Developing Networked Applications

Java Networ
Programming

O’REILLY" Elliotte Rusty Harold

Java

Java Network Programming

This practical guide provides a complete introduction to
developing network programs with Java. You'll learn how to use
Java’s network class library to quickly and easily accomplish
common networking tasks such as writing multithreaded servers,
encrypting communications, broadcasting to the local network,
and posting data to server-side programs.

Author Elliotte Rusty Harold provides complete working programs
to illustrate the methods and classes he describes. This thoroughly
revised fourth edition covers REST, SPDY, asynchronous /O, and
many other recent technologies.

B Explore protocols that underlie the Internet, such as TCP/IP
and UDP/IP

B Learn how Java’s core I/O APl handles network input and
output

m Discover how the InetAddress class helps Java programs
interact with DNS

B Locate, identify, and download network resources with
Java’s URI and URL classes

m Dive deep into the HTTP protocol, including REST, HTTP
headers, and cookies

m Write servers and network clients, using Java’s low-level
socket classes

B Manage many connections at the same time with the
nonblocking I/0

Elliotte Rusty Harold has been writing network programs in Java
for almost two decades. He is the author of more than a dozen
books on Java, XML, and HTML, and a frequent speaker at
industry conferences. He’s a contributor to open source projects,
including the Jaxen XPath library and XOM.

Twitter: @oreillymedia
facebook.com/oreilly

O’REILLY"

oreilly.com

US $39.99 CAN $41.99
ISBN: 978-1-449-35767-2

7814491357672

539909
M [=

FOURTH EDITION

Java Network Programming

Elliotte Rusty Harold

O’REILLY"

Beijing - Cambridge - Farnham - Kéln - Sebastopol - Tokyo

Java Network Programming, Fourth Edition
by Elliotte Rusty Harold

Copyright © 2014 Elliotte Rusty Harold. All rights reserved.
Printed in the United States of America.
Published by O’'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Meghan Blanchette Indexer: Judy McConville
Production Editor: Nicole Shelby Cover Designer: Randy Comer
Copyeditor: Kim Cofer Interior Designer: David Futato
Proofreader: Jasmine Kwityn lllustrator: Rebecca Demarest
October 2013: Fourth Edition

Revision History for the Fourth Edition:
2013-09-23: First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449357672 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O'Reilly
Media, Inc. Java Network Programming, the image of a North American river otter, and related trade dress
are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trade-
mark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained
herein.

ISBN: 978-1-449-35767-2
[LSI]

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449357672

This book is dedicated to my dog, Thor.

Table of Contents

17T Xiii
1. BasicNetwork Concepts.covvvriiiiiiiiiii it iiiiiieeieeeenennanns 1
Networks 2
The Layers of a Network 4
The Host-to-Network Layer 7

The Internet Layer 8

The Transport Layer 9

The Application Layer 10

IP, TCP, and UDP 10

IP Addresses and Domain Names 11
Ports 13

The Internet 14
Internet Address Blocks 15
Network Address Translation 15
Firewalls 15
Proxy Servers 16

The Client/Server Model 18
Internet Standards 19
IETF RFCs 20
W3C Recommendations 22

] (T T 1T 25
Output Streams 26
Input Streams 31
Marking and Resetting 34
Filter Streams 35
Chaining Filters Together 37
Buffered Streams 38

PrintStream 39

Data Streams 41
Readers and Writers 44
Writers 45
OutputStreamWriter 47
Readers 47
Filter Readers and Writers 49
PrintWriter 51

3. Threads. ... 53
Running Threads 55
Subclassing Thread 56
Implementing the Runnable Interface 58
Returning Information from a Thread 60
Race Conditions 61
Polling 63
Callbacks 63
Futures, Callables, and Executors 68
Synchronization 70
Synchronized Blocks 72
Synchronized Methods 74
Alternatives to Synchronization 75
Deadlock 77
Thread Scheduling 78
Priorities 78
Preemption 79
Thread Pools and Executors 89
4. Internet Addresses.........oovviiiiiiiiiiiiiiiiiiiiiii 93
The InetAddress Class 95
Creating New InetAddress Objects 95
Getter Methods 100
Address Types 102
Testing Reachability 106
Object Methods 106
Inet4Address and Inet6Address 107
The NetworkInterface Class 108
Factory Methods 108
Getter Methods 110
Some Useful Programs 111
SpamCheck 111

vi | Tableof Contents

Processing Web Server Logfiles 112

5. URLSand URIS.......ooinniiiiiit i e 117
URIs 117
URLs 120
Relative URLs 122
The URL Class 123
Creating New URLs 123
Retrieving Data from a URL 128
Splitting a URL into Pieces 135
Equality and Comparison 139
Conversion 141
The URI Class 141
Constructing a URI 142
The Parts of the URI 144
Resolving Relative URIs 147
Equality and Comparison 148
String Representations 149
x-www-form-urlencoded 149
URLEncoder 150
URLDecoder 154
Proxies 154
System Properties 155
The Proxy Class 155
The ProxySelector Class 156
Communicating with Server-Side Programs Through GET 157
Accessing Password-Protected Sites 161
The Authenticator Class 162
The Password Authentication Class 164
The JPasswordField Class 164
T I 169
The Protocol 169
Keep-Alive 175
HTTP Methods 177
The Request Body 179
Cookies 181
CookieManager 184
CookieStore 185
7. URLCONNECHIONS. ... evveeeeettitiiiitiiaaaaas 187
Opening URLConnections 188

Table of Contents | vii

Reading Data from a Server

Reading the Header
Retrieving Specific Header Fields
Retrieving Arbitrary Header Fields

Caches
Web Cache for Java

Configuring the Connection
protected URL url
protected boolean connected
protected boolean allowUserInteraction
protected boolean doInput
protected boolean doOutput
protected boolean ifModifiedSince
protected boolean useCaches
Timeouts

Configuring the Client Request HTTP Header

Writing Data to a Server
Security Considerations for URLConnections
Guessing MIME Media Types
HttpURLConnection

The Request Method

Disconnecting from the Server

Handling Server Responses

Proxies

Streaming Mode

. Sockets for Clients. ...ovvvvnenriir it i i,

Using Sockets
Investigating Protocols with Telnet
Reading from Servers with Sockets
Writing to Servers with Sockets

Constructing and Connecting Sockets
Basic Constructors
Picking a Local Interface to Connect From
Constructing Without Connecting
Socket Addresses
Proxy Servers

Getting Information About a Socket
Closed or Connected?
toString()

Setting Socket Options
TCP_NODELAY

189
190
191
197
199
203
208
209
209
210
211
212
212
214
215
215
218
223
224
224
225
229
230
235
235

237
237
238
240
246
251
251
253
254
255
256
257
258
259
259
260

viii

| Table of Contents

10.

SO_LINGER
SO_TIMEOUT
SO_RCVBUF and SO_SNDBUF
SO_KEEPALIVE
OOBINLINE
SO_REUSEADDR
IP_TOS Class of Service
Socket Exceptions
Sockets in GUI Applications
Whois
A Network Client Library

Using ServerSockets
Serving Binary Data
Multithreaded Servers
Writing to Servers with Sockets
Closing Server Sockets
Logging
What to Log
How to Log
Constructing Server Sockets
Constructing Without Binding
Getting Information About a Server Socket
Socket Options
SO_TIMEOUT
SO_REUSEADDR
SO_RCVBUF
Class of Service
HTTP Servers
A Single-File Server
A Redirector
A Full-Fledged HTTP Server

GOCUIE SOCKOTS. . v v vt ettt ettt ettt et ettt eneereneneenensenenensenenens

Secure Communications
Creating Secure Client Sockets
Choosing the Cipher Suites
Event Handlers

Session Management

Client Mode

Creating Secure Server Sockets

Y T2 K3 0] Y= 1 S

261
261
262
263
264
265
265
267
268
269
272

283
283
288
289
293
295
297
297
298
302
304
305
306
307
308
308
309
309
310
314
319

325
326
328
332
336
336
338
339

Table of Contents

| ix

1.

12.

Configuring SSLServerSockets
Choosing the Cipher Suites
Session Management
Client Mode

Nonblocking 1/0.covviiiiiiiiiiiiii i

An Example Client
An Example Server
Buffers
Creating Buffers
Filling and Draining
Bulk Methods
Data Conversion
View Buffers
Compacting Buffers
Duplicating Buffers
Slicing Buffers
Marking and Resetting
Object Methods
Channels
SocketChannel
ServerSocketChannel
The Channels Class
Asynchronous Channels (Java 7)
Socket Options (Java 7)
Readiness Selection
The Selector Class
The SelectionKey Class

The UDP Protocol

UDP Clients

UDP Servers

The DatagramPacket Class
The Constructors
The get Methods
The setter Methods

The DatagramSocket Class
The Constructors
Sending and Receiving Datagrams
Managing Connections

Socket Options

343
343
344
344

347
349
353
359
361
363
364
365
368
370
372
376
377
377
378
378
381
383
384
386
388
388
390

393
393
395
397
399
401
403
406
408
409
411
416
417

X

Table of Contents

13.

SO_TIMEOUT
SO_RCVBUF
SO_SNDBUF
SO_REUSEADDR
SO_BROADCAST
IP_TOS
Some Useful Applications
Simple UDP Clients
UDPServer
A UDP Echo Client
DatagramChannel
Using DatagramChannel

| 1T £ T

Multicasting

Multicast Addresses and Groups

Clients and Servers

Routers and Routing
Working with Multicast Sockets

The Constructors

Communicating with a Multicast Group
Two Simple Examples

417
418
419
419
419
420
421
421
425
428
431
431

443
444
447
450
452
453
454
455
460

Table of Contents

| xi

Preface

Java’s growth over the past 20 years has been nothing short of phenomenal. Given Java’s
rapid rise to prominence and the even more spectacular growth of the Internet, it’s a
little surprising that network programming in Java remains so mysterious to so many.
It doesn’t have to be. In fact, writing network programs in Java is quite simple, as this
book will show. Readers with previous experience in network programming in a Unix,
Windows, or Macintosh environment will be pleasantly surprised at how much easier
it is to write equivalent programs in Java. The Java core API includes well-designed
interfaces to most network features. Indeed, there is very little application layer network
software you can write in C or C++ that you can’t write more easily in Java. Java Network
Programming, Fourth Edition, endeavors to show you how to take advantage of Java's
network class library to quickly and easily write programs that accomplish many com-
mon networking tasks. Some of these include:

o Browsing the Web with HT TP
o Writing multithreaded servers

o Encrypting communications for confidentiality, authentication, and guaranteed
message integrity

o Designing GUI clients for network services
o Posting data to server-side programs
« Looking up hosts using DNS
» Downloading files with anonymous FTP
 Connecting sockets for low-level network communication
« Multicasting to all hosts on the network
Java is the first (though no longer the only) language to provide such a powerful cross-

platform network library for handling all these diverse tasks. Java Network Program-
ming exposes the power and sophistication of this library. This booKk’s goal is to enable

Xiii

you to start using Java as a platform for serious network programming. To do so, this
book provides a general background in network fundamentals, as well as detailed dis-
cussions of Java’s facilities for writing network programs. You’'ll learn how to write Java
programs that share data across the Internet for games, collaboration, software updates,
file transfer, and more. You'll also get a behind-the-scenes look at HTTP, SMTP,
TCP/IP, and the other protocols that support the Internet and the Web. When you finish
this book, you’ll have the knowledge and the tools to create the next generation of
software that takes full advantage of the Internet.

About the Fourth Edition

In 1996, in the first edition of this book’s opening chapter, I wrote extensively about the
sort of dynamic, distributed network applications I thought Java would make possible.
One of the most exciting parts of writing subsequent editions has been seeing virtually
all of the applications I foretold come to pass. Programmers are using Java to query
database servers, monitor web pages, control telescopes, manage multiplayer games,
and more, all by using Java’s native ability to access the Internet. Java in general and
network programming in Java in particular has moved well beyond the hype stage and
into the realm of real, working applications.

This book has come a long way, too. The fourth edition focuses even more heavily on
HTTP and REST. HT TP has gone from being one of many network protocols to almost
the network protocol. As you’ll see, it is often the protocol on which other protocols are
built, forming its own layer in the network stack.

There have been lots of other small changes and updates throughout the java.net and
supporting packages in Java 6, 7, and 8, and these are covered here as well. New classes
addressed in this edition include CookieManager, CookiePolicy, CookieStore,
HttpCookie, SwingWorker, Executor, ExecutorService, AsynchronousSocketChan
nel, AsynchronousServerSocketChannel, and more. Many other methods have been
added to existing classes in the last three releases of Java, and these are discussed in the
relevant chapters. I've also rewritten large parts of the book to reflect the ever-changing
fashions in Java programming in general and network programming in particular. I
hope you'll find this fourth edition an even stronger, longer-lived, more accurate, and
more enjoyable tutorial and reference to network programming in Java than the pre-
vious one.

Organization of the Book

Chapter 1, Basic Network Concepts, explains in detail what a programmer needs to know
about how the networks and the Internet work. It covers the protocols that underlie the
Internet, such as TCP/IP and UDP/IP.

xiv | Preface

The next two chapters throw some light on two parts of Java programming that are
critical to almost all network programs but are often misunderstood and misused: I/O
and threading. Chapter 2, Streams, explores Java’s classic I/O which—despite the new
I/O APIs—isn’t going away any time soon and is still the preferred means of handling
input and output in most client applications. Understanding how Java handles I/O in
the general case is a prerequisite for understanding the special case of how Java handles
network I/O. Chapter 3, Threads, explores multithreading and synchronization, with a
special emphasis on how they can be used for asynchronous I/O and network servers.

Experienced Java programmers may be able to skim or skip these two chapters. However,
Chapter 4, Internet Addresses, is essential reading for everyone. It shows how Java pro-
grams interact with the Domain Name System through the InetAddress class, the one
class that’s needed by essentially all network programs. Once you’ve finished this chap-
ter, it’s possible to jump around in the book as your interests and needs dictate.

Chapter 5, URLs and URIs, explores Javas URL class, a powerful abstraction for down-
loading information and files from network servers of many kinds. The URL class enables
you to connect to and download files and documents from a network server without
concerning yourself with the details of the protocol the server speaks. It lets you connect
to an FTP server using the same code you use to talk to an HT'TP server or to read a file
on the local hard disk. You’ll also learn about the newer URI class, a more standards-
conformant alternative for identifying but not retrieving resources.

Chapter 6, HTTP, delves deeper into the HTTP protocol specifically. Topics covered
include REST, HTTP headers, and cookies. Chapter 7, URLConnections, shows you how
to use the URLConnection and HttpURLConnection classes not just to download data
from web servers, but to upload documents and configure connections.

Chapter 8 through Chapter 10 discuss Java’s low-level socket classes for network access.
Chapter 8, Sockets for Clients, introduces the Java sockets API and the Socket class in
particular. It shows you how to write network clients that interact with TCP servers of
all kinds including whois, dict, and HTTP. Chapter 9, Sockets for Servers, shows you
how to use the ServerSocket class to write servers for these and other protocols. Finally,
Chapter 10, Secure Sockets, shows you how to protect your client-server communica-
tions using the Secure Sockets Layer (SSL) and the Java Secure Sockets Extension (JSSE).

Chapter 11, Nonblocking I/O, introduces the new I/O APIs specifically designed for
network servers. These APIs enable a program to figure out whether a connection is
ready before it tries to read from or write to the socket. This allows a single thread to
manage many different connections simultaneously, thereby placing much less load on
the virtual machine. The new I/O APIs don’t help much for small servers or clients that
don’t open many simultaneous connections, but they may provide performance boosts
for high-volume servers that want to transmit as much data as the network can handle
as fast as the network can deliver it.

Preface | xv

Chapter 12, UDP, introduces the User Datagram Protocol (UDP) and the associated
DatagramPacket and DatagramSocket classes that provide fast, unreliable communi-
cation. Finally, Chapter 13, IP Multicast, shows you how to use UDP to communicate
with multiple hosts at the same time.

Who You Are

This book assumes you are comfortable with the Java language and programming en-
vironment, in addition to object-oriented programming in general. This book does not
attempt to be a basic language tutorial. You should be thoroughly familiar with the
syntax of Java. You should have written simple applications. It also wouldn’t hurt if you're
familiar with basic Swing programming, though that’s not required aside from a few
examples. When you encounter a topic that requires a deeper understanding for net-
work programming than is customary—for instance, threads and streams—TI’ll cover
that topic as well, at least briefly.

However, this book doesn’t assume that you have prior experience with network pro-
gramming. You should find it a complete introduction to networking concepts and
network application development. I don’t assume that you have a few thousand net-
working acronyms (TCP, UDP, SMTP, etc.) at the tip of your tongue. You'll learn what
you need to know about these here.

Java Versions

Java’s network classes have changed a lot more slowly since Java 1.0 than other parts of
the core API. In comparison to the AWT or I/O, there have been almost no changes and
only a few additions. Of course, all network programs make extensive use of the I/O
classes and some make heavy use of GUIs. This book is written with the assumption
that you are coding with at least Java 5.0. In general, I use Java 5 features like generics
and the enhanced for loop freely without further explanation.

For network programming purposes, the distinction between Java 5 and Java 6 is not
large. Most examples look identical in the two versions. When a particular method or
class is new in Java 6, 7, or 8, it is noted by a comment following its declaration like this:

public void setFixedLengthStreamingMode(long contentLength) // Java 7

Java 7 is a bit more of a stretch. I have not shied away from using features introduced
in Java 7 where they seemed especially useful or convenient—for instance, try-with-
resources and multicatch are both very helpful when trying to fit examples into the
limited space available in a printed book—but I have been careful to point out my use
of such features.

Overall, though, Javas networking API has been relatively stable since Java 1.0. Very
little of the post-1.0 networking API has ever been deprecated, and additions have been

xvi | Preface

relatively minor. You shouldn’t have any trouble using this book after Java 8 is released.
New APIs, however, have been somewhat more frequent in the supporting classes, par-
ticularly I/O, which has undergone three major revisions since Java 1.0.

About the Examples

Most methods and classes described in this book are illustrated with at least one com-
plete working program, simple though it may be. In my experience, a complete working
program is essential to showing the proper use of a method. Without a program, it is
too easy to drop into jargon or to gloss over points about which the author may be
unclear in his own mind. The Java API documentation itself often suffers from exces-
sively terse descriptions of the method calls. In this book, I have tried to err on the side
of providing too much explication rather than too little. If a point is obvious to you, feel
free to skip over it. You do not need to type in and run every example in this book; but
if a particular method does give you trouble, you should have at least one working
example.

Each chapter includes at least one (and often several) more complex programs that
demonstrate the classes and methods of that chapter in a more realistic setting. These
often rely on Java features not discussed in this book. Indeed, in many of the programs,
the networking components are only a small fraction of the source code and often the
least difficult parts. Nonetheless, none of these programs could be written as easily in
languages that didn’t give networking the central position it occupies in Java. The ap-
parent simplicity of the networked sections of the code reflects the extent to which
networking has been made a core feature of Java, and not any triviality of the program
itself. All example programs presented in this book are available online, often with
corrections and additions. You can download the source code from http://www.cafeau
lait.org/books/jnp4/.

I have tested all the examples on Linux and many on Windows and Mac OS X. Most of
the examples given here should work on other platforms and with other compilers and
virtual machines that support Java 5 or later. The most common reasons an example
may not compile with Java 5 or 6 are try-with-resources and multicatch. These examples
can easily be rewritten to support earlier Java versions at the cost of increased verbosity.

I do feel a little guilty about a couple of compromises necessitated by the needs of space
in a printed book. First, I rarely check preconditions. Most methods assume they are
passed good data, and dispense with null checks and similar principles of good code
hygiene. Furthermore, I have reduced the indentation to two characters per block and
four characters per continuation line, as opposed to the Java standard of four and eight,
respectively. I hope these flaws will not be too distracting. On the positive side, these
compromises have aided me in making this edition considerably shorter (by several
hundred pages) than the previous edition.

Preface | xvii

http://www.cafeaulait.org/books/jnp4/
http://www.cafeaulait.org/books/jnp4/

Conventions Used in This Book

Body text is Minion Pro, normal, like you're reading now.

A monospaced typewriter font is used for:

Code examples and fragments

Anything that might appear in a Java program, including keywords, operators, data
types, method names, variable names, class names, and interface names

Program output

Tags that might appear in an HTML document

A bold monospaced font is used for:

Command lines and options that should be typed verbatim on the screen

An italicized font is used for:

o

New terms where they are defined

Pathnames, filenames, and program names (however, if the program name is also
the name of a Java class, it is given in a monospaced font, like other class names)

Host and domain names (www.hpmor.com)
URLs (http://www.cafeaulait.org/slides/)
Titles of other books (Java I/O)

W 8
A

Indicates a tip, suggestion, or general note.

N
o

DO

Indicates a warning or caution.

Significant code fragments and complete programs are generally placed into a separate
paragraph, like this:

Socket s = new Socket("java.oreilly.com", 80);
if (!s.getTcpNoDelay()) s.setTcpNoDelay(true);

xviii

| Preface

When code is presented as fragments rather than complete programs, the existence of
the appropriate import statements should be inferred. For example, in the preceding
code fragment you may assume that java.net.Socket was imported.

Some examples intermix user input with program output. In these cases, the user input
will be displayed in bold, as in this example from Chapter 9:

% telnet rama.poly.edu 7
Trying 128.238.10.212...
Connected to rama.poly.edu.
Escape character is '~]'.
This is a test

This 1s a test

This is another test
This is another test
9876543210

9876543210

~]

telnet> close

Connection closed.

Finally, although many of the examples used here are toy examples unlikely to be reused,
a few of the classes I develop have real value. Please feel free to reuse them or any parts
of them in your own code. No special permission is required. They are in the public
domain (although the same is most definitely not true of the explanatory text!).

Request for Comments

I enjoy hearing from readers, whether with general comments about this book, specific
corrections, other topics they would like to see covered, or just war stories about their
own network programming travails. You can reach me by sending an email to
elharo@ibiblio.org. Please realize, however, that I receive several hundred pieces of email
a day and cannot personally respond to each one. For the best chance of getting a per-
sonal response, please identify yourself as a reader of this book. If you have a question
about a particular program that isn’t working as you expect, try to reduce it to the
simplest case that reproduces the bug, preferably a single class, and paste the text of the
entire program into the body of your email. Unsolicited attachments will be deleted
unopened. And please, please send the message from the account you want me to reply
to and make sure that your Reply-to address is properly set! There’s nothing quite so
frustrating as spending an hour or more carefully researching the answer to an inter-
esting question and composing a detailed response, only to have it bounce because my
correspondent sent her feedback from a public terminal and neglected to set the browser
preferences to include her actual email address.

I also adhere to the old saying “If you like this book, tell your friends. If you don't like
it, tell me” 'm especially interested in hearing about mistakes. This is the fourth edition.
I've yet to make it perfect, but I keep trying. As hard as I and the editors at O'Reilly

Preface | xix

worked on thisbook, 'm sure there are mistakes and typographical errors that we missed
here somewhere. And 'm sure that at least one of them is a really embarrassing whopper
of a problem. If you find a mistake or a typo, please let me know so I can correct it. I'll
post it on the O’Reilly website at http://oreil.ly/java_np_errata. Before reporting errors,
please check one of those pages to see if I already know about it and have posted a fix.
Any errors that are reported will be fixed in future printings.

Using Code Examples

This book is here to help you get your job done. In general, if this book includes code
examples, you may use the code in this book in your programs and documentation. You
do not need to contact us for permission unless you're reproducing a significant portion
of the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples from
O'Reilly books does require permission. Answering a question by citing this book and
quoting example code does not require permission. Incorporating a significant amount
of example code from this book into your product’s documentation does require per-
mission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Java Network Programming, Fourth Edition,
by Elliotte Rusty Harold (OReilly). Copyright 2014 Elliotte Rusty Harold,
978-1-449-35767-2”

If you feel your use of code examples falls outside fair use or the permission given here,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online

Safari Books Online is an on-demand digital library that delivers
Safa rl expert content in both book and video form from the world’s lead-
BooksOntine jng authors in technology and business.

