, 19
push models, 19
pushing repositories, 69

Q
query caches, 102
query results, joining, 105
QUnit, 201

execution, 201

R
reactive error handling, 1
Red Hat, 211
regression testing, 6
relational database management systems

(RDBMS), 79, 101, 104
binary data and, 102
data grids vs., 103
graph theory vs., 105
relationships and, 104
relationships, handling in separate layer,

111–119
testing, 127–129

relational databases, 79
binary data and, 102
relationships, handling in separate layer,

111–119
relational mapping, 82
relational models, 73
relationships

between entities, 66
cardinality of, 66

Remote Procedure Call (RPC), 74, 151
replication, 103
repository EJBs, 90–93
repostitory resources, 157–168
representation converters, 161–163
Representational State Transfer (see REST)
requirement test scenarios, 93–99

of business logic, 140–148
CRUD functions, 95–99

Index | 237

for data storage, 119–129
for JavaScript, 201
for JAX-RS, 168–175
for REST, 168–175
for security, 186–195
of services layer, 140–148
setting up, 93
for user interface, 201–209

@Resource model, 163
ResourceLink (GeekSeek), 167
REST, 149

as addressable service, 149–152
black-box testing for, 169–171
HTTP contracts, validating, 171–175
implementing, 157
in Enterprise Java, 152–157
JAX-RS specification, 152–157
repostitory resources, 157–168
representation converter for, 161–163
testing HTTP contracts, 174
validating services, 170

RESTEasy reference implementation, 154
RESTful Java with JAX-RS (Burke), 153
Richardson, Leonard, 151
role-based security, 177
Rubinger, Andrew Lee, 82
runtime services, 37

S
scaling, 103
scopes, 77
security, 177–195

(see also authentication, authorization)
Agorava, 182–186
application level, 178–182
implementing, 178–186
in GeekSeek, 178
models, 177
OAuth, testing, 192–195
PicketLink, 178–182
requirement test scenarios for, 186–195
secured options, 188–191
social authentication, 182–186
testing current user, 191

Selenium, 203
sequential model of software development, 3
serial model of software development, 3
server-side rendering, 197
Service Locater Pattern, 132

services layer, 131–148
implementing, 134–139
testing, 142–148

services, application
OpenShift, 38
WildFly, 37

Seven Bridges of Königsberg problem, 106
shared state in multiuser environments, 132
ShrinkWrap, 22–27

archive types, 24
asset types, 25

ShrinkWrap Resolvers, 27–37
adding to project, 28
experimental Maven interfaces, 36
Maven coordinates, resolving with, 30–34
Maven plug-in, 36
MavenImporter, 36
POM files, resolving artifacts with, 34
system properties, overriding with, 35

slave instances, 103
smoke testing, 6
SMTP server, testing, 140–142
SMTPMailService, implementing, 134–139
social authentication, 182–186

(see also authentication, authorization)
software development process, 2–4

Agile, 4, 13
Extreme Programming (XP), 4, 13
iterative model of, 3
sequential model of, 3
serial model of, 3

software repositories, 28
storing data, 101–129

data grids, 103
graph databases, 105
implementing, 107–129
in GeekSeek, 107
relational databases and, 102

stress testing, 6
Structured Query Language (SQL), 79
SubEtha project, 140
Subversion (SVN), 19
Surtani, Marik, 104
system properties, overriding, 35

T
tasks, 177
technical concerns, 84

238 | Index

test frameworks, 8–13
JUnit, 10–12
TestNG, 12

test harness setup in Warp, 173
test platforms, 20–37

Arquillian, 20
ShrinkWrap, 22–27

test scopes, 32
testable development, 48, 93
testing, 5–8

CRUD functions, 95–99
frameworks for, 8–13
functional behavior of UI, 203–209
HTTP contracts, 174
integration, 7
levels of, 5
relationships, 127–129
requirements, 93–99
security, 186–195
transactional integrity, 123–127
unit, 6

TestNG test framework, 12
tools, 15–38, 20

(see also Arquillian)
Apache Maven, 16
bootstrapping, 15–18
for building file systems, 15–18
JBoss Forge, 17
version control, 18

transactions
database, 85
integrity testing, 123–127
invoking, 131
managing, 8

transitive relationships, 105
Twitter, 64, 102, 182

(see also authentication, authorization)
typesafe injection, 20

U
unit testing, 6
University of California at Irvine, 150

unreserved checkouts, 19
upstream repositories, 68
use cases, in Warp, 172
user interface, 197–209

Drone, testing with, 203–209
functional behavior of, 203–209
Graphene, testing with, 203–209
implementing, 198–200
JavaScript and, 201
QUnit, testing with, 201
requirement test scenarios for, 201–209

users
perspective of, 84
requirements of, 83
security and, 177

V
value DBMS, 79
value equality, 113
version control systems (VCS), 18

Git, 19
Subversion, 19

vertices, 106
Vogels, Werner, 101

W
Warp (Arquillian), 74, 171–175

deploying, 172
frameworks, 173
test harness setup, 173

Waterfall development model, 3
Web Archives (WARs), 51
white-box testing, 6
WildFly application service, 37, 154, 211
world wide web, origins of, 149

X
XACML, 179
XP (see Extreme Programming)

Index | 239

About the Authors
As senior software engineer at JBoss, a division of Red Hat, Andrew Lee Rubinger is
primarily responsible for development of the company’s EJB 3.x implementation. He
was an early adopter of Java EE technologies and is an active contributor in the tech
community.