Technology professionals, software developers, web designers, and business and crea-
tive professionals use Safari Books Online as their primary resource for research, prob-
lem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi-
zations, government agencies, and individuals. Subscribers have access to thousands of
books, training videos, and prepublication manuscripts in one fully searchable database
from publishers like O'Reilly Media, Prentice Hall Professional, Addison-Wesley Pro-
fessional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technol-

xx | Preface

http://oreil.ly/java_np_errata
mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals

ogy, and dozens more. For more information about Safari Books Online, please visit us
online.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/java-network-prgamming.

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments

Many people were involved in the production of this book. My editor, Mike Loukides,
got thingsrolling, and provided many helpful comments along the way that substantially
improved the book. Dr. Peter “Peppar” Parnes helped out immensely with Chapter 13.
The technical editors all provided invaluable assistance in hunting down errors and
omissions. Simon St. Laurent provided crucial advice on which topics deserved more
coverage. Scott Oaks lent his thread expertise to Chapter 3, proving once again by the
many subtle bugs he hunted down that multithreading still requires the attention of an
expert. Ron Hitchens shone light into many of the darker areas of the new I/O APIs.
Marc Loy and Jim Elliott reviewed some of the most bleeding edge material in the book.
Timothy E Rohaly was unswerving in his commitment to making sure I closed all my
sockets and caught all possible exceptions, and in general wrote the cleanest, safest, most
exemplary code I could write. John Zukowski found numerous errors of omission, all
now filled thanks to him. And the eagle-eyed Avner Gelb displayed an astonishing ability
to spot mistakes that had somehow managed to go unnoticed by myself, all the other

Preface | xxi

http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/
http://oreil.ly/java-network-prgamming
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

editors, and the tens of thousands of readers of the first edition. Alex Stangl and Ryan
Cuprak provided further assistance with spotting both new and lingering mistakes in
this latest edition.

Itisn't customary to thank the publisher, but the publisher does set the tone for the rest
of the company, authors, editors, and production staff alike; and I think Tim O’Reilly
deserves special credit for making O'Reilly Media absolutely one of the best houses an
author can write for. If there’s one person without whom this book would never have
been written, it’s him. If you, the reader, find O’Reilly books to be consistently better
than most of the dreck on the market, the reason really can be traced straight back to
Tim.

My agent, David Rogelberg, convinced me it was possible to make a living writing books
like this rather than working in an office. The entire crew at ibiblio.org over the last
several years has really helped me to communicate better with my readers in a variety
of ways. Every reader who sent in bouquets and brickbats for previous editions has been
instrumental in helping me write this much-improved edition. All these people deserve
much thanks and credit. Finally, as always, I'd like to offer my largest thanks to my wife,
Beth, without whose love and support this book would never have happened.

—Elliotte Rusty Harold
elharo@ibiblio.org
July 5, 2013

xxii | Preface

CHAPTER1

Basic Network Concepts

Network programming is no longer the province of a few specialists. It has become a
core part of every developer’s toolbox. Today, more programs are network aware than
aren’t. Besides classic applications like email, web browsers, and remote login, most
major applications have some level of networking built in. For example:

Text editors like BBEdit save and open files directly from FTP servers.

IDEs like Eclipse and Intelli] IDEA communicate with source code repositories like
GitHub and Sourceforge.

Word processors like Microsoft Word open files from URLs.

Antivirus programs like Norton AntiVirus check for new virus definitions by con-
necting to the vendor’s website every time the computer is started.

Music players like Winamp and iTunes upload CD track lengths to CDDB and
download the corresponding track titles.

Gamers playing multiplayer first-person shooters like Halo gleefully frag each other
in real time.

Supermarket cash registers running IBM SurePOS ACE communicate with their
store’s server in real time with each transaction. The server uploads its daily receipts
to the chain’s central computers each night.

Schedule applications like Microsoft Outlook automatically synchronize calendars
among employees in a company.

Java was the first programming language designed from the ground up for network
applications. Java was originally aimed at proprietary cable television networks rather
than the Internet, but it’s always had the network foremost in mind. One of the first two
real Java applications was a web browser. As the Internet continues to grow, Java is
uniquely suited to build the next generation of network applications.

One of the biggest secrets about Java is that it makes writing network programs easy. In
fact, it is far easier to write network programs in Java than in almost any other language.
This book shows you dozens of complete programs that take advantage of the Internet.
Some are simple textbook examples, while others are completely functional applica-
tions. One thing you’ll notice in the fully functional applications is just how little code
is devoted to networking. Even in network-intensive programs like web servers and
clients, almost all the code handles data manipulation or the user interface. The part of
the program that deals with the network is almost always the shortest and simplest. In
brief, it is easy for Java applications to send and receive data across the Internet.

This chapter covers the background networking concepts you need to understand be-
fore writing networked programs in Java (or, for that matter, in any language). Moving
from the most general to the most specific, it explains what you need to know about
networks in general, IP and TCP/IP-based networks in particular, and the Internet. This
chapter doesn't try to teach you how to wire a network or configure a router, but you
will learn what you need to know to write applications that communicate across the
Internet. Topics covered in this chapter include the nature of networks; the TCP/IP layer
model; the IP, TCP, and UDP protocols; firewalls and proxy servers; the Internet; and
the Internet standardization process. Experienced network gurus may safely skip this
chapter, and move on to the next chapter where you begin developing the tools needed
to write your own network programs in Java.

Networks

A network is a collection of computers and other devices that can send data to and
receive data from one another, more or less in real time. A network is often connected
by wires, and the bits of data are turned into electromagnetic waves that move through
the wires. However, wireless networks transmit data using radio waves; and most long-
distance transmissions are now carried over fiber-optic cables that send light waves
through glass filaments. There’s nothing sacred about any particular physical medium
for the transmission of data. Theoretically, data could be transmitted by coal-powered
computers that send smoke signals to one another. The response time (and environ-
mental impact) of such a network would be rather poor.

Each machine on a network is called a node. Most nodes are computers, but printers,
routers, bridges, gateways, dumb terminals, and Coca-Cola™ machines can also be no-
des. You might use Java to interface with a Coke machine, but otherwise you’ll mostly
talk to other computers. Nodes that are fully functional computers are also called
hosts. I will use the word node to refer to any device on the network, and the word host
to refer to a node that is a general-purpose computer.

Every network node has an address, a sequence of bytes that uniquely identifies it. You
can think of this group of bytes as a number, but in general the number of bytes in an
address or the ordering of those bytes (big endian or little endian) is not guaranteed to

2 | Chapter 1:Basic Network Concepts

match any primitive numeric data type in Java. The more bytes there are in each address,
the more addresses there are available and the more devices that can be connected to
the network simultaneously.

Addresses are assigned differently on different kinds of networks. Ethernet addresses
are attached to the physical Ethernet hardware. Manufacturers of Ethernet hardware
use preassigned manufacturer codes to make sure there are no conflicts between the
addresses in their hardware and the addresses of other manufacturers’ hardware. Each
manufacturer is responsible for making sure it doesn’t ship two Ethernet cards with the
same address. Internet addresses are normally assigned to a computer by the organi-
zation that is responsible for it. However, the addresses that an organization is allowed
to choose for its computers are assigned by the organization’s Internet service provider
(ISP). ISPs get their IP addresses from one of four regional Internet registries (the reg-
istry for North America is ARIN, the American Registry for Internet Numbers), which
are in turn assigned IP addresses by the Internet Corporation for Assigned Names and
Numbers (ICANN).

On some kinds of networks, nodes also have text names that help human beings identify
them such as “www.elharo.com” or “Beth Harold’s Computer” At a set moment in time,
a particular name normally refers to exactly one address. However, names are not locked
to addresses. Names can change while addresses stay the same; likewise, addresses can
change while the names stay the same. One address can have several names and one
name can refer to several different addresses.

All modern computer networks are packet-switched networks: data traveling on the
network is broken into chunks called packets and each packet is handled separately.
Each packet contains information about who sent it and where it’s going. The most
important advantage of breaking data into individually addressed packets is that packets
from many ongoing exchanges can travel on one wire, which makes it much cheaper to
build a network: many computers can share the same wire without interfering. (In
contrast, when you make alocal telephone call within the same exchange on a traditional
phone line, you have essentially reserved a wire from your phone to the phone of the
person youre calling. When all the wires are in use, as sometimes happens during a
major emergency or holiday, not everyone who picks up a phone will get a dial tone. If
you stay on the line, you’ll eventually get a dial tone when a line becomes free. In some
countries with worse phone service than the United States, it’s not uncommon to have
to wait half an hour or more for a dial tone.) Another advantage of packets is that
checksums can be used to detect whether a packet was damaged in transit.

We're still missing one important piece: some notion of what computers need to say to
pass data back and forth. A protocol is a precise set of rules defining how computers
communicate: the format of addresses, how data is split into packets, and so on. There
are many different protocols defining different aspects of network communication. For
example, the Hypertext Transfer Protocol (HTTP) defines how web browsers and

Networks | 3

http://www.arin.net
http://www.icann.org

servers communicate; at the other end of the spectrum, the IEEE 802.3 standard defines
a protocol for how bits are encoded as electrical signals on a particular type of wire.
Open, published protocol standards allow software and equipment from different ven-
dors to communicate with one another. A web server doesn’t care whether the client is
a Unix workstation, an Android phone, or an iPad, because all clients speak the same
HTTP protocol regardless of platform.

The Layers of a Network

Sending data across a network is a complex operation that must be carefully tuned to
the physical characteristics of the network as well as the logical character of the data
being sent. Software that sends data across a network must understand how to avoid
collisions between packets, convert digital data to analog signals, detect and correct
errors, route packets from one host to another, and more. The process is further com-
plicated when the requirement to support multiple operating systems and heterogene-
ous network cabling is added.

To hide most of this complexity from the application developer and end user, the dif-
ferent aspects of network communication are separated into multiple layers. Each layer
represents a different level of abstraction between the physical hardware (i.e., the wires
and electricity) and the information being transmitted. In theory, each layer only talks
to the layers immediately above and immediately below it. Separating the network into
layers lets you modify or even replace the software in one layer without affecting the
others, as long as the interfaces between the layers stay the same.

Figure 1-1 shows a stack of possible protocols that may exist in your network. While
the middle layer protocols are fairly consistent across most of the Internet today, the
top and the bottom vary a lot. Some hosts use Ethernet; some use WiFi; some use PPP;
some use something else. Similarly, what’s on the top of the stack will depend completely
on which programs a host is running. The key is that from the top of the stack, it doesn’t
really matter what’s on the bottom and vice versa. The layer model decouples the ap-
plication protocols (the main subject of this book) from the physics of the network
hardware and the topology of the network connections.

4 | Chapter 1:Basic Network Concepts

The Internet

SOAP XML-RPC REST APIs
S S
Traceroute Ping FTP HTTP SMTP DNS NFS
) F)) F) F
\ 4
ICMP TP uop
x 7'y 7
v
1P ARP
7 Y
v v vvY
pPPP Wifi Ethernet
)) F

Figure 1-1. Protocols in different layers of a network

There are several different layer models, each organized to fit the needs of a particular
kind of network. This book uses the standard TCP/IP four-layer model appropriate for
the Internet, shown in Figure 1-2. In this model, applications like Firefox and Warcraft
run in the application layer and talk only to the transport layer. The transport layer talks
only to the application layer and the Internet layer. The Internet layer in turn talks only
to the host-to-network layer and the transport layer, never directly to the application
layer. The host-to-network layer moves the data across the wires, fiber-optic cables, or
other medium to the host-to-network layer on the remote system, which then moves

the data up the layers to the application on the remote system.

Application Layer

Transport Layer (TCP UDP)

Internet Layer (IP)

logical path

physical path

A Application Layer

Transport Layer (TCP UDP)

Internet Layer (IP)

Figure 1-2. The layers of a network

For example, when a web browser sends a request to a web server to retrieve a page, the
browser is actually talking to the transport layer on the local client machine. The trans-

The Layers of a Network

port layer breaks the request into TCP segments, adds some sequence numbers and
checksums to the data, and then passes the request to the local internet layer. The internet
layer fragments the segments into IP datagrams of the necessary size for the local net-
work and passes them to the host-to-network layer for transmission onto the wire. The
host-to-network layer encodes the digital data as analog signals appropriate for the
particular physical medium and sends the request out the wire where it will be read by
the host-to-network layer of the remote system to which it’s addressed.

The host-to-network layer on the remote system decodes the analog signals into digital
data, then passes the resulting IP datagrams to the server’s internet layer. The internet
layer does some simple checks to see that the IP datagrams aren’t corrupt, reassembles
them if they’ve been fragmented, and passes them to the server’s transport layer. The
server’s transport layer checks to see that all the data arrived and requests retransmission
of any missing or corrupt pieces. (This request actually goes back down through the
server’s internet layer, through the server’s host-to-network layer, and back to the client
system, where it bubbles back up to the client’s transport layer, which retransmits the
missing data back down through the layers. This is all transparent to the application
layer.) Once the server’s transport layer has received enough contiguous, sequential
datagrams, it reassembles them and writes them onto a stream read by the web server
running in the server application layer. The server responds to the request and sends
its response back down through the layers on the server system for transmission back
across the Internet and delivery to the web client.

As you can guess, the real process is much more elaborate. The host-to-network layer
is by far the most complex, and a lot has been deliberately hidden. For example, it’s
entirely possible that data sent across the Internet will pass through several routers and
their layers before reaching its final destination. It may need to be converted from radio
waves in the air to electrical signals in copper wire to light pulses in fiber-optic cables
and back again, possibly more than once. However, 90% of the time your Java code will
work in the application layer and only need to talk to the transport layer. The other 10%
of the time, you'll be in the transport layer and talking to the application layer or the
internet layer. The complexity of the host-to-network layer is hidden from you; that’s
the point of the layer model.

6 | Chapter 1: Basic Network Concepts

If you read the network literature, you're likely to encounter an alter-
. native seven-layer model called the Open Systems Interconnection
%' (OSI) Reference Model. For network programs in Java, the OSI mod-
el is overkill. The biggest difference between the OSI model and the
TCP/IP model used in this book is that the OSI model splits the host-
to-network layer into data link and physical layers and inserts presen-
tation and session layers in between the application and transport
layers. The OSI model is more general and better suited for non-TCP/
IP networks, although most of the time it’s still overly complex. In any
case, Javas network classes only work on TCP/IP networks and al-
ways in the application or transport layers, so for the purposes of this
book, absolutely nothing is gained by using the more complicated OSI
model.

To the application layer, it seems as if it is talking directly to the application layer on the
other system; the network creates a logical path between the two application layers. It’s
easy to understand the logical path if you think about an IRC chat session. Most par-
ticipants in an IRC chat would say that they’re talking to another person. If you really
push them, they might say that they’re talking to their computer (really the application
layer), which is talking to the other person’s computer, which is talking to the other
person. Everything more than one layer deep is effectively invisible, and that is exactly
the way it should be. Let’s consider each layer in more detail.

The Host-to-Network Layer

As a Java programmer, you're fairly high up in the network food chain. A lot happens
below your radar. In the standard reference model for IP-based Internets (the only kind
of network Java really understands), the hidden parts of the network belong to the host-
to-network layer (also known as the link layer, data link layer, or network interface layer).
The host-to-network layer defines how a particular network interface—such as an
Ethernet card or a WiFi antenna—sends IP datagrams over its physical connection to
the local network and the world.

The part of the host-to-network layer made up of the hardware that connects different
computers (wires, fiber-optic cables, radio waves, or smoke signals) is sometimes called
the physical layer of the network. As a Java programmer, you don’t need to worry about
this layer unless something goes wrong—the plug falls out of the back of your computer,
or someone drops a backhoe through the T-1 line between you and the rest of the world.
In other words, Java never sees the physical layer.

The primary reason you’ll need to think about the host-to-network layer and the phys-
ical layer, if you need to think about them at all, is performance. For instance, if your
clients reside on fast, reliable fiber-optic connections, you will design your protocol and
applications differently than if they’re on high-latency satellite connections on an oil rig

The Layers of a Network | 7

in the North Sea. You’ll make still different choices if your clients are on a 3G data plan
where they’re charged by the byte for relatively low bandwidth. And if you're writing a
general consumer application that could be used by any of these clients, you’ll try to hit
a sweet spot somewhere in the middle, or perhaps even detect and dynamically adapt
to individual client capabilities. However, whichever physical links you encounter, the
APIs you use to communicate across those networks are the same. What makes that
possible is the internet layer.

The Internet Layer

The next layer of the network, and the first that you need to concern yourself with, is
the internet layer. In the OSI model, the internet layer goes by the more generic name
network layer. A network layer protocol defines how bits and bytes of data are organized
into the larger groups called packets, and the addressing scheme by which different
machines find one another. The Internet Protocol (IP) is the most widely used network
layer protocol in the world and the only network layer protocol Java understands.

In fact, it’s two protocols: IPv4, which uses 32-bit addresses, and IPv6, which uses 128-
bit addresses and adds a few other technical features to assist with routing. At the time
of this writing, IPv4 still accounts for more than 90% of Internet traffic, but IPv6 is
catching on fastand may well surpass IPv4 before the next edition of this book. Although
these are two very different network protocols that do not interoperate on the same
network without special gateways and/or tunneling protocols, Java hides almost all of
the differences from you.

In both IPv4 and IPv6, data is sent across the internet layer in packets called data-
grams. Each IPv4 datagram contains a header between 20 and 60 bytes long and a pay-
load that contains up to 65,515 bytes of data. (In practice, most IPv4 datagrams are much
smaller, ranging from a few dozen bytes to a little more than eight kilobytes.) An IPv6
datagram contains a larger header and up to four gigabytes of data.

Figure 1-3 shows how the different quantities are arranged in an IPv4 datagram. All bits
and bytes are big endian; most significant to least significant runs left to right.

8 | Chapter 1:Basic Network Concepts

0 4 8 12 16 20 24 28 31

version :lee:éjtir type of service datagram length
identification flags fragment offset
time-to-live (TTL) protocol header checksum

source address

destination address

__

Figure 1-3. The structure of an IPv4 datagram

Besides routing and addressing, the second purpose of the Internet layer is to enable
different types of Host-to-Network layers to talk to each other. Internet routers translate
between WiFiand Ethernet, Ethernet and DSL, DSL and fiber-optic backhaul protocols,
and so forth. Without the internet layer or something like it, each computer could only
talk to other computers that shared its particular type of network. The internet layer is
responsible for connecting heterogenous networks to each other using homogeneous
protocols.

The Transport Layer

Raw datagrams have some drawbacks. Most notably, there’s no guarantee that they will
be delivered. Even if they are delivered, they may have been corrupted in transit. The
header checksum can only detect corruption in the header, not in the data portion of a
datagram. Finally, even if the datagrams arrive uncorrupted, they do not necessarily
arrive in the order in which they were sent. Individual datagrams may follow different
routes from source to destination. Just because datagram A is sent before datagram B
does not mean that datagram A will arrive before datagram B.

The transport layer is responsible for ensuring that packets are received in the order
they were sent and that no data islost or corrupted. If a packet is lost, the transport layer
can ask the sender to retransmit the packet. IP networks implement this by adding an
additional header to each datagram that contains more information. There are two
primary protocols at this level. The first, the Transmission Control Protocol (TCP), is
a high-overhead protocol that allows for retransmission of lost or corrupted data and
delivery of bytes in the order they were sent. The second protocol, the User Datagram
Protocol (UDP), allows the receiver to detect corrupted packets but does not guarantee

The Layers of a Network | 9

that packets are delivered in the correct order (or at all). However, UDP is often much
faster than TCP. TCP is called a reliable protocol; UDP is an unreliable protocol. Later,
you’ll see that unreliable protocols are much more useful than they sound.

The Application Layer

The layer that delivers data to the user is called the application layer. The three lower
layers all work together to define how data is transferred from one computer to another.
The application layer decides what to do with the data after it’s transferred. For example,
an application protocol like HTTP (for the World Wide Web) makes sure that your web
browser displays a graphic image as a picture, not a long stream of numbers. The ap-
plication layer is where most of the network parts of your programs spend their time.
There is an entire alphabet soup of application layer protocols: in addition to HTTP for
the Web, there are SMTP, POP, and IMAP for email; FTP, FSP, and TFTP for file transfer;
NES for file access; Gnutella and BitTorrent for file sharing; the Session Initiation Pro-
tocol (SIP) and Skype for voice communication; and many, many more. In addition,
your programs can define their own application layer protocols as necessary.

IP, TCP, and UDP

IP, the Internet protocol, was developed with military sponsorship during the Cold War,
and ended up with a lot of features that the military was interested in. First, it had to be
robust. The entire network couldn't stop functioning if the Soviets nuked a router in
Cleveland; all messages still had to get through to their intended destinations (except
those going to Cleveland, of course). Therefore, IP was designed to allow multiple routes
between any two points and to route packets of data around damaged routers.

Second, the military had many different kinds of computers, and all of them had to be
able to talk to one another. Therefore, IP had to be open and platform-independent; it
wasn't good enough to have one protocol for IBM mainframes and another for PDP-11s.
The IBM mainframes needed to talk to the PDP-11s and any other strange computers
that might be lying around.

Because there are multiple routes between two points, and because the quickest path
between two points may change over time as a function of network traffic and other
factors (such as the existence of Cleveland), the packets that make up a particular data
stream may not all take the same route. Furthermore, they may not arrive in the order
they were sent, if they even arrive at all. To improve on the basic scheme, TCP was
layered on top of IP to give each end of a connection the ability to acknowledge receipt
of IP packets and request retransmission of lost or corrupted packets. Furthermore,
TCP allows the packets to be put back together on the receiving end in the same order
they were sent.

10 | Chapter 1: Basic Network Concepts

TCP, however, carries a fair amount of overhead. Therefore, if the order of the data isn't
particularly important and if the loss of individual packets won’t completely corrupt the
data stream, packets are sometimes sent without the guarantees that TCP provides using
the UDP protocol. UDP is an unreliable protocol that does not guarantee that packets
will arrive at their destination or that they will arrive in the same order they were sent.
Although this would be a problem for uses such as file transfer, it is perfectly acceptable
for applications where the loss of some data would go unnoticed by the end user. For
example, losing a few bits from a video or audio signal won’t cause much degradation;
it would be a bigger problem if you had to wait for a protocol like TCP to request a
retransmission of missing data. Furthermore, error-correcting codes can be built into
UDP data streams at the application level to account for missing data.

A number of other protocols can run on top of IP. The most commonly requested is
ICMBP, the Internet Control Message Protocol, which uses raw IP datagrams to relay
error messages between hosts. The best-known use of this protocol is in the ping pro-
gram. Java does not support ICMP, nor does it allow the sending of raw IP datagrams
(as opposed to TCP segments or UDP datagrams). The only protocols Java supports are
TCP and UDP, and application layer protocols built on top of these. All other transport
layer, internet layer, and lower layer protocols such as ICMP, IGMP, ARP, RARP, RSVP,
and others can only be implemented in Java programs by linking to native code.

IP Addresses and Domain Names

As a Java programmer, you don't need to worry about the inner workings of IP, but you
do need to know about addressing. Every computer on an IPv4 network is identified by
a four-byte number. This is normally written in a dotted quad format like 199.1.32.90,
where each of the four numbers is one unsigned byte ranging in value from 0 to 255.
Every computer attached to an IPv4 network has a unique four-byte address. When
data is transmitted across the network, the packet’s header includes the address of the
machine for which the packet is intended (the destination address) and the address of
the machine that sent the packet (the source address). Routers along the way choose the
best route on which to send the packet by inspecting the destination address. The source
address is included so the recipient will know who to reply to.

There are a little more than four billion possible IP addresses, not even one for every
person on the planet, much less for every computer. To make matters worse, the ad-
dresses aren’t allocated very efficiently. In April 2011, Asia and Australia ran out. No
more IPv4 addresses were available to be allocated to these regions; and they have since
had to make do by recycling and reallocating from their existing supply. In September
2012, Europe ran out too. North America, Latin America, and Africa still have a few IP
address blocks left to parcel out, but they’re not going to last much longer.

A slow transition is under way to IPv6, which will use 16-byte addresses. This provides
enough IP addresses to identify every person, every computer, and indeed every device

IP,TCP,andUDP | 11

on the planet. IPv6 addresses are customarily written in eight blocks of four hexadecimal
digits separated by colons, such as FEDC:BA98:7654:3210:FEDC:BA98:7654:3210.
Leading zeros do not need to be written. A double colon, at most one of which may
appear in any address, indicates multiple zero blocks. For example, FEDC:
0000:0000:0000:00DC:0000:7076:0010 could be written more compactly as FEDC::DC:
0:7076:10. In mixed networks of IPv6 and IPv4, the last four bytes of the IPv6 address
are sometimes written as an IPv4 dotted quad address. For example,
FEDC:BA98:7654:3210:FEDC:BA98:7654:3210 could be written as
FEDC:BA98:7654:3210:FEDC:BA98:118.84.50.16.

Although computers are very comfortable with numbers, human beings aren’t very good
at remembering them. Therefore, the Domain Name System (DNS) was developed to
translate hostnames that humans can remember, such as “www.oreilly.com,” into nu-
meric Internet addresses such as 208.201.239.101. When Java programs access the net-
work, they need to process both these numeric addresses and their corresponding host-
names. Methods for doing this are provided by the java.net.InetAddress class, which
is discussed in Chapter 4.

Some computers, especially servers, have fixed addresses. Others, especially clients on
local area networks and wireless connections, receive a different address every time they
boot up, often provided by a DHCP server. Mostly you just need to remember that IP
addresses may change over time, and not write any code that relies on a system having
the same IP address. For instance, don't store the local IP address when saving appli-
cation state. Instead, look it up fresh each time your program starts. It’s also possible,
although less likely, for an IP address to change while the program is running (e.g., ifa
DHCP lease expires), so you may want to check the current IP address every time you
need it rather than caching it. Otherwise, the difference between a dynamically and
manually assigned address is not significant to Java programs.

Several address blocks and patterns are special. All IPv4 addresses that begin with 10.,
172.16. through 172.31. and 192.168. are unassigned. They can be used on internal
networks, but no host using addresses in these blocks is allowed onto the global Internet.
These non-routable addresses are useful for building private networks that can’t be seen
on the Internet. IPv4 addresses beginning with 127 (most commonly 127.0.0.1) always
mean the local loopback address. That is, these addresses always point to the local com-
puter, no matter which computer you're running on. The hostname for this address is
often localhost. In IPv6, 0:0:0:0:0:0:0:1 (a.k.a. ::1) is the loopback address. The address
0.0.0.0 always refers to the originating host, but may only be used as a source address,
not a destination. Similarly, any IPv4 address that begins with 0. (eight zero bits) is
assumed to refer to a host on the same local network.

The IPv4 address that uses the same number for each of the four bytes (ie.,
255.255.255.255), is a broadcast address. Packets sent to this address are received by all
nodes on the local network, though they are not routed beyond the local network. This

12 | Chapter 1: Basic Network Concepts

is commonly used for discovery. For instance, when an ephemeral client such as a laptop
boots up, it will send a particular message to 255.255.255.255 to find the local DHCP
server. All nodes on the network receive the packet, but only the DHCP server responds.
In particular, it sends the laptop information about the local network configuration,
including the IP address that laptop should use for the remainder of its session and the
address of a DNS server it can use to resolve hostnames.

Ports

Addresses would be all you needed if each computer did no more than one thing at a
time. However, modern computers do many different things at once. Email needs to be
separated from FTP requests, which need to be separated from web traffic. This is ac-
complished through ports. Each computer with an IP address has several thousand
logical ports (65,535 per transport layer protocol, to be precise). These are purely ab-
stractions in the computer’s memory and do not represent anything physical, like a USB
port. Each portisidentified by anumber between 1 and 65535. Each port can be allocated
to a particular service.

For example, HT TP, the underlying protocol of the Web, commonly uses port 80. We
say that a web server listens on port 80 for incoming connections. When data is sent to
a web server on a particular machine at a particular IP address, it is also sent to a par-
ticular port (usually port 80) on that machine. The receiver checks each packet it sees
for the port and sends the data to any program that is listening to that port. This is how
different types of traffic are sorted out.

Port numbers between 1 and 1023 are reserved for well-known services like finger, FTP,
HTTP, and IMAP. On Unix systems, including Linux and Mac OS X, only programs
running as root can receive data from these ports, but all programs may send data to
them. On Windows, any program may use these ports without special privileges.
Table 1-1 shows the well-known ports for the protocols that are discussed in this book.
These assignments are not absolutely guaranteed; in particular, web servers often run
on ports other than 80, either because multiple servers need to run on the same machine
or because the person who installed the server doesn’t have the root privileges needed
to run it on port 80. On Unix systems, a fairly complete listing of assigned ports is stored
in the file /etc/services.

Table 1-1. Well-known port assignments

Protocol Port Protocol Purpose

echo 7 TCP/UDP Echo is a test protocol used to verify that two machines are able to connect by having one echo
back the other’s input.

discard 9 TCP/UDP Discard is a less useful test protocol in which all data received by the server is ignored.
daytime 13 TCP/UDP Provides an ASCII representation of the current time on the server.

FiPdata 20 TCP FTP uses two well-known ports. This port is used to transfer files.

IP,TCP,and UDP | 13

Protocol Port Protocol Purpose

FTP 21 TCP This port is used to send FTP commands like put and get.

SSH 22 TCP Used for encrypted, remote logins.

Telnet 23 TCP Used for interactive, remote command-line sessions.

smtp 25 TCP The Simple Mail Transfer Protocol is used to send email between machines.

time 37 TCP/UDP A time server returns the number of seconds that have elapsed on the server since midnight,
January 1, 1900, as a four-byte, unsigned, big-endian integer.

whois 43 TCP A simple directory service for Internet network administrators.

finger 79 TCP A service that returns information about a user or users on the local system.

HTTP 80 TCP The underlying protocol of the World Wide Web.

POP3 10 TCP Post Office Protocol version 3 is a protocol for the transfer of accumulated email from the host to
sporadically connected clients.

NNTP 19 TCP Usenet news transfer; more formally known as the “Network News Transfer Protocol.”

IMAP 143 TCP Internet Message Access Protocol is a protocol for accessing mailboxes stored on a server.

dict 2628 TCP A UTF-8 encoded dictionary service that provides definitions of words.

The Internet

The Internet is the world’s largest IP-based network. It is an amorphous group of com-
puters in many different countries on all seven continents (Antarctica included) that
talk to one another using IP protocols. Each computer on the Internet has at least one
IP address by which it can be identified. Many of them also have at least one name that
maps to that IP address. The Internet is not owned by anyone, although pieces of it are.
It is not governed by anyone, which is not to say that some governments don’t try. It is
simply a very large collection of computers that have agreed to talk to one another in a
standard way.

The Internetis not the only IP-based network, but it is the largest one. Other IP networks
are called internets with a little i: for example, a high-security internal network that is
not connected to the global Internet. Intranet loosely describes corporate practices of
putting lots of data on internal web servers that are not visible to users outside the local
network.

Unless youre working in a high-security environment that’s physically disconnected
from the broader network, it’s likely that the internet you’ll be using is the Internet. To
make sure that hosts on different networks on the Internet can communicate with each
other, a few rules need to be followed that don’t apply to purely internal internets. The
most important rules deal with the assignment of addresses to different organizations,
companies, and individuals. If everyone picked the Internet addresses they wanted at
random, conflicts would arise almost immediately when different computers showed
up on the Internet with the same address.

14 | Chapter 1: Basic Network Concepts

Internet Address Blocks

To avoid this problem, blocks of IPv4 addresses are assigned to Internet service pro-
viders (ISPs) by their regional Internet registry. When a company or an organization
wants to set up an IP-based network connected to the Internet, their ISP assigns them
ablock of addresses. Each block has a fixed prefix. For instance if the prefix is 216.254.85,
then the local network can use addresses from 216.254.85.0 to 216.254.85.255. Because
this block fixes the first 24 bits, it’s called a /24. A /23 specifies the first 23 bits, leaving
9 bits for 2° or 512 total local IP addresses. A /30 subnet (the smallest possible) specifies
the first 30 bits of the IP addresses within the subnetwork, leaving 2 bits for 2* or 4 total
local IP addresses. However, the lowest address in all block used to identify the network
itself, and the largest address is a broadcast address for the network, so you have two
fewer available addresses than you might first expect.

Network Address Translation

Because of the increasing scarcity of and demand for raw IP addresses, most networks
today use Network Address Translation (NAT). In NAT-based networks most nodes
only have local, non-routable addresses selected from either 10.x.x.x, 172.16.x.x to
172.31.x.x, or 192.168.x.x. The routers that connect the local networks to the ISP trans-
late these local addresses to a much smaller set of routable addresses.

For instance, the dozen or so IP nodes in my apartment all share a single externally
visible IP address. The computer on which I'm typing this has the IP address 192.168.1.5,
but on your network that address may refer to a completely different host, if it exists at
all. Nor could you reach my computer by sending data to 192.168.1.5. Instead, you'd
have to send to 216.254.85.72 (and even then, the data would only get through if I had
configured my NAT router to pass incoming connections on to 192.168.1.5).

The router watches my outgoing and incoming connections and adjusts the addresses
in the IP packets. For an outgoing packet, it changes the source address to the router’s
external address (216.254.85.72 on my network). For an incoming packet, it changes
the destination address to one of the local addresses, such as 192.168.1.12. Exactly how
it keeps track of which connections come from and are aimed at which internal com-
puters is not particularly important to a Java programmer. As long as your machines
are configured properly, this process is mostly transparent. You just need to remember
that the external and internal addresses may not be the same.

Eventually, IPv6 should make most of this obsolete. NAT will be pointless, though fire-
walls will still be useful. Subnets will still exist for routing, but they’ll be much larger.

Firewalls

There are some naughty people on the Internet. To keep them out, it’s often helpful to
set up one point of access to alocal network and check all traffic into or out of that access

TheInternet | 15

point. The hardware and software that sit between the Internet and the local network,
checking all the data that comes in or out to make sure it’s kosher, is called a firewall.
The firewall is often part of the router that connects the local network to the broader
Internet and may perform other tasks, such as network address translation. Then again,
the firewall may be a separate machine. Modern operating systems like Mac OS X and
Red Hat Linux often have built-in personal firewalls that monitor just the traffic sent to
that one machine. Either way, the firewall is responsible for inspecting each packet that
passes into or out of its network interface and accepting it or rejecting it according to a
set of rules.

Filtering is usually based on network addresses and ports. For example, all traffic coming
from the Class C network 193.28.25.x may be rejected because you had bad experiences
with hackers from that network in the past. Outgoing SSH connections may be allowed,
but incoming SSH connections may not. Incoming connections on port 80 (web) may
be allowed, but only to the corporate web server. More intelligent firewalls look at the
contents of the packets to determine whether to accept or reject them. The exact con-
figuration of a firewall—which packets of data are and to pass through and which are
not—depends on the security needs of an individual site. Java doesn’t have much to do
with firewalls—except insofar as they often get in your way.

Proxy Servers

Proxy servers are related to firewalls. If a firewall prevents hosts on a network from
making direct connections to the outside world, a proxy server can act as a go-between.
Thus, a machine that is prevented from connecting to the external network by a firewall
would make a request for a web page from the local proxy server instead of requesting
the web page directly from the remote web server. The proxy server would then request
the page from the web server and forward the response back to the original requester.
Proxies can also be used for FTP services and other connections. One of the security
advantages of using a proxy server is that external hosts only find out about the proxy
server. They do not learn the names and IP addresses of the internal machines, making
it more difficult to hack into internal systems.

Whereas firewalls generally operate at the level of the transport or internet layer, proxy
servers normally operate at the application layer. A proxy server has a detailed under-
standing of some application-level protocols, such as HT'TP and FTP. (The notable
exception are SOCKS proxy servers that operate at the transport layer, and can proxy
for all TCP and UDP connections regardless of application layer protocol.) Packets that
pass through the proxy server can be examined to ensure that they contain data appro-
priate for their type. For instance, FTP packets that seem to contain Telnet data can be
rejected. Figure 1-4 shows how proxy servers fit into the layer model.

16 | Chapter 1: Basic Network Concepts

Logical Path

Client Server
Application Layer A Application Layer AAppIication Layer
Transport Layer Transport Layer Transport Layer
(TCRUDP) (TCRUDP) (TCR UDP)
Internet Layer (IP) Internet Layer (IP) Internet Layer (IP)

1 prysicatpath ——

Figure 1-4. Layered connections through a proxy server

As long as all access to the Internet is forwarded through the proxy server, access can
be tightly controlled. For instance, a company might choose to block access to
www.playboy.com but allow access to www.microsoft.com. Some companies allow in-
coming FTP but disallow outgoing FTP so confidential data cannot be as easily smuggled
out of the company. Other companies use proxy servers to track their employees’ web
usage so they can see who’s using the Internet to get tech support and who's using it to
check out the Playmate of the Month.

Proxy servers can also be used to implement local caching. When a file is requested
from a web server, the proxy server first checks to see if the file is in its cache. If the file
is in the cache, the proxy serves the file from the cache rather than from the Internet.
If the file is not in the cache, the proxy server retrieves the file, forwards it to the re-
quester, and stores it in the cache for the next time it is requested. This scheme can
significantly reduce load on an Internet connection and greatly improve response time.
America Online runs one of the largest farms of proxy servers in the world to speed the
transfer of data to its users. If you look at a web server logfile, you'll probably find some
hits from clients in the aol.com domain, but not as many as you'd expect given the more
than three million AOL subscribers. That’s because AOL proxy servers supply many
pages out of their cache rather than re-requesting them for one another. Many other
large ISPs do similarly.

The biggest problem with proxy servers is their inability to cope with all but a few
protocols. Generally established protocols like HTTP, FTP, and SMTP are allowed to
pass through, while newer protocols like BitTorrent are not. (Some network adminis-
trators consider this a feature.) In the rapidly changing world of the Internet, this is a
significant disadvantage. It’s a particular disadvantage for Java programmers because it
limits the effectiveness of custom protocols. In Java, it’s easy and often useful to create
a new protocol that is optimized for your application. However, no proxy server will

TheInternet | 17

ever understand these one-of-a-kind protocols. Consequently, some developers have
taken to tunneling their protocols through HTTP, most notably with SOAP. However,
this has a significant negative impact on security. The firewall is normally there for a
reason, not just to annoy Java programmers.

Applets that run in web browsers normally use the proxy server settings of the web
browser itself, though these can be overridden in the Java Control Panel. Standalone
Java applications can indicate the proxy server to use by setting the socksProxyHost
and socksProxyPort properties (if youre using a SOCKS proxy server), or
http.proxySet, http.proxyHost, http.proxyPort, https.proxySet, https.proxy
Host, https.proxyPort, ftpProxySet, ftpProxyHost, ftpProxyPort, gopherProxy
Set, gopherProxyHost, and gopherProxyPort system properties (if youre using
protocol-specific proxies). You can set system properties from the command line using
the -D flag, like this:

java -DsocksProxyHost=socks.cloud9.net -DsocksProxyPort=1080 MyClass

The Client/Server Model

Most modern network programming is based on a client/server model. A client/server
application typically stores large quantities of data on an expensive, high-powered server
or cloud of servers while most of the program logic and the user interface is handled by
client software running on relatively cheap personal computers. In most cases, a server
primarily sends data while a client primarily receives it; but it is rare for one program
to send or receive exclusively. A more reliable distinction is that a client initiates a
conversation while a server waits for clients to start conversations with it. Figure 1-5
illustrates both possibilities. In some cases, the same program may be both a client and
a server.

You are already familiar with many examples of client/server systems. In 2013, the most
popular client/server system on the Internet is the Web. Web servers like Apache re-
spond to requests from web clients like Firefox. Data is stored on the web server and is
sent out to the clients that request it. Aside from the initial request for a page, almost
all data is transferred from the server to the client, not from the client to the server. FTP
is an older service that fits the client/server model. FTP uses different application pro-
tocols and different software, but is still split into FTP servers that send files and FTP
clients that receive files. People often use FTP to upload files from the client to the server,
so it’s harder to say that the data transfer is primarily in one direction, but it is still true
that an FTP client initiates the connection and the FTP server responds.

18 | Chapter 1: Basic Network Concepts

~9 ~
. 4
Server Client
Port 80 < == Port41232

The client initiates the connection to a

known port on the server from whichever
port is available on the client. —\

Port 80 < »>mm Port 41232
(Input Stream) \/ (Input Stream)
Port 80 \ #m Port 41232

(Output Stream)

The server accepts the connection. Input and (Output Stream)

output streams are connected to the sockets
on the specified ports.

Figure 1-5. A client/server connection

Not all applications fit easily into a client/server model. For instance, in networked
games, it seems likely that both players will send data back and forth roughly equally
(atleastin a fair game). These sorts of connections are called peer-to-peer. The telephone
system is the classic example of a peer-to-peer network. Each phone can either call
another phone or be called by another phone. You don’t have to buy one phone to send
calls and another to receive them.

Java does not have explicit peer-to-peer communication in its core networking API.
However, applications can easily offer peer-to-peer communications in several ways,
most commonly by acting as both a server and a client. Alternatively, the peers can
communicate with each other through an intermediate server program that forwards
data from one peer to the other peers. This neatly solves the discovery problem of how
two peers find each other.

Internet Standards

This book discusses several application layer Internet protocols, most notably HTTP.
However, this is not a book about those protocols. If you need detailed information
about any protocol, the definitive source is the standards document for the protocol.

Although there are many standards organizations in the world, the two that produce
most of the standards relevant to application layer network programming and protocols
are the Internet Engineering Task Force (IETF) and the World Wide Web Consortium
(W3C). The IETF is a relatively informal, democratic body open to participation by any
interested party. Its standards are based on “rough consensus and running code” and

Internet Standards | 19

tend to follow rather than lead implementations. IETF standards include TCP/IP,
MIME, and SMTP. The W3C, by contrast, is a vendor organization, controlled by dues-
paying member corporations, that explicitly excludes participation by individuals. For
the most part, the W3C tries to define standards in advance of implementation. W3C
standards include HTTP, HTML, and XML.

IETF RFCs

IETF standards and near-standards are published as Requests for Comments (RFCs).
Despite the name, a published RFC is a finished work. It may be obsoleted or replaced
by a new RFC, but it will not be changed. IETF working documents that are subject to
revision and open for development are called “Internet drafts”

RFCs range from informational documents of general interest to detailed specifications
of standard Internet protocols such as FTP. RECs are available from many locations on
the Internet, including http://www.fags.org/rfc/ and http://www.ietf.org/rfc.html. For the
most part, RECs, (particularly standards-oriented RFCs), are very technical, turgid, and
nearly incomprehensible. Nonetheless, they are often the only complete and reliable
source of information about a particular protocol.

Most proposals for an RFC begin when a person or group gets an idea and builds a
prototype. The prototype is incredibly important. Before something can become an
IETF standard, it must actually exist and work. This requirement ensures that IETF
standards are at least feasible, unlike the standards promulgated by some other organ-
izations.

Table 1-2lists the RFCs that provide formal documentation for the protocols discussed
in this book.

Table 1-2. Selected Internet RFCs

RFC Title Description

RFC 5000 Internet Official Protocol Describes the standardization process and the current status of the different Internet
Standards protocols. Periodically updated in new RFCs.

RFC 1122 Host Requirements Documents the protocols that must be supported by all Internet hosts at different

RFC1123 layers (data link layer, IP layer, transport layer, and application layer).

RFC791,RFC Internet Protocol The IP internet layer protocol.

919, RFC

922, RFC950

RFC768 User Datagram Protocol An unreliable, connectionless transport layer protocol.

RFC792 Internet Control Message An internet layer protocol that uses raw IP datagrams but is not supported by Java.
Protocol (ICMP) [ts most familiar uses are ping and traceroute.

RFC793 Transmission Control A reliable, connection-oriented, streaming transport layer protocol.
Protocol

20 | Chapter 1:Basic Network Concepts

http://www.faqs.org/rfc/
http://www.ietf.org/rfc.html

RFC Title Description

RFC 2821 Simple Mail Transfer The application layer protocol by which one host transfers email to another host.
Protocol This standard doesn't say anything about email user interfaces; it covers the
mechanism for passing email from one computer to another.

RFC 822 Format of Electronic Mail ~ The hasic syntax for ASCII text email messages. MIME is designed to extend this to

Messages support binary data while ensuring that the messages transferred still conform to
this standard.
RFC854, RFC Telnet Protocol An application layer remote login service for command-line environments based
855 around an abstract network virtual terminal (NVT) and TCP.
RFC 862 Echo Protocol An application layer protocol that echoes back all data it receives over both TCP and
UDP; useful as a debugging tool.
RFC 863 Discard Protocol An application layer protocol that receives packets of data over both TCP and UDP
and sends no response to the client; useful as a debugging tool.
RFC 864 Character Generator An application layer protocol that sends an indefinite sequence of ASCII characters
Protocol to any client that connects over either TCP or UDP; also useful as a debugging tool.
RFC 865 Quote of the Day An application layer protocol that returns a quotation to any user who connects

over either TCP or UDP and then closes the connection.

RFC 867 Daytime Protocol An application layer protocol that sends a human-readable ASCII string indicating
the current date and time at the server to any client that connects over TCP or UDP.
This contrasts with the various NTP and Time Server protocols, which do not return
data that can be easily read by humans.

RFC 868 Time Protocol An application layer protocol that sends the time in seconds since midnight, January
1, 1900, to a client connecting over TCP or UDP. The time is sent as a machine-
readable, 32-bit unsigned integer. The standard is incomplete in that it does not
specify how the integer is encoded in 32 bits, but in practice a big-endian integer

is used.

RFC 959 File Transfer Protocol An optionally authenticated, two-socket application layer protocol for file transfer
that uses TCP.

RFC 977 Network News Transfer The application layer protocol by which Usenet news is transferred from machine

Protocol to machine over TCP; used by both news clients talking to news servers and news

servers talking to each other.

RFC1034, Domain Name System The collection of distributed software by which hostnames that human beings can

RFC 1035 remember, like www.oreilly.com, are translated into numbers that computers can

understand, like 198.112.208.11. This RFC defines how domain name servers on
different hosts communicate with each other using UDP.

RFC 1112 Host Extensions for IP The internet layer methods by which conforming systems can direct a single packet
Multicasting of data to multiple hosts. This is called multicasting. Java’s support for multicasting
is discussed in Chapter 13.
RFC 1288 Finger Protocol An application layer protocol for requesting information about a user at a remote
site. It can be a security risk.
RFC 1305 Network Time Protocol A more precise application layer protocol for synchronizing clocks between systems
(Version 3) that attempts to account for network latency.

RFC 1939 Post Office Protocol, Version ~ An application layer protocol used by sporadically connected email clients such as
3 Eudora to retrieve mail from a server over TCP.

Internet Standards | 21

RFC Title Description
RFC 1945 Hypertext Transfer Protocol Version 1.0 of the application layer protocol used by web browsers talking to weh

(HTTP 1.0) servers over TCP; developed by the W3C rather than the IETF.

RFC2045, Multipurpose Internet Mail A means of encoding binary data and non-ASCII text for transmission through

RFC2046, Extensions Internet email and other ASClI-oriented protocols.

RFC 2047

RFC 2141 Uniform Resource Names Similar to URLs but intended to refer to actual resources in a persistent fashion
(URN) Syntax rather than the transient location of those resources.