Aslak Knutsen, the project lead of Arquillian, is a senior software engineer at JBoss, by
Red Hat. He’s involved in projects such as Arquillian, ShrinkWrap, Weld, and Seam 3
and is one of the founders of the JBoss Testing initiative, as well as a speaker at major
industry conferences including Devoxx, JavaOne, Jazoon, JFokus, and Geecon.

Colophon
The animal on the cover of Continuous Enterprise Development in Java is a Violet Turaco
(Musophaga violacea), also known as a Plantain Eater, a large bird inhabiting West Africa
in tropical savannas, wetlands, woodlands, and forests. Its plumage is a glossy violet
color except for its thick orange bill, yellow forehead, and crimson crown. The main
flight feathers on the wings are also crimson in color. However, despite these bright
colors, the birds are often quite indistinguishable in the dense canopy of their forest
home.

Like all turacos, the Violet Turaco is an important disperser of seeds. When flying in
search of fruit, rounded wings and a long, widespread tail give the turaco great agility
when maneuvering through the dense treetops. Its flight is characterized by irregular,
flapping wing beats interspersed with gliding. To cross an open space, they fly single
file.

Their diet consists of fruit, and they are quite partial to figs, but they will also eat leaves,
buds, flowers, insects, snails, and slugs.

For savanna species, the widespread destruction of gallery forest and riverine woodlands
is a big threat. However, because of its wide distribution and great numbers, the Violet
Turaco is not in imminent peril. For the same reason, it’s not in danger from trapping
for the pet trade, though local people hunt them for their ostentatious red feathers.

The cover image is from Wood’s Animate Creation. The cover fonts are URW Typewriter
and Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe
Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

	Copyright
	Table of Contents
	Foreword
	Preface
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Continuity
	The Zen of Prevention
	Reactive Error Handling
	Proactive Quality Policies

	Software Development Processes
	Serial Models
	Iterative Models

	Testing Is Development
	Levels of Testing
	Unit
	Integration

	Foundation Test Frameworks
	JUnit
	TestNG

	Continuous Development

	Chapter 2. Enabling Technologies
	Bootstrapping
	Apache Maven
	JBoss Forge

	Version Control
	Git

	A Test Platform for Java EE
	Arquillian
	ShrinkWrap
	ShrinkWrap Resolvers
	Experimental Features

	Runtime
	WildFly
	OpenShift

	On to the Code

	Chapter 3. Scratch to Production
	The Development Environment
	A New Project
	Writing Our First Integration Test with Arquillian
	Running the Application Locally
	Running the Arquillian Integration Test
	Deploying to OpenShift via JBoss Developer Studio

	Chapter 4. Requirements and the Example Application
	Introducing GeekSeek
	Featureset
	Conceptual Data Model
	Logical Data Model
	Obtaining, Building, Testing, and Running GeekSeek

	Use Cases and Chapter Guide
	Chapter 5: Java Persistence and Relational Data
	Chapter 6: NoSQL: Data Grids and Graph Databases
	Chapter 7: Business Logic and the Services Layer
	Chapter 8: REST and Addressable Services
	Chapter 9: Security
	Chapter 10: UI
	Chapter 11: Assembly and Deployment

	Chapter 5. Java Persistence and Relational Data
	The Relational Database Model
	The Java Persistence API
	POJO Entities

	Use Cases and Requirements
	User Perspective
	Technical Concerns

	Implementation
	Entity Objects
	Repository EJBs

	Requirement Test Scenarios
	Test Setup
	CRUD Tests

	Chapter 6. NoSQL: Data Grids and Graph Databases
	RDBMS: Bad at Binary Data
	Data Grids

	RDBMS: Bad at Relationships
	Graph Theory

	Use Cases and Requirements
	Implementation
	Attachment
	Relation

	Requirement Test Scenarios
	Attachment CRUD Tests
	Transactional Integrity of Attachment Persistence
	Validating Relationships

	Chapter 7. Business Logic and the Services Layer
	Use Cases and Requirements
	Send Email on New User Signup

	Implementation
	Requirement Test Scenarios
	A Test-Only SMTP Server
	The Test

	Chapter 8. REST and Addressable Services
	REST in Enterprise Java: The JAX-RS Specification
	Use Cases and Requirements
	Implementation
	Repository Resources
	The Representation Converter
	The @ResourceModel
	LinkableRepresentation
	ResourceLink

	Requirement Test Scenarios
	A Black-Box Test
	Validating the HTTP Contracts with Warp
	Arquillian Warp
	Test Harness Setup
	The HTTP Contracts Test

	Chapter 9. Security
	Use Cases and Requirements
	Implementation
	Supporting Software

	Requirement Test Scenarios
	Overview
	Setup
	Security Tests

	Chapter 10. The User Interface
	Use Cases and Requirements
	Implementation
	Requirement Test Scenarios
	Pure JavaScript
	Functional Behavior

	Chapter 11. Assembly and Deployment
	Obtaining JBoss EAP
	Running Against JBoss EAP
	Using the EAP Remote Container
	Using the EAP Managed Container

	Continuous Integration and the Authoritative Build Server
	Configuring the GeekSeek Build on CloudBees
	Populating CloudBees Jenkins with the EAP Repository
	Automatic Building on Git Push Events

	Pushing to Staging and Production
	Setting Up the OpenShift Application
	Removing the Default OpenShift Application
	Pushing from the CI Build Job to OpenShift

	Chapter 12. Epilogue
	Index
	About the Authors