RFC 2616 Hypertext Transfer Protocol Version 1.1 of the application layer protocol used by web browsers talking to weh
(HTTP 1.7) servers over TCP.

RFC 2373 IP Version 6 Addressing The format and meaning of IPv6 addresses.
Architecture

RFC 3501 Internet Message Access A protocol forremotely accessing a mailbox stored onaserverincluding downloading
Protocol Version 4rev1 messages, deleting messages, and moving messages into and out of different

folders.

RFC 3986 Uniform Resource Similar to URLs but cut a broader path. For instance, ISBN numbers may be URIs
Identifiers (URI): Generic ~ even if the book cannot be retrieved over the Internet.
Syntax

RFC 3987 Internationalized Resource URIs that can contain non-ASCII characters.
|dentifiers (IRIs)

The IETF has traditionally worked behind the scenes to codify and standardize existing
practice. Although its activities are completely open to the public, it’s been very low
profile. There simply aren’t that many people who get excited about network arcana like
the Internet Gateway Message Protocol (IGMP). The participants in the process have
mostly been engineers and computer scientists, including many from academia as well
as the corporate world. Consequently, despite often vociferous debates about ideal im-
plementations, most serious IETF efforts have produced reasonable standards.

Unfortunately, that can't be said of the IETF’s efforts to produce web (as opposed to
Internet) standards. In particular, the IETF’s early effort to standardize HTML was a
colossal failure. The refusal of Netscape and other key vendors to participate or even
acknowledge the process was a crucial problem. That HTML was simple enough and
high profile enough to attract the attention of assorted market droids and random
flamers didn’t help matters either. Thus, in October 1994, the World Wide Web Con-
sortium was formed as a vendor-controlled body that might be able to avoid the pitfalls
that plagued the IETF’s efforts to standardize HTML and HTTP.

W3(C Recommendations

Although the W3C standardization process is similar to the IETF process (a series of
working drafts hashed out on mailing lists resulting in an eventual specification), the
W3C is a fundamentally different organization. Whereas the IETF is open to partici-
pation by anyone, only corporations and other organizations may become members of

22 | Chapter 1: Basic Network Concepts

the W3C. Individuals are specifically excluded, though they may become invited experts
on particular working groups. However, the number of such individuals is quite small
relative to the number of interested experts in the broader community. Membership in
the W3C costs $50,000 a year ($5,000 a year for nonprofits) with a minimum 3-year
commitment. Membership in the IETF costs $0 a year with no commitment beyond a
willingness to participate. And although many people participate in developing W3C
standards, each standard is ultimately approved or vetoed by one individual, W3C di-
rector Tim Berners-Lee. IETF standards are approved by a consensus of the people who
worked on the standard. Clearly, the IETF is a much more democratic (some would say
anarchic) and open organization than the W3C.

Despite the W3C’s strong bias toward the corporate members that pay its bills, it has so
far managed to do a better job of navigating the politically tricky waters of web stand-
ardization than the IETE It has produced several HTML standards, as well as a variety
of others such as HTTP, PICS, XML, CSS, MathML, and more. The W3C has had con-
siderably less success in convincing vendors like Mozilla and Microsoft to fully and
consistently implement its standards.

The W3C has five basic levels of standards:

Note
A note is generally one of two things: either an unsolicited submission by a W3C
member (similar to an IETF Internet draft) or random musings by W3C staff or
related parties that do not actually describe a full proposal (similar to an IETF
informational RFC). Notes will not necessarily lead to the formation of a working
group or a W3C recommendation.

Working drafts
A working draft is a reflection of the current thinking of some (not necessarily all)
members of a working group. It should eventually lead to a proposed recommen-
dation, but by the time it does so it may have changed substantially.

Candidate recommendation
A candidate recommendation indicates that the working group has reached con-
sensus on all major issues and is ready for third-party comment and implementa-
tions. If the implementations do not uncover any obstructions, the spec can be
promoted to a candidate recommendation.

Proposed recommendation
A proposed recommendation is mostly complete and unlikely to undergo more
than minor editorial changes. The main purpose of a proposed recommendation
is to work out bugs in the specification document rather than in the underlying
technology being documented.

Internet Standards | 23

Recommendation

A recommendation is the highest level of W3C standard. However, the W3Cis very
careful not to actually call this a “standard” for fear of running afoul of antitrust
statutes. The W3C describes a recommendation as a “work that represents con-
sensus within W3C and has the Director’s stamp of approval. W3C considers that
the ideas or technology specified by a Recommendation are appropriate for wide-

spread deployment and promote W3C’s mission.”

PR Standards

Companies seeking a little free press or perhaps a temporary boost to their stock price
have sometimes abused both the W3C and IETF standards processes. The IETF will
accept a submission from anyone, and the W3C will accept a submission from any W3C
member. The IETF calls these submissions “Internet drafts” and publishes them for six
months before deleting them. The W3C refers to such submissions as “acknowledged
submissions” and publishes them indefinitely. However, neither organization actually
promises to do more than acknowledge receipt of these documents. In particular, they
do not promise to form a working group or begin the standardization process. None-
theless, press releases invariably misrepresent the submission of such a document as a
far more significant event than it actually is. PR reps can generally count on suckering
at least a few clueless reporters who aren’t up to speed on the intimate details of the
standardization process. However, you should recognize these ploys for what they are.

2%

| Chapter 1: Basic Network Concepts

CHAPTER 2
Streams

A large part of what network programs do is simple input and output: moving bytes
from one system to another. Bytes are bytes; to a large extent, reading data a server sends
youis not all that different from reading a file. Sending text to a client is not that different
from writing a file. However, input and output (I/O) in Java is organized differently than
it is in most other languages, such as Fortran, C, and C++. Consequently, I'll take a few
pages to summarize Java’s unique approach to I/O.

I/O in Java is built on streams. Input streams read data; output streams write data.
Different stream classes, like java.io.FileInputStream and sun.net.TelnetOutput
Stream, read and write particular sources of data. However, all output streams have the
same basic methods to write data and all input streams use the same basic methods to
read data. After a stream is created, you can often ignore the details of exactly what it
is you're reading or writing.

Filter streams can be chained to either an input stream or an output stream. Filters can
modify the data as it’s read or written—for instance, by encrypting or compressing it—
or they can simply provide additional methods for converting the data that’s read or
written into other formats. For instance, the java.io.DataOutputStreanm class provides
a method that converts an int to four bytes and writes those bytes onto its underlying
output stream.

Readers and writers can be chained to input and output streams to allow programs to
read and write text (i.e., characters) rather than bytes. Used properly, readers and writers
can handle a wide variety of character encodings, including multibyte character sets
such as SJIS and UTF-8.

Streams are synchronous; that is, when a program (really a thread) asks a stream to read
or write a piece of data, it waits for the data to be read or written before it does anything
else. Java also offers nonblocking I/O using channels and buffers. Nonblocking I/O is a
little more complicated, but can be much faster in some high-volume applications, such

25

as web servers. Normally, the basic stream model is all you need and all you should use
for clients. Because channels and buffers depend on streams, I'll start with streams and
clients and later discuss nonblocking I/O for use with servers in Chapter 11.

Output Streams

Javas basic output class is java.io.0utputStream:
public abstract class OutputStream
This class provides the fundamental methods needed to write data. These are:

public abstract void write(int b) throws IOException

public void write(byte[] data) throws IOException

public void write(byte[] data, int offset, int length)

throws IOException

public void flush() throws IOException

public void close() throws IOException
Subclasses of OutputStream use these methods to write data onto particular media. For
instance, a FileOutputStream uses these methods to write data into a file. A
TelnetOutputStream uses these methods to write data onto a network connection. A
ByteArrayOutputStreamuses these methods to write data into an expandable byte array.
But whichever medium you’re writing to, you mostly use only these same five methods.
Sometimes you may not even know exactly what kind of stream you’re writing onto.
For instance, you won't find TelnetOutputStream in the Java class library documenta-
tion. It’s deliberately hidden inside the sun packages. It's returned by various methods
in various classes in java.net, like the getOutputStream() method of java.net.Sock
et. However, these methods are declared to return only OutputStream, not the more
specific subclass TelnetOutputStream. That’s the power of polymorphism. If you know
how to use the superclass, you know how to use all the subclasses, too.

OutputStream’s fundamental method is write(int b). This method takes an integer
from 0 to 255 as an argument and writes the corresponding byte to the output stream.
This method is declared abstract because subclasses need to change it to handle their
particular medium. For instance, a ByteArrayOutputStream can implement this meth-
od with pure Java code that copies the byte into its array. However, a FileOutput
Stream will need to use native code that understands how to write data in files on the
host platform.

Take note that although this method takes an int as an argument, it actually writes an
unsigned byte. Java doesn’t have an unsigned byte data type, so an int has to be used
here instead. The only real difference between an unsigned byte and a signed byte is the
interpretation. They’re both made up of eight bits, and when you write an int onto a
network connection using write(int b), only eight bits are placed on the wire. If an
int outside the range 0-255 is passed to write(int b), the least significant byte of the

26 | Chapter2: Streams

number is written and the remaining three bytes are ignored. (This is the effect of casting
an int to a byte.)

R
N On rare occasions, you may find a buggy third-party class that does
o~ . something different when writing a value outside the range 0-255—
"o for instance, throwing an IllegalArgumentException or always writ-

ing 255—so it’s best to avoid writing ints outside the range 0-255 if
possible.

For example, the character-generator protocol defines a server that sends out ASCII
text. The most popular variation of this protocol sends 72-character lines containing
printable ASCII characters. (The printable ASCII characters are those between 33 and
126 inclusive that exclude the various whitespace and control characters.) The first line
contains characters 33 through 104, sorted. The second line contains characters 34
through 105. The third line contains characters 35 through 106. This continues through
line 29, which contains characters 55 through 126. At that point, the characters wrap
around so that line 30 contains characters 56 through 126 followed by character 33
again. Lines are terminated with a carriage return (ASCII 13) and a linefeed (ASCII 10).
The output looks like this:

1" #8%8" ()*+, - . /0123456789 ;<=>? @ABCDEFGHIIKLMNOPQRSTUVWXYZ[\]~_"abcdefgh
"#$%8' ()*+,-. /0123456789 ;<=>?@ABCDEFGHI JKLMNOPQRSTUVWXYZ[\]*_ abcdefght
#5%&' ()*+, - . /0123456789 : ; <=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]*_" abcdefghij
$%8&' ()*+,-. /0123456789 ;<=>?@ABCDEFGHI JKLMNOPQRSTUVWXYZ[\]~_"abcdefghijk
%8&' ()*+,-./0123456789: ; <=>?@ABCDEFGHI JKLMNOPQRSTUVWXYZ[\]~_ " abcdefghijkl
&' ()*+,-./0123456789: ; <=>? @ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]~_ " abcdefghijklm
"()*+,-./0123456789: ; <=>?@QABCDEFGHIJKLMNOPQRSTUVWXYZ [\]~_ " abcdefghijklmn

Because ASCII is a 7-bit character set, each character is sent as a single byte. Conse-
quently, this protocol is straightforward to implement using the basic write() methods,
as the next code fragment demonstrates:

public static void generateCharacters(OutputStream out)
throws IOException {

int firstPrintableCharacter = 33;
int numberOfPrintableCharacters = 94;
int numberOfCharactersPerLine = 72;

int start = firstPrintableCharacter;
while (true) { /* infinite loop */
for (int i1 = start; i < start + numberOfCharactersPerLine; i++) {

out.write((
(i1 - firstPrintableCharacter) % numberOfPrintableCharacters)

+ firstPrintableCharacter);

}

out.write('\r'); // carriage return

Output Streams | 27

out.write('\n'); // linefeed
start = ((start + 1) - firstPrintableCharacter)
% numberOfPrintableCharacters + firstPrintableCharacter;

}

AnOutputStreamis passed to the generateCharacters() method in the out argument.
Bytes are written onto out one at a time. These bytes are given as integers in a rotating
sequence from 33 to 126. Most of the arithmetic here is to make the loop rotate in that
range. After each 72-character chunk is written, a carriage return and a linefeed are
written onto the output stream. The next start character is calculated and the loop
repeats. The entire method is declared to throw I0Exception. That's important because
the character-generator server will terminate only when the client closes the connection.
The Java code will see this as an I0Exception.

Writing a single byte at a time is often inefficient. For example, every TCP segment
contains at least 40 bytes of overhead for routing and error correction. If each byte is
sent by itself, you may be stuffing the network with 41 times more data than you think
youare! Add overhead of the host-to-network layer protocol, and this can be even worse.
Consequently, most TCP/IP implementations buffer data to some extent. That is, they
accumulate bytes in memory and send them to their eventual destination only when a
certain number have accumulated or a certain amount of time has passed. However, if
you have more than one byte ready to go, it’s not a bad idea to send them all at once.
Using write(byte[] data) or write(byte[] data, int offset, int length) is
normally much faster than writing all the components of the data array one at a time.
For instance, here’s an implementation of the generateCharacters() method that
sends a line at a time by packing a complete line into a byte array:

public static void generateCharacters(OutputStream out)
throws IOException {

int firstPrintableCharacter = 33;

int numberOfPrintableCharacters = 94;

int numberOfCharactersPerLine = 72;

int start = firstPrintableCharacter;

byte[] line = new byte[numberOfCharactersPerLine + 2];
// the +2 is for the carriage return and linefeed

while (true) { /* infinite loop */
for (int 1 = start; i < start + numberOfCharactersPerLine; i++) {
line[i - start] = (byte) ((i - firstPrintableCharacter)
% numberOfPrintableCharacters + firstPrintableCharacter);
}
1ine[72] = (byte) '\r'; // carriage return
1ine[73] = (byte) '\n'; // line feed
out.write(line);
start = ((start + 1) - firstPrintableCharacter)
% numberOfPrintableCharacters + firstPrintableCharacter;

28 | Chapter2: Streams

}
}
The algorithm for calculating which bytes to write when is the same as for the previous
implementation. The crucial difference is that the bytes are packed into a byte array
before being written onto the network. Also, notice that the int result of the calculation
must be cast to a byte before being stored in the array. This wasn’t necessary in the
previous implementation because the single-byte write() method is declared to take
an int as an argument.

Streams can also be buffered in software, directly in the Java code as well as in the
network hardware. Typically, this is accomplished by chaining a BufferedOutput
Streamor aBufferedWriter to the underlying stream, a technique we’ll explore shortly.
Consequently, if you are done writing data, it's important to flush the output stream.
For example, suppose you've written a 300-byte request to an HTTP 1.1 server that uses
HTTP Keep-Alive. You generally want to wait for a response before sending any more
data. However, if the output stream has a 1,024-byte buffer, the stream may be waiting
for more data to arrive before it sends the data out of its buffer. No more data will be
written onto the stream until the server response arrives, but the response is never going
to arrive because the request hasn’t been sent yet! Figure 2-1 illustrates this catch-22.
The flush() method breaks the deadlock by forcing the buffered stream to send its data
even if the buffer isn’t yet full.

I've sent the message to the
client. Now I'll wait for it to
respond.

This message isn't big enough to
bother sending.I'll wait for the
server to send some more before |
pass this along.

| wonder where the rest of that
message is?

Al

BufferedOutputStream

WEB SERVER WEB CLIENT

Figure 2-1. Data can get lost if you don’t flush your streams

It's important to flush your streams whether you think you need to or not. Depending
on how you got hold of a reference to the stream, you may or may not know whether
it’s buffered. (For instance, System. out is buffered whether you want it to be or not.) If

Output Streams | 29

flushing isn't necessary for a particular stream, it’s a very low-cost operation. However,
if it is necessary, it’s very necessary. Failing to flush when you need to can lead to un-
predictable, unrepeatable program hangs that are extremely hard to diagnose if you
don’t have a good idea of what the problem is in the first place. As a corollary to all this,
you should flush all streams immediately before you close them. Otherwise, data left in
the buffer when the stream is closed may get lost.

Finally, when you're done with a stream, close it by invoking its close() method. This
releases any resources associated with the stream, such as file handles or ports. If the
stream derives from a network connection, then closing the stream terminates the con-
nection. Once an output stream has been closed, further writes to it throw I0Excep
tions. However, some kinds of streams may still allow you to do things with the object.
For instance, a closed ByteArrayOutputStream can still be converted to an actual byte
array and a closed DigestOutputStream can still return its digest.

Failure to close a stream in a long-running program can leak file handles, network ports,
and other resources. Consequently, in Java 6 and earlier, it’s wise to close the stream in
a finally block. To get the right variable scope, you have to declare the stream variable
outside the try block but initialize it inside the try block. Furthermore, to avoid Null
PointerExceptionsyouneed to check whether the stream variable is null before closing
it. Finally, you usually want to ignore or at most log any exceptions that occur while
closing the stream. For example:

OutputStream out = null;
try {
out = new FileOutputStream("/tmp/data.txt");
// work with the output streanm...
} catch (IOException ex) {
System.err.println(ex.getMessage());
} finally {
if (out != null) {
try {
out.close();
} catch (IOException ex) {
// ignore
}
}
}

This technique is sometimes called the dispose pattern; and it's common for any object

that needs to be cleaned up before it’s garbage collected. You'll see it used not just for
streams, but also for sockets, channels, JDBC connections and statements, and more.

Java 7 introduces the try with resources construct to make this cleanup neater. Instead
of declaring the stream variable outside the try block, you declare it inside an argument
list of the try block. For instance, the preceding fragment now becomes the much
simpler:

30 | Chapter2: Streams

try (OutputStream out = new FileOutputStream("/tmp/data.txt")) {
// work with the output streanm...

} catch (IOException ex) {
System.err.println(ex.getMessage());

}

The finally clause is no longer needed. Java automatically invokes close() on any
AutoCloseable objects declared inside the argument list of the try block.

W N
N try with resources can be used with any object that implements the
w . Closeable interface, which includes almost every object you need to
e dispose. So far, JavaMail Transport objects are only exceptions I've
encountered. Those still need to be disposed of explicitly.
Input Streams

Java’s basic input class is java.io.InputStream:
public abstract class InputStream

This class provides the fundamental methods needed to read data as raw bytes. These
are:

public abstract int read() throws IOException

public int read(byte[] input) throws IOException

public int read(byte[] input, int offset, int length) throws IOException
public long skip(long n) throws IOException

public int available() throws IOException

public void close() throws IOException

Concrete subclasses of InputStream use these methods to read data from particular
media. For instance, a FileInputStream reads data from a file. A TelnetInputStream
reads data from a network connection. A ByteArrayInputStream reads data from an
array of bytes. But whichever source you're reading, you mostly use only these same six
methods. Sometimes you don’t know exactly what kind of stream you're reading from.
For instance, TelnetInputStreamis an undocumented class hidden inside the sun.net
package. Instances of it are returned by various methods in the java.net package (e.g.,
the openStream() method of java.net.URL). However, these methods are declared to
return only InputStream, not the more specific subclass TelnetInputStream. Thats
polymorphism at work once again. The instance of the subclass can be used transpar-
ently as an instance of its superclass. No specific knowledge of the subclass is required.

The basic method of InputStream is the noargs read() method. This method reads a
single byte of data from the input streanm’s source and returns it as an int from 0 to 255.
End of stream is signified by returning -1. The read() method waits and blocks exe-
cution of any code that follows it until a byte of data is available and ready to be read.

Input Streams | 31

Input and output can be slow, so if your program is doing anything else of importance,
try to put I/O in its own thread.

The read() method is declared abstract because subclasses need to change it to handle
their particular medium. For instance, a ByteArrayInputStream can implement this
method with pure Java code that copies the byte from its array. However, a
TelnetInputStream needs to use a native library that understands how to read data
from the network interface on the host platform.

The following code fragment reads 10 bytes from the InputStream in and stores them
in the byte array input. However, if end of stream is detected, the loop is terminated
early:
byte[] input = new byte[10];
for (int 1 = 0; 1 < input.length; i1++) {
int b = in.read();
if (b == -1) break;
input[i] = (byte) b;
}
Although read() only reads a byte, it returns an int. Thus, a cast is necessary before
storing the result in the byte array. Of course, this produces a signed byte from —-128 to
127 instead of the unsigned byte from 0 to 255 returned by the read () method. However,
aslong as you're clear about which one you’re working with, this is not a major problem.
You can convert a signed byte to an unsigned byte like this:

inti=b>=072?Db: 256 + b;

Reading a byte at a time is as inefficient as writing data one byte at a time. Consequently,
there are two overloaded read() methods that fill a specified array with multiple bytes
of data read from the stream read(byte[] input) and read(byte[] input, int
offset, int length). The first method attempts to fill the specified array input. The
second attempts to fill the specified subarray of input, starting at of fset and continuing
for length bytes.

Notice I said these methods attempt to fill the array, not that they necessarily succeed.
An attempt may fail in several ways. For instance, it's not unheard of that while your
program is reading data from a remote web server over DSL, abugin a switch ata phone
company central office will disconnect you and several hundred of your neighbors from
the rest of the world. This would cause an I0Exception. More commonly, however, a
read attempt won't completely fail but won’t completely succeed either. Some of the
requested bytes may be read, but not all of them. For example, you may try to read 1,024
bytes from a network connection, when only 512 have actually arrived from the server;
the rest are still in transit. They’ll arrive eventually, but they aren’t available at this mo-
ment. To account for this, the multibyte read methods return the number of bytes ac-
tually read. For example, consider this code fragment:

32 | Chapter2: Streams

byte[] input new byte[1024];
int bytesRead = in.read(input);

It attempts to read 1,024 bytes from the InputStream in into the array input. However,
if only 512 bytes are available, that’s all that will be read, and bytesRead will be set to
512. To guarantee that all the bytes you want are actually read, place the read in a loop
that reads repeatedly until the array is filled. For example:

int bytesRead
int bytesToRead 1024;
byte[] input new byte[bytesToRead];
while (bytesRead < bytesToRead) {

bytesRead += in.read(input, bytesRead, bytesToRead - bytesRead);
}

This technique is especially crucial for network streams. Chances are that if a file is
available at all, all the bytes of a file are also available. However, because networks move
much more slowly than CPUs, it is very easy for a program to empty a network buffer
before all the data has arrived. In fact, if one of these two methods tries to read from a
temporarily empty but open network buffer, it will generally return 0, indicating that
no data is available but the stream is not yet closed. This is often preferable to the
behavior of the single-byte read() method, which blocks the running thread in the same
circumstances.

0;

All three read() methods return -1 to signal the end of the stream. If the stream ends
while there’s still data that hasn’t been read, the multibyte read() methods return the
data until the buffer has been emptied. The next call to any of the read() methods will
return -1. The -1 is never placed in the array. The array only contains actual data. The
previous code fragment had a bug because it didn’t consider the possibility that all 1,024
bytes might never arrive (as opposed to not being immediately available). Fixing that
bug requires testing the return value of read() before adding it to bytesRead. For ex-
ample:

int bytesRead = 0;

int bytesToRead = 1024;

byte[] input = new byte[bytesToRead];

while (bytesRead < bytesToRead) {
int result = in.read(input, bytesRead, bytesToRead - bytesRead);
if (result == -1) break; // end of stream
bytesRead += result;

}

If you do not want to wait until all the bytes you need are immediately available, you
can use the available() method to determine how many bytes can be read without
blocking. This returns the minimum number of bytes you can read. You may in fact be
able to read more, but you will be able to read at least as many bytes as available()
suggests. For example:

Input Streams | 33

int bytesAvailable = in.available();

byte[] input = new byte[bytesAvailable];

int bytesRead = in.read(input, 0, bytesAvailable);
// continue with rest of program immediately...

In this case, you can expect that bytesRead is exactly equal to bytesAvailable. You
cannot, however, expect that bytesRead is greater than zero. It is possible that no bytes
were available. On end of stream, available() returns 0. Generally, read(byte[] in

put, int offset, int length) returns -1 on end of stream; but if length is 0, then
it does not notice the end of stream and returns 0 instead.

On rare occasions, you may want to skip over data without reading it. The skip()
method accomplishes this task. It’s less useful on network connections than when read-
ing from files. Network connections are sequential and normally quite slow, so it’s not
significantly more time consuming to read data than to skip over it. Files are random
access so that skipping can be implemented simply by repositioning a file pointer rather
than processing each byte to be skipped.

As with output streams, once your program has finished with an input stream, it should
close it by invoking its close() method. This releases any resources associated with the
stream, such as file handles or ports. Once an input stream has been closed, further
reads from it throw IOExceptions. However, some kinds of streams may still allow you
to do things with the object. For instance, you generally won't retrieve the message digest
from a java.security.DigestInputStream until after the data has been read and the
stream closed.

Marking and Resetting

The InputStreanm class also has three less commonly used methods that allow programs
to back up and reread data they’ve already read. These are:

public void mark(int readAheadLimit)
public void reset() throws IOException
public boolean markSupported()

In order to reread data, mark the current position in the stream with the mark () method.
At a later point, you can reset the stream to the marked position using the reset()
method. Subsequent reads then return data starting from the marked position. However,
you may not be able to reset as far back as you like. The number of bytes you can read
from the mark and still reset is determined by the readAheadLimit argument to
mark(). If you try to reset too far back, an I0Exception is thrown. Furthermore, there
can be only one mark in a stream at any given time. Marking a second location erases
the first mark.

Marking and resetting are usually implemented by storing every byte read from the
marked position on in an internal buffer. However, not all input streams support this.

34 | Chapter2: Streams

Before trying to use marking and resetting, check whether the markSupported() meth-
od returns true. Ifit does, the stream supports marking and resetting. Otherwise, mark()
will do nothing and reset() will throw an IOException.

In my opinion, this demonstrates very poor design. In practice, more
streams don’t support marking and resetting than do. Attaching func-
% tionality to an abstract superclass that is not available to many, prob-
ably most, subclasses is a very poor idea. It would be better to place
these three methods in a separate interface that could be implement-
ed by those classes that provided this functionality. The disadvantage
of this approach is that you couldn’t then invoke these methods on an
arbitrary input stream of unknown type; but in practice, you can’t do
that anyway because not all streams support marking and resetting.
Providing a method such as markSupported() to check for function-
ality at runtime is a more traditional, non-object-oriented solution to
the problem. An object-oriented approach would embed this in the
type system through interfaces and classes so that it could all be
checked at compile time.

The only input stream classes in java. io that always support marking are BufferedIn
putStream and ByteArrayInputStream. However, other input streams such as Telne
tInputStream may support marking if they’re chained to a buffered input stream first.

Filter Streams

InputStream and OutputStream are fairly raw classes. They read and write bytes singly
or in groups, but that’s all. Deciding what those bytes mean—whether they’re integers
or IEEE 754 floating-point numbers or Unicode text—is completely up to the pro-
grammer and the code. However, there are certain extremely common data formats that
can benefit from a solid implementation in the class library. For example, many integers
passed as parts of network protocols are 32-bit big-endian integers. Much of the text
sent over the Web is either 7-bit ASCII, 8-bit Latin-1, or multibyte UTF-8. Many files
transferred by FTP are stored in the ZIP format. Java provides a number of filter classes
you can attach to raw streams to translate the raw bytes to and from these and other
formats.

The filters come in two versions: the filter streams, and the readers and writers. The
filter streams still work primarily with raw data as bytes: for instance, by compressing
the data or interpreting it as binary numbers. The readers and writers handle the special
case of text in a variety of encodings such as UTF-8 and ISO 8859-1.

Filters are organized in a chain, as shown in Figure 2-2. Each link in the chain receives
data from the previous filter or stream and passes the data along to the next link in the

Filter Streams | 35

chain. In this example, a compressed, encrypted text file arrives from the local network
interface, where native code presents it to the undocumented TelnetInputStream. A
BufferedInputStream buffers the data to speed up the entire process. A CipherInput
Stream decrypts the data. A GZIPInputStream decompresses the deciphered data. An
InputStreamReader converts the decompressed data to Unicode text. Finally, the text
is read into the application and processed.

APPLICATION

Text

InputStreamReader J

buffered data

GZIPInputStream J

buffered, compressed data

CipherinputStream J

buffered, compressed, encrypted data

BufferedinputStream J

raw compressed, encrypted data

TelnetinputStream J

raw compressed, encrypted data

\\

(\
““\ //‘ Network /“‘

Figure 2-2. The flow of data through a chain of filters

Every filter output stream has the same write(), close(), and flush() methods as
java.io.OutputStream. Every filter input stream has the same read(), close(), and

36 | Chapter2: Streams

available() methods as java.io.InputStream. In some cases, such as BufferedIn
putStream and BufferedOutputStream, these may be the only methods the filter has.
The filtering is purely internal and does not expose any new public interface. However,
in most cases, the filter stream adds public methods with additional purposes. Some-
times these are intended to be used in addition to the usual read() and write() meth-
ods, like the unread() method of PushbackInputStream. At other times, they almost
completely replace the original interface. For example, it’s relatively rare to use the
write() method of PrintStreaminstead of one of its print() and println() methods.

Chaining Filters Together

Filters are connected to streams by their constructors. For example, the following code
fragment buffers input from the file data.txt. First, a FileInputStream object fin is
created by passing the name of the file as an argument to the FileInputStream con-
structor. Then, a BufferedInputStream object bin is created by passing fin as an ar-
gument to the BufferedInputStream constructor:

FileInputStream fin
BufferedInputStream bin

new FileInputStream("data.txt");
new BufferedInputStream(fin);

From this point forward, it’s possible to use the read() methods of both fin and bin to
read data from the file data.txt. However, intermixing calls to different streams con-
nected to the same source may violate several implicit contracts of the filter streams.
Most of the time, you should only use the last filter in the chain to do the actual reading
or writing. One way to write your code so that it’s at least harder to introduce this sort
of bug is to deliberately overwrite the reference to the underlying input stream. For
example:

InputStream in = new FileInputStream('data.txt");

in = new BufferedInputStream(in);
After these two lines execute, there’s no longer any way to access the underlying file
input stream, so you can’t accidentally read from it and corrupt the buffer. This example
works because it’s not necessary to distinguish between the methods of InputStream
and those of BufferedInputStream given that BufferedInputStream is simply used
polymorphically as an instance of InputStream. In cases where it is necessary to use the
additional methods of the filter stream not declared in the superclass, you may be able
to construct one stream directly inside another. For example:

DataOutputStream dout = new DataOutputStream(new BufferedOutputStream(
new FileOutputStream("data.txt")));

Although these statements can get a little long, it’s easy to split the statement across
several lines, like this:

DataOutputStream dout = new DataOutputStream(
new BufferedOutputStream(

Filter Streams | 37

new FileOutputStream("data.txt")
)
);

Connection is permanent. Filters cannot be disconnected from a stream.

There are times when you may need to use the methods of multiple filters in a chain.
For instance, if you're reading a Unicode text file, you may want to read the byte order
mark in the first three bytes to determine whether the file is encoded as big-endian
UCS-2, little-endian UCS-2, or UTF-8, and then select the matching Reader filter for
the encoding. Or, if you're connecting to a web server, you may want to read the header
the server sends to find the Content-encoding and then use that content encoding to
pick the right Reader filter to read the body of the response. Or perhaps you want to
send floating-point numbers across a network connection using a DataOutputStream
and then retrieve a MessageDigest from the DigestOutputStream that the DataOut
putStream is chained to. In all these cases, you need to save and use references to each
of the underlying streams. However, under no circumstances should you ever read from
or write to anything other than the last filter in the chain.

Buffered Streams

The BufferedOutputStreanm class stores written data in a buffer (a protected byte array
field named buf) until the buffer is full or the stream is flushed. Then it writes the data
onto the underlying output stream all at once. A single write of many bytes is almost
always much faster than many small writes that add up to the same thing. This is espe-
cially true of network connections because each TCP segment or UDP packet carries a
finite amount of overhead, generally about 40 bytes’ worth. This means that sending 1
kilobyte of data 1 byte at a time actually requires sending 40 kilobytes over the wire,
whereas sending it all at once only requires sending a little more than 1K of data. Most
network cards and TCP implementations provide some level of buffering themselves,
so the real numbers aren’t quite this dramatic. Nonetheless, buffering network output
is generally a huge performance win.

The BufferedInputStrean class also has a protected byte array named buf that serves
as a buffer. When one of the stream’s read() methods is called, it first tries to get the
requested data from the buffer. Only when the buffer runs out of data does the stream
read from the underlying source. At this point, it reads as much data as it can from the
source into the buffer, whether it needs all the data immediately or not. Data that isn't
used immediately will be available for later invocations of read(). When reading files
from a local disk, it's almost as fast to read several hundred bytes of data from the
underlying stream as it is to read one byte of data. Therefore, buffering can substantially
improve performance. The gain is less obvious on network connections where the bot-
tleneck is often the speed at which the network can deliver data rather than the speed
at which the network interface delivers data to the program or the speed at which the

38 | Chapter2: Streams

program runs. Nonetheless, buffering input rarely hurts and will become more impor-
tant over time as network speeds increase.

BufferedInputStream has two constructors, as does BufferedOutputStream:

public BufferedInputStream(InputStream in)

public BufferedInputStream(InputStream in, int bufferSize)

public BufferedOutputStream(OutputStream out)

public BufferedOutputStream(OutputStream out, int bufferSize)
The first argument is the underlying stream from which unbuffered data will be read
or to which buffered data will be written. The second argument, if present, specifies the
number of bytes in the buffer. Otherwise, the buffer size is set to 2,048 bytes for an input
stream and 512 bytes for an output stream. The ideal size for a buffer depends on what
sort of stream you're buffering. For network connections, you want something a little
larger than the typical packet size. However, this can be hard to predict and varies
depending on local network connections and protocols. Faster, higher-bandwidth net-
works tend to use larger packets, although TCP segments are often no larger than a

kilobyte.

BufferedInputStream does not declare any new methods of its own. It only overrides
methods from InputStream. It does support marking and resetting. The two multibyte
read() methods attempt to completely fill the specified array or subarray of data by
reading from the underlying input stream as many times as necessary. They return only
when the array or subarray has been completely filled, the end of stream is reached, or
the underlying stream would block on further reads. Most input streams do not behave
like this. They read from the underlying stream or data source only once before re-
turning.

BufferedOutputStream also does not declare any new methods of its own. You invoke
its methods exactly as you would in any output stream. The difference is that each write
places data in the buffer rather than directly on the underlying output stream. Conse-
quently, it is essential to flush the stream when you reach a point at which the data needs
to be sent.

PrintStream

The PrintStream class is the first filter output stream most programmers encounter
because System.out is a PrintStream. However, other output streams can also be
chained to print streams, using these two constructors:

public PrintStream(OutputStream out)

public PrintStream(OutputStream out, boolean autoFlush)
By default, print streams should be explicitly flushed. However, if the autoFlush argu-
ment is true, the stream will be flushed every time a byte array or linefeed is written or
a println() method is invoked.

Filter Streams | 39

As well as the usual write(), flush(), and close() methods, PrintStreamhas 9 over-
loaded print() methods and 10 overloaded println() methods:

public void print(boolean b)
public void print(char c)
public void print(int 1)
public void print(long 1)
public void print(float f)
public void print(double d)
public void print(char[] text)
public void print(String s)
public void print(Object o)
public void println()

public void println(boolean b)
public void println(char c)
public void println(int 1)
public void println(long 1)
public void println(float f)
public void println(double d)
public void println(char[] text)
public void println(String s)
public void println(Object o)

Each print() method converts its argument to a string in a predictable fashion and
writes the string onto the underlying output stream using the default encoding. The
println() methods do the same thing, but they also append a platform-dependent line
separator to the end of the line they write. This is a linefeed (\n) on Unix (including
Mac OS X), a carriage return (\r) on Mac OS 9, and a carriage return/linefeed pair (\r
\n) on Windows.

PrintStrean is evil and network programmers should avoid it like the

”@ plague!

The first problem is that the output from println() is platform dependent. Depending
on what system runs your code, lines may sometimes be broken with a linefeed, a car-
riage return, or a carriage return/linefeed pair. This doesn’t cause problems when writing
to the console, but it’s a disaster for writing network clients and servers that must follow
a precise protocol. Most network protocols such as HTTP and Gnutella specify that
lines should be terminated with a carriage return/linefeed pair. Using println() makes
it easy to write a program that works on Windows but fails on Unix and the Mac.
Although many servers and clients are liberal in what they accept and can handle in-
correct line terminators, there are occasional exceptions.

The second problem is that PrintStream assumes the default encoding of the platform
on which it’s running. However, this encoding may not be what the server or client
expects. For example, a web browser receiving XML files will expect them to be encoded

40 | Chapter2:Streams

in UTF-8 or UTF-16 unless the server tells it otherwise. However, a web server that uses
PrintStream may well send the files encoded in CP1252 from a U.S.-localized Windows
system or SJIS from a Japanese-localized system, whether the client expects or under-
stands those encodings or not. PrintStream doesn't provide any mechanism for chang-
ing the default encoding. This problem can be patched over by using the related Print
Writer class instead. But the problems continue.

The third problem is that PrintStreanm eats all exceptions. This makes PrintStream
suitable for textbook programs such as HelloWorld, because simple console output can
be taught without burdening students with first learning about exception handling and
all that implies. However, network connections are much less reliable than the console.
Connections routinely fail because of network congestion, phone company misfea-
sance, remote systems crashing, and many other reasons. Network programs must be
prepared to deal with unexpected interruptions in the flow of data. The way to do this
is by handling exceptions. However, PrintStreanm catches any exceptions thrown by the
underlying output stream. Notice that the declaration of the standard five Output
Stream methods in PrintStream does not have the usual throws IOException decla-
ration:

public abstract void write(int b)

public void write(byte[] data)

public void write(byte[] data, int offset, int length)
public void flush()

public void close()

Instead, PrintStream relies on an outdated and inadequate error flag. If the underlying
stream throws an exception, this internal error flag is set. The programmer is relied
upon to check the value of the flag using the checkError () method:

public boolean checkError()

To do any error checking at all on a PrintStream, the code must explicitly check every
call. Furthermore, once an error has occurred, there is no way to unset the flag so further
errors can be detected. Nor is any additional information available about the error. In
short, the error notification provided by PrintStreanm is wholly inadequate for unreli-
able network connections.

Data Streams

TheDataInputStreamand DataOutputStream classes provide methods for reading and
writing Java’s primitive data types and strings in a binary format. The binary formats
used are primarily intended for exchanging data between two different Java programs
through a network connection, a datafile, a pipe, or some other intermediary. What a
data output stream writes, a data input stream can read. However, it happens that the
formats are the same ones used for most Internet protocols that exchange binary num-
bers. For instance, the time protocol uses 32-bit big-endian integers, just like Javas int

Filter Streams | 41

data type. The controlled-load network element service uses 32-bit IEEE 754 floating-
point numbers, just like Java’s float data type. (This is correlation rather than causation.
Both Java and most network protocols were designed by Unix programmers, and con-
sequently both tend to use the formats common to most Unix systems.) However, this
isn’t true for all network protocols, so check the details of any protocol you use. For
instance, the Network Time Protocol (NTP) represents times as 64-bit unsigned fixed-
point numbers with the integer part in the first 32 bits and the fraction part in the last
32 bits. This doesn't match any primitive data type in any common programming lan-
guage, although it is straightforward to work with—at least as far as is necessary for
NTP.

The DataOutputStreanm class offers these 11 methods for writing particular Java data
types:

public final void writeBoolean(boolean b) throws IOException
public final void writeByte(int b) throws IOException
public final void writeShort(int s) throws IOException
public final void writeChar(int c) throws IOException
public final void writeInt(int i) throws IOException
public final void writeLong(long 1) throws IOException
public final void writeFloat(float f) throws IOException
public final void writeDouble(double d) throws IOException
public final void writeChars(String s) throws IOException
public final void writeBytes(String s) throws IOException
public final void writeUTF(String s) throws IOException

All data is written in big-endian format. Integers are written in two's complement in the
minimum number of bytes possible. Thus, a byte is written as one byte, a short as two
bytes, an int as four bytes, and a long as eight bytes. Floats and doubles are written in

IEEE 754 form in four and eight bytes, respectively. Booleans are written as a single byte
with the value 0 for false and 1 for true. Chars are written as two unsigned bytes.

The last three methods are a little trickier. The writeChars() method simply iterates
through the String argument, writing each character in turn as a two-byte, big-endian
Unicode character (a UTF-16 code point, to be absolutely precise). The write

Bytes() method iterates through the String argument but writes only the least signif-
icant byte of each character. Thus, information will be lost for any string with characters
from outside the Latin-1 character set. This method may be useful on some network
protocols that specify the ASCII encoding, but it should be avoided most of the time.

Neither writeChars() norwriteBytes() encodes the length of the string in the output
stream. As a result, you can’t really distinguish between raw characters and characters
that make up part of a string. The writeUTF() method does include the length of the
string. It encodes the string itselfin a variant of the UTF-8 encoding of Unicode. Because
this variant is subtly incompatible with most non-Java software, it should be used only
for exchanging data with other Java programs that use a DataInputStream to read

42 | Chapter2:Streams

strings. For exchanging UTF-8 text with all other software, you should use an Input
StreamReader with the appropriate encoding. (There wouldn't be any confusion if Sun
had just called this method and its partner writeString() and readString() rather
than writeUTF() and readUTF().)

Along with these methods for writing binary numbers and strings, DataOutput
Stream of course has the usual write(), flush(), and close() methods any Output
Streanm class has.

DataInputStream is the complementary class to DataOutputStream. Every format that
DataOutputStream writes, DataInputStream can read. In addition, DataInputStream
has the usual read(), available(), skip(), and close() methods, as well as methods
for reading complete arrays of bytes and lines of text.

There are 9 methods to read binary data that match the 11 methods in DataOutput
Stream (there’s no exact complement for writeBytes() or writeChars(); these are
handled by reading the bytes and chars one at a time):

public final boolean readBoolean() throws IOException
public final byte readByte() throws IOException
public final char readChar() throws IOException
public final short readShort() throws IOException
public final int readInt() throws IOException

public final long readlLong() throws IOException
public final float readFloat() throws IOException
public final double readDouble() throws IOException
public final String readUTF() throws IOException

In addition, DataInputStream provides two methods to read unsigned bytes and un-
signed shorts and return the equivalent int. Java doesn’'t have either of these data types,
but you may encounter them when reading binary data written by a C program:

public final int readUnsignedByte() throws IOException
public final int readUnsignedShort() throws IOException

DataInputStream has the usual two multibyte read() methods that read data into an
array or subarray and return the number of bytes read. It also has two readFully()
methods that repeatedly read data from the underlying input stream into an array until
the requested number of bytes have been read. If enough data cannot be read, then an
I0Exception is thrown. These methods are especially useful when you know in advance
exactly how many bytes you have to read. This might be the case when you've read the
Content-length field out of an HTTP header and thus know how many bytes of data
there are:

public final int read(byte[] input) throws IOException

public final int read(byte[] input, int offset, int length)
throws IOException

public final void readFully(byte[] input) throws IOException

Filter Streams | 43

public final void readFully(byte[] input, int offset, int length)
throws IOException

Finally, DataInputStream provides the popular readLine() method that reads a line of
text as delimited by a line terminator and returns a string:

public final String readlLine() throws IOException

However, this method should not be used under any circumstances, both because it is
deprecated and because it is buggy. It’s deprecated because it doesn’t properly convert
non-ASCII characters to bytes in most circumstances. That task is now handled by the
readLine() method of the BufferedReader class. However, that method and this one
share the same insidious bug: they do not always recognize a single carriage return as
endingaline. Rather, readLine() recognizes onlyalinefeed ora carriage return/linefeed
pair. When a carriage return is detected in the stream, readLine() waits to see whether
the next character is a linefeed before continuing. If it is a linefeed, the carriage return
and the linefeed are thrown away and the line is returned as a String. Ifitisn't a linefeed,
the carriage return is thrown away, the line is returned as a String, and the extra char-
acter that was read becomes part of the next line. However, if the carriage return is the
last character in the stream, then readLine() hangs, waiting for the last character, which
isn’t forthcoming.

This problem isn’t obvious when reading files because there will almost certainly be a
next character: -1 for end of stream, if nothing else. However, on persistent network
connections such as those used for FTP and late-model HTTP, a server or client may
simply stop sending data after the last character and wait for a response without actually
closing the connection. If you're lucky, the connection may eventually time out on one
end or the other and you’ll get an I0Exception, although this will probably take at least
a couple of minutes, and cause you to lose the last line of data from the stream. If youre
not lucky, the program will hang indefinitely.

Readers and Writers

Many programmers have a bad habit of writing code as if all text were ASCII or at least
in the native encoding of the platform. Although some older, simpler network protocols,
such as daytime, quote of the day, and chargen, do specify ASCII encoding for text, this
is not true of HTTP and many other more modern protocols, that allow a wide variety
of localized encodings, such as KOI8-R Cyrillic, Big-5 Chinese, and ISO 8859-9 for
Turkish. Javas native character set is the UTF-16 encoding of Unicode. When the en-
coding is no longer ASCII, the assumption that bytes and chars are essentially the same
things also breaks down. Consequently, Java provides an almost complete mirror of the
input and output stream class hierarchy designed for working with characters instead

of bytes.

44 | Chapter 2: Streams

In this mirror image hierarchy, two abstract superclasses define the basic API for reading
and writing characters. The java.io.Reader class specifies the API by which characters
are read. The java.tio.Writer class specifies the API by which characters are written.
Wherever input and output streams use bytes, readers and writers use Unicode char-
acters. Concrete subclasses of Reader and Writer allow particular sources to be read
and targets to be written. Filter readers and writers can be attached to other readers and
writers to provide additional services or interfaces.

The most important concrete subclasses of Reader and Writer are the InputStream
Reader and the OutputStreamWriter classes. An InputStreamReader contains an un-
derlying input stream from which it reads raw bytes. It translates these bytes into Uni-
code characters according to a specified encoding. An OutputStreamWriter receives
Unicode characters from a running program. It then translates those characters into
bytes using a specified encoding and writes the bytes onto an underlying output stream.

In addition to these two classes, the java.io package provides several raw reader and
writer classes that read characters without directly requiring an underlying input
stream, including:

e FileReader

o FileWriter

¢ StringReader

o StringWriter

e CharArrayReader

e CharArrayWriter

The first two classes in this list work with files and the last four work inside Java, so they
aren’t of great use for network programming. However, aside from different construc-
tors, these classes have pretty much the same public interface as all other reader and
writer classes.

Writers

The Writer class mirrors the java.io.0utputStream class. It’s abstract and has two
protected constructors. Like OutputStream, the Writer class is never used directly; in-
stead, it is used polymorphically, through one of its subclasses. It has five write()
methods as well as a flush() and a close() method:

protected Writer()

protected Writer(Object lock)

public abstract void write(char[] text, int offset, int length)
throws IOException

public void write(int c) throws IOException

Readersand Writers | 45

public void write(char[] text) throws IOException

public void write(String s) throws IOException

public void write(String s, int offset, int length) throws IOException

public abstract void flush() throws IOException

public abstract void close() throws IOException
The write(char[] text, int offset, int length) method is the base method in
terms of which the other four write() methods are implemented. A subclass must
override at least this method as well as flush() and close(), although most override
some of the other write() methods as well in order to provide more efficient imple-

mentations. For example, given a Writer object w, you can write the string “Network”
like this:

char[] network = {'N', 'e', 't', 'w', 'o', 'r', 'k'};
w.write(network, 0, network.length);

The same task can be accomplished with these other methods, as well:

w.write(network);

for (int 1 = 0; 1 < network.length; i++) w.write(network[i]);
w.write("Network");

w.write("Network", 0, 7);

All of these examples are different ways of expressing the same thing. The one you
choose to use in any given situation is mostly a matter of convenience and taste. How-
ever, how many and which bytes are written by these lines depends on the encoding w
uses. If it’s using big-endian UTF-16, it will write these 14 bytes (shown here in hexa-
decimal) in this order:

00 4E 00 65 00 74 00 77 00 6F 00 72 00 6B

On the other hand, if w uses little-endian UTF-16, this sequence of 14 bytes is written:
4E 00 65 00 74 00 77 00 6F 00 72 00 6B 00

If w uses Latin-1, UTF-8, or MacRoman, this sequence of seven bytes is written:
4E 65 74 77 6F 72 6B

Other encodings may write still different sequences of bytes. The exact output depends
on the encoding.

Writers may be buffered, either directly by being chained to a BufferedWriter or in-
directly because their underlying output stream is buffered. To force a write to be com-
mitted to the output medium, invoke the flush() method:

w.flush();

The close() method behaves similarly to the close() method of OutputStream.
close() flushes the writer, then closes the underlying output stream and releases any
resources associated with it:

public abstract void close() throws IOException

46 | Chapter2:Streams

After a writer has been closed, further writes throw I0OExceptions.

OutputStreamWriter

OutputStreamWriter is the most important concrete subclass of Writer. An Output
StreamWriter receives characters from a Java program. It converts these into bytes
according to a specified encoding and writes them onto an underlying output stream.
Its constructor specifies the output stream to write to and the encoding to use:

public OutputStreamWriter(OutputStream out, String encoding)
throws UnsupportedEncodingException

Valid encodings are listed in the documentation for Sun’s native2ascii tool included with
the JDK. If no encoding is specified, the default encoding for the platform is used. In
2013, the default encoding is UTF-8 on the Mac and more often than not on Linux.
However, on Linux it can vary if the local operating system is configured to use some
other character set by default. On Windows, it varies depending on country and con-
figuration, but in the United States it's Windows-1252, a.k.a CP1252 more often than
not. Default character sets can cause unexpected problems at unexpected times. You're
generally almost always better off explicitly specifying the character set rather than
letting Java pick one for you. For example, this code fragment writes the first few words
of Homer’s Odyssey in the CP1253 Windows Greek encoding:

OutputStreamWriter w = new OutputStreamWriter(
new FileOutputStream("OdysseyB.txt"), "Cp1253");
w.write("Apog & Apilyévela @dvn Pododdaktulog HOC");
Other than the constructors, OutputStreamhWriter has only the usual Writer methods
(which are used exactly as they are for any Writer class) and one method to return the
encoding of the object:

public String getEncoding()

Readers

The Reader class mirrors the java.io.InputStream class. It’s abstract with two pro-
tected constructors. Like InputStream and Writer, the Reader class is never used di-
rectly, only through one of its subclasses. It has three read() methods, as well as skip(),
close(), ready(), mark(), reset(), and markSupported() methods:

protected Reader()

protected Reader(Object lock)

public abstract int read(char[] text, int offset, int length)
throws IOException

public int read() throws IOException

public int read(char[] text) throws IOException

public long skip(long n) throws IOException

public boolean ready()

Readers and Writers | 47

http://bit.ly/Sun-documentation

public boolean markSupported()

public void mark(int readAheadLimit) throws IOException
public void reset() throws IOException

public abstract void close() throws IOException

Theread(char[] text, int offset, int length) method is the fundamental meth-
od through which the other two read() methods are implemented. A subclass must
override at least this method as well as close(), although most will override some of
the other methods as well in order to provide more efficient implementations.

Most of these methods are easily understood by analogy with their InputStream coun-
terparts. The read() method returns a single Unicode character as an int with a value
from 0 to 65,535 or -1 on end of stream. (Technically it returns a UTF-16 code point,
though almost always thats the same as a Unicode character.) The read(char[]
text) method tries to fill the array text with characters and returns the actual number
of characters read or —1 on end of stream. The read(char[] text, int offset, int
length) method attempts to read length characters into the subarray of text beginning
at of fset and continuing for length characters. It also returns the actual number of
characters read or -1 on end of stream. The skip(long n) method skips n characters.
Themark() and reset() methods allow some readers to reset back to a marked position
in the character sequence. The markSupported() method tells you whether the reader
supports marking and resetting. The close() method closes the reader and any un-
derlying input stream so that further attempts to read from it throw I0OExceptions.

The exception to the rule of similarity is ready(), which has the same general purpose
as available() but not quite the same semantics, even modulo the byte-to-char con-
version. Whereas available() returns an int specifying a minimum number of bytes
that may be read without blocking, ready() only returns a boolean indicating whether
the reader may be read without blocking. The problem is that some character encodings,
such as UTF-8, use different numbers of bytes for different characters. Thus, it's hard
to tell how many characters are waiting in the network or filesystem buffer without
actually reading them out of the buffer.

InputStreamReader is the most important concrete subclass of Reader. An Input
StreamReader reads bytes from an underlying input stream such as a FileInput
Streamor TelnetInputStream. It converts these into characters according to a specified
encoding and returns them. The constructor specifies the input stream to read from
and the encoding to use:

public InputStreamReader(InputStream in)
public InputStreamReader(InputStream in, String encoding)
throws UnsupportedEncodingException
If no encoding is specified, the default encoding for the platform is used. If an unknown
encoding is specified, an UnsupportedEncodingException is thrown.

48 | Chapter2:Streams

For example, this method reads an input stream and converts it all to one Unicode string
using the MacCyrillic encoding:

public static String getMacCyrillicString(InputStream in)
throws IOException {

InputStreamReader r = new InputStreamReader(in, "MacCyrillic");
StringBuilder sb = new StringBuilder();
int c;
while ((c = r.read()) != -1) sb.append((char) c);
return sb.toString();
}

Filter Readers and Writers

The InputStreamReader and OutputStreamWriter classes act as decorators on top of
input and output streams that change the interface from a byte-oriented interface to a
character-oriented interface. Once this is done, additional character-oriented filters can
be layered on top of the reader or writer using the java.io.FilterReader and
java.io.FilterWriter classes. As with filter streams, there are a variety of subclasses
that perform specific filtering, including:

o BufferedReader
e BufferedWriter
o LineNumberReader
o PushbackReader

e PrintWriter

The BufferedReader and BufferedWriter classes are the character-based equivalents
of the byte-oriented BufferedInputStreamand BufferedOutputStream classes. Where
BufferedInputStream and BufferedOutputStream use an internal array of bytes as a
buffer, BufferedReader and Bufferedwriter use an internal array of chars.

When a program reads from a BufferedReader, text is taken from the buffer rather
than directly from the underlying input stream or other text source. When the buffer
empties, it is filled again with as much text as possible, even if not all of it is immediately
needed, making future reads much faster. When a program writes to a
BufferedWriter, the text is placed in the buffer. The text is moved to the underlying
output stream or other target only when the buffer fills up or when the writer is explicitly
flushed, which can make writes much faster than would otherwise be the case.

BufferedReader and BufferedWriter have the usual methods associated with readers
and writers, like read(), ready(), write(), and close(). They each have two con-
structors that chain the BufferedReader or BufferedWriter to an underlying reader

Readers and Writers | 49

or writer and set the size of the buffer. If the size is not set, the default size of 8,192
characters is used:

public BufferedReader(Reader in, int bufferSize)
public BufferedReader(Reader 1in)
public BufferedWriter(Writer out)
public BufferedWriter(Writer out, int bufferSize)

For example, the earlier getMacCyrillicString() example was less than efficient be-
cause it read characters one at a time. Because MacCyrillic is a 1-byte character set, it
also read bytes one at a time. However, it’s straightforward to make it run faster by
chaining a BufferedReader to the InputStreamReader, like this:

public static String getMacCyrillicString(InputStream in)
throws IOException {

Reader r = new InputStreamReader(in, "MacCyrillic");

r = new BufferedReader(r, 1024);

StringBuilder sb = new StringBuilder();

int c;

while ((c = r.read()) !'= -1) sb.append((char) c);

return sb.toString();

}

All that was needed to buffer this method was one additional line of code. None of the
rest of the algorithm had to change, because the only InputStreamReader methods used
were the read() and close() methods declared in the Reader superclass and shared by

all Reader subclasses, including BufferedReader.

The BufferedReader class also has a readLine() method that reads a single line of text
and returns it as a string:

public String readlLine() throws IOException

This method replaces the deprecated readLine() method in DataInputStream, and it
has mostly the same behavior as that method. The big difference is that by chaining a
BufferedReader to an InputStreamReader, you can correctly read lines in character
sets other than the default encoding for the platform.

TheBufferedWriter() classadds one new method notincluded in its superclass, called
newLine(), also geared toward writing lines:

public void newLine() throws IOException

This method inserts a platform-dependent line-separator string into the output. The
line.separator system property determines exactly what the string is: probably a line-
feed on Unix and Mac OS X, and a carriage return/linefeed pair on Windows. Because
network protocols generally specify the required line terminator, you should not use
this method for network programming. Instead, explicitly write the line terminator the

50 | Chapter2: Streams

protocol requires. More often than not, the required terminator is a carriage return/
linefeed pair.

PrintWriter

The PrintWriter class is a replacement for Java 1.0’s PrintStreanm class that properly
handles multibyte character sets and international text. Sun originally planned to dep-
recate PrintStream in favor of PrintWriter but backed off when it realized this step
would invalidate too much existing code, especially code that depended on Sys
tem.out. Nonetheless, new code should use PrintWriter instead of PrintStream.

Aside from the constructors, the PrintWriter class has an almost identical collection
of methods to PrintStream. These include:

public PrintWriter(Writer out)

public PrintWriter(Writer out, boolean autoFlush)
public PrintWriter(OutputStream out)

public PrintWriter(OutputStream out, boolean autoFlush)
public void flush()

public void close()

public boolean checkError()

public void write(int c)

public void write(char[] text, int offset, int length)
public void write(char[] text)

public void write(String s, int offset, int length)
public void write(String s)

public void print(boolean b)

public void print(char c)

public void print(int 1)

public void print(long 1)

public void print(float f)

public void print(double d)

public void print(char[] text)

public void print(String s)

public void print(Object o)

public void println()

public void println(boolean b)

public void println(char c)

public void println(int 1)

public void println(long 1)

public void println(float f)

public void println(double d)

public void println(char[] text)

public void println(String s)

public void println(Object o)

Most of these methods behave the same for PrintWriter as they do for PrintStream.
The exceptions are the four write() methods, which write characters rather than bytes;
also, if the underlying writer properly handles character set conversion, so do all the
methods of the PrintWriter. This is an improvement over the noninternationalizable

Readers and Writers | 51

PrintStreanm class, but it’s still not good enough for network programming. Unfortu-
nately, PrintWriter still has the problems of platform dependency and minimal error
reporting that plague PrintStreanm.

This chapter has been a whirlwind tour of the java.io package, cov-

. ering the bare minimum you need to know to write network pro-
o3 grams. For a more detailed and comprehensive look with many more
examples, check out my other book in this series, Java I/O (O’Reilly).

qs
[0
N

52 | Chapter2: Streams

http://shop.oreilly.com/product/9780596527501.do

CHAPTER 3
Threads

Back in the good old days of the Net, circa the early 1990s, we didn’t have the Web and
HTTP and graphical browsers. Instead, we had Usenet news and FTP and command-
line interfaces, and we liked it that way! But as good as the good old days were, there
were some problems. For instance, when we were downloading kilobytes of free soft-
ware from a popular FTP site over our 2,400 bps modems using Kermit, we would often
encounter error messages like this one:

% ftp eunl.java.sun.com

Connected to eunl.javasoft.com.

220 softwarenl FTP server (wu-2.4.2-academ[BETA- 16]+opie-2.32(1) 981105)
ready.

Name (eunl.java.sun.com:elharo): anonymous

530-

530- Server is busy. Please try again later or try one of our other

530- ftp servers at ftp.java.sun.com. Thank you.

530-

530 User anonymous access denied.

Login failed.

In fact, in the days when the Internet had only a few million users instead of a few billion,
we were far more likely to come across an overloaded and congested site than we are
today. The problem was that most FTP servers forked a new process for each connection
(i.e., 100 simultaneous users meant 100 additional processes to handle). Because pro-
cesses are fairly heavyweight items, too many could rapidly bring a server to its knees.
The problem wasn't that the machines weren't powerful enough or the network fast
enough; it was that the FTP servers were poorly implemented. Many more simultaneous
users could be served if a new process wasn't needed for each connection.

Early web servers suffered from this problem as well, although the problem was masked
a little by the transitory nature of HTTP connections. Because web pages and their
embedded images tend to be small (at least compared to the software archives com-
monly retrieved by FTP) and because web browsers “hang up” the connection after each

53

file is retrieved instead of staying connected for minutes or hours at a time, web users
don’t put nearly as much load on a server as FTP users do. However, web server per-
formance still degrades as usage grows. The fundamental problem is that while it’s easy
to write code that handles each incoming connection and each new task as a separate
process (at least on Unix), this solution doesn't scale. By the time a server is attempting
to handle a thousand or more simultaneous connections, performance slows to a crawl.

There are at least two solutions to this problem. The first is to reuse processes rather
than spawning new ones. When the server starts up, a fixed number of processes (say,
300) are spawned to handle requests. Incoming requests are placed in a queue. Each
process removes one request from the queue, services the request, then returns to the
queue to get the next request. There are still 300 separate processes running, but because
all the overhead of building up and tearing down the processes is avoided, these 300
processes can now do the work of 1,000. These numbers are rough estimates. Your exact
mileage may vary, especially if your server hasn’t yet reached the volume where scala-
bility issues come into play. Still, whatever mileage you get out of spawning new pro-
cesses, you should be able to do much better by reusing old processes.

The second solution to this problem is to use lightweight threads instead of heavyweight
processes to handle connections. Whereas each separate process has its own block of
memory, threads are easier on resources because they share memory. Using threads
instead of processes can buy you another factor of three in server performance. By
combining this with a pool of reusable threads (as opposed to a pool of reusable pro-
cesses), your server can run nine times faster, all on the same hardware and network
connection! The impact of running many different threads on the server hardware is
relatively minimal because they all run within one process. Most Java virtual machines
keel over due to memory exhaustion somewhere between 4,000 and 20,000 simultane-
ous threads. However, by using a thread pool instead of spawning new threads for each
connection, fewer than a hundred threads can handle thousands of short connections
per minute.

Alternatives to Threading

If an application needs thousands of simultaneous long-lived connections (and that’s a
pretty rare application) it’s time to start thinking about asynchronous I/O instead of
threads. We'll take this up in Chapter 11. Selectors enable one thread to query a group
of sockets to find out which ones are ready to be read from or written to, and then process
the ready sockets sequentially. In this case, the I/O has to be designed around channels
and buffers rather than streams.

Given the high performance of threads in modern virtual machines and operating sys-
tems, as well as the relative simplicity of a building a thread-based server, a thread-based
design is usually where you should start until you can prove you're hitting a wall. If you
do hit a wall, you should seriously consider sharding the application across multiple

54 | Chapter3:Threads

redundant servers rather than trying to eke out another factor of three increase on a
single server.

Of course, sharding introduces design issues of its own, particularly around consistency,
that aren’t present in a single system. But it does offer you more scalability and redun-
dancy than you’ll ever get out of a single system, no matter how efficiently implemented.

Unfortunately, this increased performance doesn't come for free. There’s a cost in pro-
gram complexity. In particular, multithreaded servers (and other multithreaded pro-
grams) require developers to address concerns that aren't issues for single-threaded
programs, particularly issues of safety and liveness. Because different threads share the
same memory, it's entirely possible for one thread to stomp all over the variables and
data structures used by another thread. This is similar to the way one program running
on a nonmemory-protected operating system such as Windows 95 can crash the entire
system. Consequently, different threads have to be extremely careful about which re-
sources they use when. Generally, each thread must agree to use certain resources only
when it’s sure those resources can’t change or that it has exclusive access to them. How-
ever, it’s also possible for two threads to be too careful, each waiting for exclusive access
to resources it will never get. This can lead to deadlock, in which two threads are each
waiting for resources the other possesses. Neither thread can proceed without the re-
sources that the other thread has reserved, but neither is willing to give up the resources
it has already.

Running Threads

A thread with alittle tis a separate, independent path of execution in the virtual machine.
A Thread with a capital T'is an instance of the java.lang.Thread class. There is a one-
to-one relationship between threads executing in the virtual machine and Thread ob-
jects constructed by the virtual machine. Most of the time it's obvious from the context
which one is meant if the difference is really important.

To start a new thread running in the virtual machine, you construct an instance of the
Thread class and invoke its start() method, like this:

Thread t = new Thread();

t.start();
Of course, this thread isn’t very interesting because it doesn’t have anything to do. To
give a thread something to do, you either subclass the Thread class and override its
run() method, or implement the Runnable interface and pass the Runnable object to
the Thread constructor. I generally prefer the second option because it separates the
task that the thread performs from the thread itself more cleanly, but you will see both
techniques used in this book and elsewhere. In both cases, the key is the run() method,
which has this signature:

Running Threads | 55

public void run()

You're going to put all the work the thread does in this one method. This method may
invoke other methods; it may construct other objects; it may even spawn other threads.
However, the thread starts here and it stops here. When the run() method completes,
the thread dies. In essence, the run() method is to a thread what the main() method is
to a traditional nonthreaded program. A single-threaded program exits when the
main() method returns. A multithreaded program exits when both the main() method
and the run() methods of all nondaemon threads return. (Daemon threads perform
background tasks such as garbage collection and don’t prevent the virtual machine from
exiting.)

Subclassing Thread

Consider a program that calculates the Secure Hash Algorithm (SHA) digest for many
files. To a large extent, this is an I/O-bound program (i.e., its speed is limited by the
amount of time it takes to read the files from the disk). If you write it as a standard
program that processes the files in series, the program is going to spend a lot of time
waiting for the hard drive to return the data. This limit is even more characteristic of
network programs: they execute faster than the network can supply input. Consequent-
ly, they spend a lot of time blocked. This is time that other threads could use, either to
process other input sources or to do something that doesn’t rely on slow input. (Not all
threaded programs share this characteristic. Sometimes, even if none of the threads
have a lot of spare time to allot to other threads, it's simply easier to design a program
by breaking it into multiple threads that perform independent operations.)

Example 3-1 is a subclass of Thread whose run() method calculates a 256-bit SHA-2
message digest for a specified file. It does this by reading the file with a DigestInput
Streanm. This filter stream calculates a cryptographic hash function as it reads the file.
When it’s finished reading, the hash function is available from the digest() method.

Example 3-1. DigestThread
import java.io.*;
import java.security.¥;
import javax.xml.bind.*; // for DatatypeConverter; requires Java 6 or JAXB 1.0
public class DigestThread extends Thread {
private String filename;
public DigestThread(String filename) {

this.filename = filename;

}

public void run() {

56 | Chapter3:Threads

try {
FileInputStream in = new FileInputStream(filename);
MessageDigest sha = MessageDigest.getInstance("SHA-256");
DigestInputStream din = new DigestInputStream(in, sha);
while (din.read() != -1) ;
din.close();
byte[] digest = sha.digest();

StringBuilder result = new StringBuilder(filename);
result.append(": ");
result.append(DatatypeConverter.printHexBinary(digest));
System.out.println(result);

} catch (IOException ex) {
System.err.println(ex);

} catch (NoSuchAlgorithmException ex) {
System.err.println(ex);

}

}

public static void main(String[] args) {
for (String filename : args) {
Thread t = new DigestThread(filename);
t.start();
}
}
}

The main() method reads filenames from the command line and starts a new DigestTh
read for each one. The work of the thread is actually performed in the run() method.
Here, a DigestInputStream reads the file. Then the resulting digest is printed on
System.out in hexadecimal encoding. Notice that the entire output from this thread is
first built in a local StringBuilder variable result. This is then printed on the console
with one method invocation. The more obvious path of printing the pieces one at a time
using System.out.print() is not taken. There’s a reason for that, which we’ll discuss
soon.

Because the signature of the run() method is fixed, you can’t pass arguments to it or
return values from it. Consequently, you need different ways to pass information into
the thread and get information out of it. The simplest way to pass information in is to
pass arguments to the constructor, which sets fields in the Thread subclass, as done here.

Getting information out of a thread back into the original calling thread is trickier
because of the asynchronous nature of threads. Example 3-1 sidesteps that problem by
never passing any information back to the calling thread and simply printing the results
on System.out. Most of the time, however, you’ll want to pass the information to other
parts of the program. You can store the result of the calculation in a field and provide
a getter method to return the value of that field. However, how do you know when the
calculation of that value is complete? What do you return if somebody calls the getter

Running Threads | 57

method before the value has been calculated? This is quite tricky, and we’ll discuss it
more later in this chapter.

If you subclass Thread, you should override run() and nothing else!
“’@ The various other methods of the Thread class—for example, start(),

interrupt(), join(), sleep(), and so on—all have very specific se-
mantics and interactions with the virtual machine that are difficult to
reproduce in your own code. You should override run() and provide
additional constructors and other methods as necessary, but you
should not replace any of the other standard Thread methods.

Implementing the Runnable Interface

One way to avoid overriding the standard Thread methods is not to subclass Thread.
Instead, write the task you want the thread to perform as an instance of the Runnable
interface. This interface declares the run() method, exactly the same as the Thread class:

public void run()

Other than this method, which any class implementing this interface must provide, you
are completely free to create any other methods with any other names you choose, all
without any possibility of unintentionally interfering with the behavior of the thread.
This also allows you to place the threads task in a subclass of some other class, such as
Applet or HTTPServlet. To start a thread that performs the Runnable’s task, pass the
Runnable object to the Thread constructor. For example:

Thread t = new Thread(myRunnableObject);

t.start();
It’s easy to recast most problems that subclass Thread into Runnable forms. Example 3-2
demonstrates this by rewriting Example 3-1 to use the Runnable interface rather than
subclassing Thread. Aside from the name change, the only modifications that are nec-
essary are changing extends Thread to implements Runnable and passing a
DigestRunnable object to the Thread constructor in the main() method. The essential
logic of the program is unchanged.

Example 3-2. DigestRunnable

import java.io.*;

import java.security.*;

import javax.xml.bind.*; // for DatatypeConverter; requires Java 6 or JAXB 1.0
public class DigestRunnable implements Runnable {

private String filename;

public DigestRunnable(String filename) {

58 | Chapter3:Threads

this.filename = filename;

3

public void run() {
try {

FileInputStream in = new FileInputStream(filename);
MessageDigest sha = MessageDigest.getInstance("SHA-256");
DigestInputStream din = new DigestInputStream(in, sha);
while (din.read() !'= -1) ;
din.close();
byte[] digest = sha.digest();

StringBuilder result = new StringBuilder(filename);
result.append(": ");
result.append(DatatypeConverter.printHexBinary(digest));
System.out.println(result);

} catch (IOException ex) {
System.err.println(ex);

} catch (NoSuchAlgorithmException ex) {
System.err.println(ex);

}

}

public static void main(String[] args) {
for (String filename : args) {
DigestRunnable dr = new DigestRunnable(filename);
Thread t = new Thread(dr);
t.start();
}
}
}

There’s no strong reason to prefer implementing Runnable to extending Thread or vice
versain the general case. In a few special cases, such as Example 3-14 later in this chapter,
it may be useful to invoke some instance methods of the Thread class from within the
constructor for each Thread object. This requires using a subclass. In other specific
cases, it may be necessary to place the run() method in a class that extends another
class, such as HTTPServlet, in which case the Runnable interface is essential. Finally,
some object-oriented purists argue that the task that a thread undertakes is not really a
kind of Thread, and therefore should be placed in a separate class or interface such as
Runnable rather than in a subclass of Thread. I half agree with them, although I don’t
think the argument is as strong as it’s sometimes made out to be. Consequently, I'll
mostly use the Runnable interface in this book, but you should feel free to do whatever
seems most convenient.

Running Threads | 59

Returning Information from a Thread

One of the hardest things for programmers accustomed to traditional, single-threaded
procedural models to grasp when moving to a multithreaded environment is how to
return information from a thread. Getting information out of a finished thread is one
of the most commonly misunderstood aspects of multithreaded programming. The
run() method and the start() method don’t return any values. For example, suppose
that instead of simply printing out the SHA-256 digest, as in Examples 3-1 and 3-2, the
digest thread needs to return the digest to the main thread of execution. Most people’s
first reaction is to store the result in a field and provide a getter method, as shown in
Examples 3-3 and 3-4. Example 3-3 is a Thread subclass that calculates a digest for a
specified file. Example 3-4 is a simple command-line user interface that receives file-

names and spawns threads to calculate digests for them.

Example 3-3. A thread that uses an accessor method to return the result

import java.ilo.*;
import java.security.¥;

public class ReturnDigest extends Thread {

}

private String filename;
private byte[] digest;

public ReturnDigest(String filename) {

this.filename = filename;

public void run() {

try {
FileInputStream in = new FileInputStream(filename);
MessageDigest sha = MessageDigest.getInstance("SHA-256");
DigestInputStream din = new DigestInputStream(in, sha);
while (din.read() !'= -1) ; // read entire file
din.close();
digest = sha.digest();

} catch (IOException ex) {
System.err.println(ex);

} catch (NoSuchAlgorithmException ex) {
System.err.println(ex);

}

public byte[] getDigest() {

return digest;

60

| Chapter 3: Threads

Example 3-4. A main program that uses the accessor method to get the output of the
thread

import javax.xml.bind.*; // for DatatypeConverter
public class ReturnDigestUserInterface {

public static void main(String[] args) {
for (String filename : args) {
// Calculate the digest
ReturnDigest dr = new ReturnDigest(filename);
dr.start();

// Now print the result
StringBuilder result = new StringBuilder(filename);
result.append(": ");
byte[] digest = dr.getDigest();
result.append(DatatypeConverter.printHexBinary(digest));
System.out.println(result);
}
}
}

The ReturnDigest class stores the result of the calculation in the private field digest,
which is accessed via getDigest(). The main() method in ReturnDigestUserInter
face loops through a list of files from the command line. It starts a new ReturnDi
gest thread for each file and then tries to retrieve the result using getDigest(). How-
ever, when you run this program, the result may not be what you expect:
D:\JAVA\INP4\examples\03>java ReturnDigestUserInterface *.java
Exception in thread "main" java.lang.NullPointerException
at javax.xml.bind.DatatypeConverterImpl.printHexBinary
(DatatypeConverterImpl.java:358)
at javax.xml.bind.DatatypeConverter.printHexBinary(DatatypeConverter.java:560)
at ReturnDigestUserInterface.main(ReturnDigestUserInterface.java:15)
The problem is that the main program gets the digest and uses it before the thread has
had a chance to initialize it. Although this flow of control would work in a single-
threaded program in which dr.start() simply invoked the run() method in the same
thread, that’s not what happens here. The calculations that dr.start() kicks off may or
may not finish before the main() method reaches the call to dr.getDigest(). If they
haven't finished, dr.getDigest() returns null, and the first attempt to access digest
throws a NullPointerException.

Race Conditions

One possibility is to move the call to dr.getDigest() later in the main() method, like
this:

Returning Information fromaThread | 61

public static void main(String[] args) {
ReturnDigest[] digests = new ReturnDigest[args.length];

for (int 1 = 0; i1 < args.length; i++) {
// Calculate the digest
digests[i] = new ReturnDigest(args[i]);
digests[i].start();

}

for (int 1 = 0; i1 < args.length; i++) {
// Now print the result
StringBuffer result = new StringBuffer(args[i]);
result.append(": ");
byte[] digest = digests[i].getDigest();
result.append(DatatypeConverter.printHexBinary(digest));

System.out.println(result);
}
}

If you're lucky, this will work and you’ll get the expected output, like this:

D:\JAVA\INP4\examples\03>java ReturnDigest2 *.java

AccumulatingError.java: 7B261F7D88467A1D30D66DD29EEEDE495EA16FCD3ADDB8B613BC2C5DC
BenchmarkScalb. java: AECE2AD497F11F672184E45F2885063C99B2FDD41A3FC7C7B5D4ECBFD2BO
CanonicalPathComparator.java: FEOAACF55D331BBF555528A876C919EAD826BC79B659C489D62
Catenary.java: B511A9A507B43C9CDAF626D5B3A8CCCD80149982196E66EDIBFFDSES5B11E226

However, let me emphasize that point about being lucky. You may not get this output.
In fact, you may still get a NullPointerException. Whether this code works is com-
pletely dependent on whether every one of the ReturnDigest threads finishes before
its getDigest() method is called. If the first for loop is too fast and the second for loop
is entered before the threads spawned by the first loop start finishing, you're back where
you started. Worse yet, the program may appear to hang with no output at all, not even
a stack trace.

Whether you get the correct results, an exception, or a hung program depends on many
factors, including how many threads the program spawns, the speed of the CPU and
disk on the system where this is run, how many CPUs the system uses, and the algorithm
the Java virtual machine uses to allot time to different threads. This is called a race
condition. Getting the correct result depends on the relative speeds of different threads,
and you can’t control those! You need a better way to guarantee that the getDigest()
method isn’t called until the digest is ready.

62 | Chapter3:Threads

Polling

The solution most novices adopt is to make the getter method return a flag value (or
perhaps throw an exception) until the result field is set. Then the main thread period-
ically polls the getter method to see whether it’s returning something other than the flag
value. In this example, that would mean repeatedly testing whether the digest is null
and using it only if it isn't. For example:

public static void main(String[] args) {
ReturnDigest[] digests = new ReturnDigest[args.length];

for (int 1 = 0; 1 < args.length; i++) {
// Calculate the digest
digests[i] = new ReturnDigest(args[i]);
digests[i].start();

}

for (int 1 = 0; 1 < args.length; i++) {
while (true) {
// Now print the result
byte[] digest = digests[i].getDigest();
if (digest != null) {
StringBuilder result = new StringBuilder(args[i]);
result.append(": ");
result.append(DatatypeConverter.printHexBinary(digest));
System.out.println(result);
break;
}
}
}
}

This solution may work. If it works at all, it gives the correct answers in the correct order

irrespective of how fast the individual threads run relative to each other. However, it’s
doing a lot more work than it needs to.

Worse yet, this solution is not guaranteed to work. On some virtual machines, the main
thread takes all the time available and leaves no time for the actual worker threads. The
main thread is so busy checking for job completion that there’s no time left to actually
complete the job! Clearly this isn't a good approach.

Callbacks

In fact, there’s a much simpler, more efficient way to handle the problem. The infinite
loop that repeatedly polls each ReturnDigest object to see whether it’s finished can be
eliminated. The trick is that rather than having the main program repeatedly ask each
ReturnDigest thread whether it’s finished (like a five-year-old repeatedly asking, “Are
we there yet?” on a long car trip, and almost as annoying), you let the thread tell the

Returning Information froma Thread | 63

main program when it’s finished. It does this by invoking a method in the main class
that started it. This is called a callback because the thread calls its creator back when it’s
done. This way, the main program can go to sleep while waiting for the threads to finish
and not steal time from the running threads.

When the thread’s run() method is nearly done, the last thing it does is invoke a known
method in the main program with the result. Rather than the main program asking each
thread for the answer, each thread tells the main program the answer. For instance,
Example 3-5 shows a CallbackDigest class that is much the same as before. However,
at the end of the run() method, it passes off the digest to the static CallbackDigestU
serInterface.receiveDigest() method in the class that originally started the thread.

Example 3-5. CallbackDigest

import java.ilo.*;
import java.security.¥;

public class CallbackDigest implements Runnable {
private String filename;

public CallbackDigest(String filename) {
this.filename = filename;

3

public void run() {
try {
FileInputStream in = new FileInputStream(filename);
MessageDigest sha = MessageDigest.getInstance("SHA-256");
DigestInputStream din = new DigestInputStream(in, sha);
while (din.read() != -1) ; // read entire file
din.close();
byte[] digest = sha.digest();
CallbackDigestUserInterface.receiveDigest(digest, filename);
} catch (IOException ex) {
System.err.println(ex);
} catch (NoSuchAlgorithmException ex) {
System.err.println(ex);
}
}
}

The CallbackDigestUserInterface class shown in Example 3-6 provides the main()
method. However, unlike the main() methods in the other variations of this program,
this one only starts the threads for the files named on the command line. It does not
attempt to actually read, print out, or in any other way work with the results of the
calculation. Those functions are handled by a separate method, receiveDigest(),
which is not invoked by the main() method or by any method that can be reached by

64 | Chapter3:Threads

following the flow of control from the main() method. Instead, it is invoked by each
thread separately. That is, receiveDigest() runs inside the digesting threads rather
than inside the main thread of execution.

Example 3-6. CallbackDigestUserInterface

import javax.xml.bind.*; // for DatatypeConverter; requires Java 6 or JAXB 1.0
public class CallbackDigestUserInterface {

public static void receiveDigest(byte[] digest, String name) {
StringBuilder result = new StringBuilder(name);
result.append(": ");
result.append(DatatypeConverter.printHexBinary(digest));
System.out.println(result);

}

public static void main(String[] args) {
for (String filename : args) {
// Calculate the digest
CallbackDigest cb = new CallbackDigest(filename);
Thread t = new Thread(cb);
t.start();
}
}
}

Examples 3-5 and 3-6 use static methods for the callback so that CallbackDigest only
needs to know the name of the method in CallbackDigestUserInterface to call.
However, it’s not much harder (and it’s considerably more common) to call back to an
instance method. In this case, the class making the callback must have a reference to
the object it’s calling back. Generally, this reference is provided as an argument to the
thread’s constructor. When the run() method is nearly done, the last thing it does is
invoke the instance method on the callback object to pass along the result. For instance,
Example 3-7 shows a CallbackDigest class that is much the same as before. However,
it now has one additional field, an InstanceCallbackDigestUserInterface object
called callback. At the end of the run() method, the digest is passed to callback’s
receiveDigest() method. The InstanceCallbackDigestUserInterface object itself
is set in the constructor.

Example 3-7. InstanceCallbackDigest

import java.io.*;
import java.security.*;

public class InstanceCallbackDigest implements Runnable {

private String filename;
private InstanceCallbackDigestUserInterface callback;

Returning Information froma Thread | 65

public InstanceCallbackDigest(String filename,
InstanceCallbackDigestUserInterface callback) {
this.filename = filename;
this.callback = callback;

3

public void run() {

try {
FileInputStream in = new FileInputStream(filename);

MessageDigest sha = MessageDigest.getInstance("SHA-256");
DigestInputStream din = new DigestInputStream(in, sha);

while (din.read() != -1) ; // read entire file
din.close();
byte[] digest = sha.digest();
callback.receiveDigest(digest);

} catch (IOException | NoSuchAlgorithmException ex) {
System.err.println(ex);

}

}
}

The InstanceCallbackDigestUserInterface class shown in Example 3-8 holds the
main() method as well as the receiveDigest() method used to handle an incoming
digest. Example 3-8 just prints out the digest, but a more expansive class could do other
things as well, such as storing the digest in a field, using it to start another thread, or

performing further calculations on it.

Example 3-8. InstanceCallbackDigestUserInterface

import javax.xml.bind.*; // for DatatypeConverter; requires Java 6 or JAXB 1.0

public class InstanceCallbackDigestUserInterface {

private String filename;
private byte[] digest;

public InstanceCallbackDigestUserInterface(String filename) {

this.filename = filename;

3

public void calculateDigest() {

InstanceCallbackDigest cb = new InstanceCallbackDigest(filename, this);

Thread t = new Thread(cb);
t.start();
}

void receiveDigest(byte[] digest) {
this.digest = digest;
System.out.println(this);

}

66 | Chapter3:Threads

public String toString() {
String result = filename + ": ";
if (digest != null) {
result += DatatypeConverter.printHexBinary(digest);
} else {
result += "digest not available";

}

return result;

}

public static void main(String[] args) {
for (String filename : args) {
// Calculate the digest
InstanceCallbackDigestUserInterface d
= new InstanceCallbackDigestUserInterface(filename);
d.calculateDigest();
}
}
}

Using instance methods instead of static methods for callbacks is a little more compli-
cated but has a number of advantages. First, each instance of the main class (Instance
CallbackDigestUserInterface, in this example) maps to exactly one file and can keep
track of information about that file in a natural way without needing extra data struc-
tures. Furthermore, the instance can easily recalculate the digest for a particular file, if
necessary. In practice, this scheme proves a lot more flexible. However, there is one
caveat. Notice the addition of the calculateDigest() method to start the thread. You
might logically think that this belongs in a constructor. However, starting threads in a
constructor is dangerous, especially threads that will call back to the originating object.
There’s a race condition here that may allow the new thread to call back before the
constructor is finished and the object is fully initialized. It’s unlikely in this case, because
starting the new thread is the last thing this constructor does. Nonetheless, it’s at least
theoretically possible. Therefore, it'’s good form to avoid launching threads from con-
structors.

The first advantage of the callback scheme over the polling scheme is that it doesn’t
waste so many CPU cycles. However, a much more important advantage is that callbacks
are more flexible and can handle more complicated situations involving many more
threads, objects, and classes. For instance, if more than one object is interested in the
result of the thread’s calculation, the thread can keep a list of objects to call back. Par-
ticular objects can register their interest by invoking a method in the Thread or Runna
ble class to add themselves to the list. If instances of more than one class are interested
in the result, a new interface can be defined that all these classes implement. The
interface would declare the callback methods.

Returning Information froma Thread | 67

If you're experiencing déja vu right now, that’s probably because you have seen this
scheme before. This is exactlyhow events are handled in Swing, the AWT, and JavaBeans.
The AWT runs in a separate thread from the rest of the program. Components and
beans inform you of events by calling back to methods declared in particular interfaces,
such as ActionListener and PropertyChangeListener. Your listener objects register
their interests in events fired by particular components using methods in the Compo
nent class, such as addActionListener() and addPropertyChangelListener(). Inside
the component, the registered listeners are stored in a linked list built out of
java.awt.AWTEventMulticaster objects. More generally this is known as the Observ-
er design pattern.

Futures, Callables, and Executors

Java 5 introduced a new approach to multithreaded programming that makes it some-
what easier to handle callbacks by hiding the details. Instead of directly creating a thread,
you create an ExecutorService that will create threads for you as needed. You submit
Callable jobs to the ExecutorService and for each one you get back a Future. At a
later point, you can ask the Future for the result of the job. If the result is ready, you get
it immediately. If it’s not ready, the polling thread blocks until it is ready. The advantage
is that you can spawn off many different threads, then get the answers you need in the
order you need them.

For example, suppose you need to find the maximum value in a large array of numbers.
Implemented naively, this takes O(n) time where n is the number of elements in the
array. However, you can go faster than that if you split the work into multiple threads,
each running on a separate core. For purposes of illustration, let’s assume two threads
are desired.

The Callable interface defines a single call() method that can generically return any
type. Example 3-9 is a Callable that finds the maximum value in a subsection of an
array in the most obvious way possible.

Example 3-9. FindMaxTask

import java.util.concurrent.Callable;
class FindMaxTask implements Callable<Integer> {

private int[] data;
private int start;
private int end;

FindMaxTask(int[] data, int start, int end) {
this.data = data;
this.start = start;
this.end = end;

}

68 | Chapter3:Threads

public Integer call() {
int max = Integer.MIN_VALUE;
for (int 1 = start; 1 < end; 1++) {
if (data[i] > max) max = data[i];

}

return max;
}
}

Although you could invoke the call() method directly, that is not its purpose. Instead,
you submit Callable objects to an Executor that spins up a thread for each one. (There
are other strategies an Executor could use—for instance, it could use a single thread to
invoke the callables in order—but one thread per callable is a good strategy for this
problem.) Example 3-10 demonstrates.

Example 3-10. MultithreadedMaxFinder

import java.util.concurrent.*;
public class MultithreadedMaxFinder {
public static int max(int[] data) throws InterruptedException, ExecutionException {

if (data.length == 1) {

return datal[0];
} else if (data.length == 0) {

throw new IllegalArgumentException();
}

// split the job into 2 pieces
FindMaxTask taskl = new FindMaxTask(data, 0, data.length/2);
FindMaxTask task2 = new FindMaxTask(data, data.length/2, data.length);

// spawn 2 threads
ExecutorService service = Executors.newFixedThreadPool(2);

Future<Integer> futurel = service.submit(taskl);
Future<Integer> future2 = service.submit(task2);

return Math.max(futurel.get(), future2.get());
}
}

Each subarray is searched at the same time, so on suitable hardware and a large input
this program can run almost twice as fast. Nonetheless, the code is almost as simple and
straightforward as finding the maximum in the first half of the array and then finding
the maximum in the second half of the array, without ever worrying about threads or
asynchronicity. However, there’s one key difference. In the last statement of
Example 3-10, when futurel.get() is called, the method blocks and waits for the first

Returning Information froma Thread | 69

FindMaxTask to finish. Only when this has happened does it call future2.get(). It’s
possible that the second thread has already finished, in which case the value is imme-
diately returned; but if not, execution waits for that thread to finish too. Once both
threads have finished, their results are compared and the maximum is returned.

Futures are a very convenient means of launching multiple threads to work on different
pieces of a problem, and then waiting for them all to finish before proceeding. Executors
and executor services let you assign jobs to different threads with different strategies.
This example used just two threads once each, but it’s possible to use many more threads,
and to reuse threads for multiple tasks. Executors hide a lot of the nitty-gritty details of
asynchronicity as long as you can divide your job up into reasonably independent parts.

Synchronization

My shelves are overflowing with books, including many duplicate books, out-of-date
books, and books I haven't looked at for 10 years and probably never will again. Over
the years, these books have cost me tens of thousands of dollars, maybe more, to acquire.
By contrast, two blocks down the street from my apartment, you'll find the Central
Brooklyn Public Library. Its shelves are also overflowing with books, and over its 100
years, it's spent millions on its collection. But the difference is that its books are shared
among all the residents of Brooklyn, and consequently the books have very high turn-
over. Most books in the collection are used several times a year. Although the public
library spends a lot more money buying and storing books than I do, the cost per page
read is much lower at the library than for my personal shelves. That’s the advantage of
a shared resource.

Of course, there are disadvantages to shared resources, too. If I need a book from the
library, I have to walk over there. I have to find the book 'm looking for on the shelves.
I have to stand in line to check the book out, or else I have to use it right there in the
library rather than bringing it home with me. Sometimes somebody else has checked
the book out, and I have to fill out a form requesting that the book be saved for me when
it’s returned. And I can’t write notes in the margins, highlight paragraphs, or tear pages
out to paste on my bulletin board. (Well, I can, but if I do, it significantly reduces the
usefulness of the book for future borrowers, and if the library catches me, I may lose
my borrowing privileges.) There’s a significant time and convenience penalty associated
with borrowing a book from the library rather than purchasing my own copy, but it
does save me money and storage space.

A thread is like a borrower at a library; the thread borrows from a central pool of re-
sources. Threads make programs more efficient by sharing memory, file handles, sock-
ets, and other resources. As long as two threads don’t want to use the same resource at
the same time, a multithreaded program is much more efficient than the multiprocess
alternative, in which each process has to keep its own copy of every resource. The
downside of a multithreaded program is that if two threads want the same resource at

70 | Chapter3:Threads

the same time, one of them will have to wait for the other to finish. If one of them doesn’t
wait, the resource may get corrupted. Let’s look at a specific example. Consider the run()
method of Examples 3-1 and 3-2. As previously mentioned, the method builds the result
as a String, and then prints the String on the console using one call to Sys

tem.out.println(). The output looks like this:

Triangle.java: B4C7AF1BAES52655A96517476BFODAC97C4AF02411E40DD386FECB58D94CC769
InterfacelLister.java: 267DOEFE73896CD550DC202935D20E87CA71536CB176AF78F915935A6
Squares.java: DA2E27EA139785535122A2420D3DB472A807841D05F6C268A43695B9FDFE1B11
UlpPrinter.java: C8009AB1578BF7E730BD2C3EADAS4B772576E265011DF22D171D60A1881AFF51

Four threads run in parallel to produce this output. Each writes one line to the console.
The order in which the lines are written is unpredictable because thread scheduling is
unpredictable, but each line is written as a unified whole. Suppose, however, you used
this variation of the run() method, which, rather than storing intermediate parts of the
result in the String variable result, simply prints them on the console as they become
available:

public void run() {
try {
FileInputStream in = new FileInputStream(filename);
MessageDigest sha = MessageDigest.getInstance("SHA-256");
DigestInputStream din = new DigestInputStream(in, sha);
while (din.read() != -1) ; // read entire file
din.close();
byte[] digest = sha.digest();
System.out.print(input + ": ");
System.out.print(DatatypeConverter.printHexBinary(digest));
System.out.println();
} catch (IOException ex) {
System.err.println(ex);
} catch (NoSuchAlgorithmException ex) {
System.err.println(ex);
}
}

When you run the program on the same input, the output looks something like this:

Triangle.java: B4C7AF1BAE952655A96517476BFODAC97C4AF02411E40DD386FECB58D94CC769
InterfacelLister.java: Squares.java: UlpPrinter.java:
C8009AB1578BF7E730BD2C3EADA54B772576E265011DF22D171D60A1881AFF51
267DOEFE73896(CD550DC202935D20E87CA71536CB176AF78F915935A6E81B034
DA2E27EA139785535122A2420D3DB472A807841DO5F6C268A43695B9FDFE1B11

The digests of the different files are all mixed up! There’s no telling which number
belongs to which digest. Clearly, this is a problem.

The reason this mix-up occurs is that System.out is shared between the four different
threads. When one thread starts writing to the console through several
System.out.print() statements, it may not finish all its writes before another thread

Synchronization | 71

breaks in and starts writing its output. The exact order in which one thread preempts
the other threads is indeterminate. You'll probably see slightly different output every
time you run this program.

You need a way to assign exclusive access to a shared resource to one thread for a specific
series of statements. In this example, that shared resource is System.out, and the state-
ments that need exclusive access are:

System.out.print(input + ": ");
System.out.print(DatatypeConverter.printHexBinary(digest));
System.out.println();

Synchronized Blocks

To indicate that these five lines of code should be executed together, wrap them in a
synchronized block that synchronizes on the System.out object, like this:

synchronized (System.out) {
System.out.print(input + ": ");
System.out.print(DatatypeConverter.printHexBinary(digest));
System.out.println();

}

Once one thread starts printing out the values, all other threads will have to stop and
wait for it to finish before they can print out their values. Synchronization forces all
code that synchronizes on the same object to run in series, never in parallel. For instance,
if some other code in a different class and different thread also happened to synchronize
on System.out, it too would not be able to run in parallel with this block. However,
other code that synchronizes on a different object or doesn’t synchronize at all can still
run in parallel with this code. It can do so even if it also uses System. out. Java provides
no means to stop all other threads from using a shared resource. It can only prevent
other threads that synchronize on the same object from using the shared resource.

In fact, the PrintStream class internally synchronizes most methods
. on the PrintStream object (System.out, in this example). In other
4 words, every other thread that calls System.out.println() will be
synchronized on System.out and will have to wait for this code to
finish. PrintStream is unique in this respect. Most other Output
Stream subclasses do not synchronize themselves.

Synchronization must be considered any time multiple threads share resources. These
threads may be instances of the same Thread subclass or use the same Runnab'le class,
or they may be instances of completely different classes. The key is the resources they
share, not what classes they are. Synchronization becomes an issue only when two
threads both possess references to the same object. In the previous example, the problem

72 | Chapter3: Threads

was that several threads had access to the same PrintStream object, System.out. In this
case, it was a static class variable that led to the conflict. However, instance variables can
also have problems.

For example, suppose your web server keeps a logfile. The logfile may be represented
by a class like the one shown in Example 3-11. This class itself doesn’t use multiple
threads. However, if the web server uses multiple threads to handle incoming connec-
tions, then each of those threads will need access to the same logfile and consequently
to the same LogF1ile object.

Example 3-11. LogFile

import java.io.*;
import java.util.*;

public class LogFile {
private Writer out;

public LogFile(File f) throws IOException {
FileWriter fw = new FileWriter(f);
this.out = new BufferedWriter(fw);

}

public void writeEntry(String message) throws IOException {
Date d = new Date();
out.write(d.toString());
out.write('\t');
out.write(message);
out.write("\r\n");

}

public void close() throws IOException {
out.flush();
out.close();
}
}

In this class, the writeEntry() method finds the current date and time, then writes into
the underlying file using four separate invocations of out.write(). A problem occurs
if two or more threads each have a reference to the same LogFile object and one of
those threads interrupts another in the process of writing the data. One thread may
write the date and a tab, then the next thread might write three complete entries; then,
the first thread could write the message, a carriage return, and a linefeed. The solution,
once again, is synchronization. However, here there are two good choices for which
object to synchronize on. The first choice is to synchronize on the Writer object out.
For example:

Synchronization | 73

public void writeEntry(String message) throws IOException {
synchronized (out) {
Date d = new Date();
out.write(d.toString());
out.write('\t");
out.write(message);
out.write("\r\n");
}
}

This works because all the threads that use this LogFile object also use the same out
object that’s part of that LogFile. It doesn’t matter that out is private. Although it is used
by the other threads and objects, it’s referenced only within the LogFile class. Further-
more, although you’re synchronizing here on the out object, it’s the writeEntry()
method that needs to be protected from interruption. The Writer classes all have their
own internal synchronization, which protects one thread from interfering with a
write() method in another thread. (This is not true of input and output streams, with
the exception of PrintStream. It is possible for a write to an output stream to be inter-
rupted by another thread.) Each Writer class has a lock field that specifies the object
on which writes to that writer synchronize.

The second possibility is to synchronize on the LogFile object itself. This is simple
enough to arrange with the this keyword. For example:

public void writeEntry(String message) throws IOException {
synchronized (this) {
Date d = new Date();
out.write(d.toString());
out.write('\t');
out.write(message);
out.write("\r\n");
}
}

Synchronized Methods

Because synchronizing the entire method body on the object itself is such a common
thing to do, Java provides a shortcut. You can synchronize an entire method on the
current object (the this reference) by adding the synchronized modifier to the method
declaration. For example:

public synchronized void writeEntry(String message) throws IOException {
Date d = new Date();
out.write(d.toString());
out.write('\t');
out.write(message);
out.write("\r\n");

74 | Chapter3:Threads

Simply adding the synchronized modifier to all methods is not a catchall solution for
synchronization problems. For one thing, it exacts a severe performance penalty in
many VMs (though more recent VMs have improved greatly in this respect), potentially
slowing down your code by a factor of three or more. Second, it dramatically increases
the chances of deadlock. Third, and most importantly, it’s not always the object itself
you need to protect from simultaneous modification or access, and synchronizing on
the instance of the method’s class may not protect the object you really need to protect.
For instance, in this example, what you're really trying to prevent is two threads simul-
taneously writing onto out. If some other class had a reference to out completely un-
related to the LogFile, this attempt would fail. However, in this example, synchronizing
on the LogFile object is sufficient because out is a private instance variable. Because
you never expose a reference to this object, there’s no way for any other object to invoke
its methods except through the LogFile class. Therefore, synchronizing on the Log
File object has the same effect as synchronizing on out.

Alternatives to Synchronization

Synchronization is not always the best solution to the problem of inconsistent behavior
caused by thread scheduling. There are a number of techniques that avoid the need for
synchronization entirely. The first is to use local variables instead of fields wherever
possible. Local variables do not have synchronization problems. Every time a method
is entered, the virtual machine creates a completely new set of local variables for the
method. These variables are invisible from outside the method and are destroyed when
the method exits. As a result, it's impossible for one local variable to be shared by two
different threads. Every thread has its own separate set of local variables.

Method arguments of primitive types are also safe from modification in separate threads
because Java passes arguments by value rather than by reference. A corollary of this is
that pure functions such as Math.sqrt() that take zero or more primitive data type
arguments, perform some calculation, and return a value without ever interacting with
the fields of any class are inherently thread safe. These methods often either are or should
be declared static.

Method arguments of object types are a little trickier because the actual argument passed
by value is a reference to the object. Suppose, for example, you pass a reference to an
array into a sort() method. While the method is sorting the array, there’s nothing to
stop some other thread that also has a reference to the array from changing the values
in the array.

String arguments are safe because theyre immutable (i.e., once a String object has
been created, it cannot be changed by any thread). An immutable object never changes
state. The values of its fields are set once when the constructor runs and never altered
thereafter. StringBuilder arguments are not safe because they’re not immutable; they
can be changed after they’re created.

Synchronization | 75

A constructor normally does not have to worry about issues of thread safety. Until the
constructor returns, no thread has a reference to the object, so it’s impossible for two
threads to have areference to the object. (The mostlikely issue isifa constructor depends
on another object in another thread that may change while the constructor runs, but
that's uncommon. There’s also a potential problem if a constructor somehow passes a
reference to the object it’s creating into a different thread, but this is also uncommon.)

You can take advantage of immutability in your own classes. It’s usually the easiest way
to make a class thread safe, often much easier than determining exactly which methods
or code blocks to synchronize. To make an object immutable, simply declare all its fields
private and final and don’t write any methods that can change them. A lot of classes in
the core Java library are immutable (e.g., java.lang.String, java.lang.Integer,
java.lang.Double, and many more). This makes these classes less useful for some
purposes, but it does make them a lot more thread safe.

A third technique is to use a thread-unsafe class but only as a private field of a class that
is thread safe. As long as the containing class accesses the unsafe class only in a thread-
safe fashion and as long as it never lets a reference to the private field leak out into
another object, the class is safe. An example of this technique might be a web server that
uses an unsynchronized LogFile class but gives each separate thread its own separate
log so no resources are shared between the individual threads.

In some cases, you can use a designedly thread-safe but mutable class from the
java.util.concurrent.atomic package. In particular, rather than using an int, you
can usean AtomicInteger.Rather than usinga long, you can usean AtomicLong. Rather
than using a boolean, you can use an AtomicBoolean. Rather than using an int[], you
can use an AtomicIntegerArray. Rather than a reference variable, you can store an
object inside an AtomicReference, though note well that this doesn't make the object
itself thread safe, just the getting and setting of the reference variable. These classes may
be faster than synchronized access to their respective primitive types if they can take
advantage of fast machine-level thread-safe instructions on modern CPUs.

For collections such as maps and lists, you can wrap them in a thread-safe version using
the methods of java.util.Collections. For instance, if you have a set foo, you can
get a thread-safe view of this set with Collections.synchronizedSet(foo). Ifyou have
a list foo, youd use Collections.synchronizedList(foo) instead. For a map, call
Collections.synchronizedMap(foo), and so forth. In order for this to work, you must
henceforth use only the view returned by Collections.synchronizedSet/List/Map.
If at any point you access the original, underlying data structure, neither the original
nor the synchronized view will be thread safe.

In all cases, realize that it’s just a single method invocation that is atomic. If you need to
perform two operations on the atomic value in succession without possible interruption,
you’ll still need to synchronize. Thus, for instance, even if a list is synchronized via

76 | Chapter3:Threads

Collections.synchronizedList(), you'll still need to synchronize on it if you want to
iterate through the list because that involves many consecutive atomic operations. Al-
though each method call is safely atomic, the sequence of operations is not without
explicit synchronization.

Deadlock

Synchronization can lead to another possible problem: deadlock. Deadlock occurs when
two threads need exclusive access to the same set of resources and each thread holds
the lock on a different subset of those resources. If neither thread is willing to give up
the resources it has, both threads come to an indefinite halt. This isn’t quite a hang in
the classical sense because the program is still active and behaving normally from the
perspective of the OS, but to a user the difference is insignificant.

To return to the library example, deadlock is what occurs when Jack and Jill are each
writing a term paper on Thomas Jefferson and they both need the two books Thomas
Jefferson and Sally Hemings: An American Controversy and Sally Hemings and Thomas
Jefferson: History, Memory, and Civic Culture. If Jill has checked out the first book and
Jack has checked out the second, and neither is willing to give up the book they have,
neither can finish the paper. Eventually, the deadline expires and they both get an E.
That’s the problem of deadlock.

Worse yet, deadlock can be a sporadic, hard-to-detect bug. Deadlock usually depends
on unpredictable issues of timing. Most of the time, either Jack or Jill will get to the
library first and check out both books. In this case, the one who gets the books first
writes a paper and returns the books; then the other one gets the books and writes his
or her paper. Only rarely will they arrive at the same time and each get one of the two
books. Ninety-nine times out of 100 or 999 times out of 1,000, a program will run to
completion perfectly normally. Only rarely will it hang for no apparent reason. Of
course, if a multithreaded server is handling hundreds of requests per second, even a
problem that occurs only once every million requests can hang the server in short order.

The most important technique for preventing deadlock is to avoid unnecessary syn-
chronization. If there’s an alternative approach for ensuring thread safety, such as mak-
ing objects immutable or keeping a local copy of an object, use it. Synchronization
should be a last resort for ensuring thread safety. If you do need to synchronize, keep
the synchronized blocks small and try not to synchronize on more than one object at a
time. This can be tricky, though, because many of the methods from the Java classlibrary
that your code may invoke synchronize on objects you aren’t aware of. Consequently,
you may in fact be synchronizing on many more objects than you expect.

The best you can do in the general case is carefully consider whether deadlock is likely
to be a problem and design your code around it. If multiple objects need the same set
of shared resources to operate, make sure they request them in the same order. For

Deadlock | 77

instance, if class A and class B need exclusive access to object X and object Y, make sure
that both classes request X first and Y second. If neither requests Y unless it already
possesses X, deadlock is not a problem.

Thread Scheduling

When multiple threads are running at the same time (more properly, when multiple
threads are available to be run at the same time), you have to consider issues of thread
scheduling. You need to make sure that all important threads get at least some time to
run and that the more important threads get more time. Furthermore, you want to
ensure that the threads execute in a reasonable order. If your web server has 10 queued
requests, each of which requires 5 seconds to process, you don’t want to process them
in series. If you do, the first request will finish in 5 seconds but the second will take 10,
the third 15, and so on until the last request, which will have to wait almost a minute to
be serviced. By that point, the user has likely gone to another page. By running threads
in parallel, you might be able to process all 10 requests in only 10 seconds total. The
reason this strategy works is that there’s a lot of dead time in servicing a typical web
request, time in which the thread is simply waiting for the network to catch up with the
CPU—time the VM’s thread scheduler can put to good use by other threads. However,
CPU-bound threads (as opposed to the I/O-bound threads more common in network
programs) may never reach a point where they have to wait for more input. It is possible
for such a thread to starve all other threads by taking all the available CPU resources.
With a little thought, you can avoid this problem. In fact, starvation is a considerably
easier problem to avoid than either mis-synchronization or deadlock.

Priorities

Not all threads are created equal. Each thread has a priority, specified as an integer from
0 to 10. When multiple threads are ready to run, the VM will generally run only the
highest-priority thread, although that’s not a hard-and-fast rule. In Java, 10 is the highest
priority and 0 is the lowest. The default priority is 5, and this is the priority that your
threads will have unless you deliberately set them otherwise.

This is the exact opposite of the normal Unix way of prioritizing pro-

W@ cesses, in which the higher the priority number of a process, the less
CPU time the process gets.

These three priorities (1, 5, and 10) are often specified as the three named constants
Thread.MIN_PRIORITY, Thread.NORM_PRIORITY, and Thread.MAX_PRIORITY:

public static final int MIN_PRIORITY = 1;
public static final int NORM_PRIORITY
public static final int MAX_PRIORITY

o
uv

78 | Chapter3:Threads

Not all operating systems support 11 different priorities. For in-
stance, Windows only has 7. On Windows, priorities 1 and 2, 3 and 4,
6 and 7, and 8 and 9 are treated equally (e.g., a priority 9 thread will
not necessarily preempt a priority 8 thread).

Sometimes you want to give one thread more time than another. Threads that interact
with the user should get very high priorities so that perceived responsiveness will be
very quick. On the other hand, threads that calculate in the background should get low
priorities. Tasks that will complete quickly should have high priorities. Tasks that take
a long time should have low priorities so that they won’t get in the way of other tasks.
You can change the priority of the thread using the setPriority() method:

public final void setPriority(int newPriority)

Attempting to exceed the maximum priority or set a nonpositive priority throws an
IllegalArgumentException.

For instance, in Example 3-11, you might want to give higher priorities to the threads
that do the calculating than the main program that spawns the threads. This is easily
achieved by changing the calculateDigest() method to set the priority of each
spawned thread to 8:

public void calculateDigest() {
ListCallbackDigest cb = new ListCallbackDigest(filename);
cb.addDigestListener(this);
Thread t = new Thread(cb);
t.setPriority(8);
t.start();
}

In general, though, try to avoid using too high a priority for threads, because you run
the risk of starving other, lower-priority threads.

Preemption

Every virtual machine has a thread scheduler that determines which thread to run at
any given time. There are two main kinds of thread scheduling: preemptive and coop-
erative. A preemptive thread scheduler determines when a thread has had its fair share
of CPU time, pauses that thread, and then hands off control of the CPU to a different
thread. A cooperative thread scheduler waits for the running thread to pause itself before
handing off control of the CPU to a different thread. A virtual machine that uses co-
operative thread scheduling is much more susceptible to thread starvation than a virtual
machine that uses preemptive thread scheduling, because one high-priority, uncooper-
ative thread can hog an entire CPU.

All Java virtual machines are guaranteed to use preemptive thread scheduling between
priorities. That is, if a lower-priority thread is running when a higher-priority thread

Thread Scheduling | 79

becomes ready to run, the virtual machine will sooner or later (and probably sooner)
pause the lower-priority thread to allow the higher-priority thread to run. The higher-
priority thread preempts the lower-priority thread.

The situation when multiple threads of the same priority are ready to run is trickier. A
preemptive thread scheduler will occasionally pause one of the threads to allow the next
one in line to get some CPU time. However, a cooperative thread scheduler will not. It
will wait for the running thread to explicitly give up control or come to a stopping point.
If the running thread never gives up control and never comes to a stopping point and
if no higher-priority threads preempt the running thread, all other threads will starve.
This is a bad thing. It's important to make sure all your threads periodically pause
themselves so that other threads have an opportunity to run.

A starvation problem can be hard to spot if you're developing on a VM
that uses preemptive thread scheduling. Just because the problem
doesn’t arise on your machine doesn't mean it won't arise on your
customers” machines if their VMs use cooperative thread scheduling.
Most current virtual machines use preemptive thread scheduling, but
some older virtual machines are cooperatively scheduled, and you may
also encounter cooperative scheduling in special-purpose Java virtual
machines such as for embedded environments.

There are 10 ways a thread can pause in favor of other threads or indicate that it is ready
to pause. These are:

o It can block on I/O.

o It can block on a synchronized object.

o It can yield.

o It can go to sleep.

o It can join another thread.

o It can wait on an object.

o It can finish.

o It can be preempted by a higher-priority thread.
o It can be suspended.

o It can stop.

Inspect every run() method you write to make sure that one of these conditions will
occur with reasonable frequency. The last two possibilities are deprecated because they
have the potential to leave objects in inconsistent states, so let’s look at the other eight
ways a thread can be a cooperative citizen of the virtual machine.

80 | Chapter3:Threads

Blocking

Blocking occurs any time a thread has to stop and wait for a resource it doesn’t have.
The most common way a thread in a network program will voluntarily give up control
of the CPU is by blocking on I/O. Because CPUs are much faster than networks and
disks, a network program will often block while waiting for data to arrive from the
network or be sent out to the network. Even though it may block for only a few milli-
seconds, this is enough time for other threads to do significant work.

Threads can also block when they enter a synchronized method or block. If the thread
does not already possess the lock for the object being synchronized on and some other
thread does possess that lock, the thread will pause until the lock is released. If the lock
is never released, the thread is permanently stopped.

Neither blocking on I/O nor blocking on a lock will release any locks the thread already
possesses. For 1/O blocks, this is not such a big deal, because eventually the I/O will
either unblock and the thread will continue or an I0Exception will be thrown and the
thread will then exit the synchronized block or method and release its locks. However,
a thread blocking on a lock that it doesn’t possess will never give up its own locks. If one
thread is waiting for a lock that a second thread owns and the second thread is waiting
for a lock that the first thread owns, deadlock results.

Yielding

The second way for a thread to give up control is to explicitly yield. A thread does this
by invoking the static Thread.yield() method. This signals to the virtual machine that
it can run another thread if one is ready to run. Some virtual machines, particularly on
real-time operating systems, may ignore this hint.

Before yielding, a thread should make sure that it or its associated Runnable object is
in a consistent state that can be used by other objects. Yielding does not release any locks
the thread holds. Therefore, ideally, a thread should not be synchronized on anything
when it yields. If the only other threads waiting to run when a thread yields are blocked
because they need the synchronized resources that the yielding thread possesses, then
the other threads won’t be able to run. Instead, control will return to the only thread
that can run, the one that just yielded, which pretty much defeats the purpose of yielding.

Making a thread yield is quite simple in practice. If the thread’s run() method simply
consists of an infinite loop, just put a call to Thread.yield() at the end of the loop. For
example:

public void run() {
while (true) {
// Do the thread's work...
Thread.yield();
}
}

Thread Scheduling | 81

This gives other threads of the same priority the opportunity to run.

If each iteration of the loop takes a significant amount of time, you may want to inter-
sperse more calls to Thread.yield() in the rest of the code. This precaution should
have minimal effect in the event that yielding isn’t necessary.

Sleeping

Sleeping is a more powerful form of yielding. Whereas yielding indicates only that a
thread is willing to pause and let other equal-priority threads have a turn, a thread that
goes to sleep will pause whether any other thread is ready to run or not. This gives an
opportunity to run not only to other threads of the same priority, but also to threads of
lower priorities. However, a thread that goes to sleep does hold onto all the locks it’s
grabbed. Consequently, other threads that need the same locks will be blocked even if
the CPU is available. Therefore, try to avoid sleeping threads inside a synchronized
method or block.

A thread goes to sleep by invoking one of two overloaded static Thread. sleep() meth-
ods. The first takes the number of milliseconds to sleep as an argument. The second
takes both the number of milliseconds and the number of nanoseconds:

public static void sleep(long milliseconds) throws InterruptedException
public static void sleep(long milliseconds, int nanoseconds)
throws InterruptedException

Although most modern computer clocks have at least close-to-millisecond accuracy,
nanosecond accuracy is rarer. There’s no guarantee that you can actually time the sleep
to within a nanosecond or even within a millisecond on any particular virtual machine.
Ifthelocal hardware can’t support thatlevel of accuracy, the sleep time is simply rounded
to the nearest value that can be measured. For example, this run() method attempts to
load a certain page every five minutes and, if it fails, emails the webmaster to alert him
of the problem:

public void run() {
while (true) {
if (!getPage("http://www.ibiblio.org/")) {
mailError("webmaster@ibiblio.org");
}
try {
Thread.sleep(300000); // 300,000 milliseconds == 5 minutes
} catch (InterruptedException ex) {
break;
}
}
3

The thread is not guaranteed to sleep as long as it wants to. On occasion, the thread may
not wake up until some time after its requested wake-up call, simply because the VM is
busy doing other things. It is also possible that some other thread will do something to

82 | Chapter3:Threads

wake up the sleeping thread before its time. Generally, this is accomplished by invoking
the sleeping thread’s interrupt() method.

public void interrupt()

Thisis one of those cases where the distinction between the thread and the Thread object
is important. Just because the thread is sleeping doesn’t mean that other threads that are
awake can’t work with the corresponding Thread object through its methods and fields.
In particular, another thread can invoke the sleeping Thread objects interrupt()
method, which the sleeping thread experiences as an InterruptedException. From
that point forward, the thread is awake and executes as normal, at least until it goes to
sleep again. In the previous example, an InterruptedException is used to terminate a
thread that would otherwise run forever. When the InterruptedException is thrown,
the infinite loop is broken, the run() method finishes, and the thread dies. The user-
interface thread can invoke this thread’s interrupt () method when the user selects Exit
from a menu or otherwise indicates that he wants the program to quit.

If a thread is blocked on an I/O operation such as a read or write, the
effect of interrupting the thread is highly platform dependent. More
often than not, it is a noop. That is, the thread continues to be blocked.
On Solaris, the read() or write() method may throw an Interrupte
dIOException, a subclass of IOException instead. However, this is
unlikely to happen on other platforms, and may not work with all
stream classes on Solaris. If your program architecture requires inter-
ruptible I/O, you should seriously consider using the nonblocking I/O
discussed in Chapter 11 rather than streams. Unlike streams, buffers
and channels are explicitly designed to support interruption while
blocked on a read or write.

Joining threads

It’s not uncommon for one thread to need the result of another thread. For example, a
web browser loading an HTML page in one thread might spawn a separate thread to
retrieve every image embedded in the page. If the IMG elements don’t have HEIGHT and
WIDTH attributes, the main thread might have to wait for all the images to load before it
can finish by displaying the page. Java provides three join() methods to allow one
thread to wait for another thread to finish before continuing. These are:

public final void join() throws InterruptedException
public final void join(long milliseconds) throws InterruptedException
public final void join(long milliseconds, int nanoseconds)

throws InterruptedException

The first variant waits indefinitely for the joined thread to finish. The second two var-
iants wait for the specified amount of time, after which they continue even if the joined

Thread Scheduling | 83

thread has not finished. As with the sleep() method, nanosecond accuracy is not
guaranteed.

The joining thread (i.e., the one that invokes the join() method) waits for the joined
thread (i.e, the one whose join() method is invoked) to finish. For instance, consider
this code fragment. You want to find the minimum, maximum, and median of arandom
array of doubles. It's quicker to do this with a sorted array. You spawn a new thread to
sort the array, then join to that thread to await its results. Only when it’s done do you
read out the desired values.

double[] array = new double[10000]; // 1
for (int 1 = 0; i < array.length; i++) { /2
array[i] = Math.random(); // 3
1 // 4
SortThread t = new SortThread(array); // 5
t.start(); // 6
try { /7
t.join(); // 8
System.out.println("Minimum: " + array[0]); // 9

System.out.println("Median: " + array[array.length/2]); // 10
System.out.println("Maximum: " + array[array.length-1]); // 11
} catch (InterruptedException ex) { // 12

} // 13

First lines 1 through 4 execute, filling the array with random numbers. Then line 5
creates a new SortThread. Line 6 starts the thread that will sort the array. Before you
can find the minimum, median, and maximum of the array, you need to wait for the
sorting thread to finish. Therefore, line 8 joins the current thread to the sorting thread.
At this point, the thread executing these lines of code stops in its tracks. It waits for the
sorting thread to finish running. The minimum, median, and maximum are not re-
trieved in lines 9 through 10 until the sorting thread has finished running and died.
Notice that at no point is there a reference to the thread that pauses. It’s not the Thread
object on which the join() method is invoked; it’s not passed as an argument to that
method. It exists implicitly only as the current thread. If this is within the normal flow
of control of the main() method of the program, there may not be any Thread variable
anywhere that points to this thread.

A thread that’s joined to another thread can be interrupted just like a sleeping thread if
some other thread invokes its interrupt() method. The thread experiences this invo-
cation as an InterruptedException. From that point forward, it executes as normal,
starting from the catch block that caught the exception. In the preceding example, if
the thread is interrupted, it skips over the calculation of the minimum, median, and
maximum because they won't be available if the sorting thread was interrupted before
it could finish.

You can use join() to fix up Example 3-4. Its problem was that the main() method
tended to outpace the threads whose results the main() method was using. It’s straight-

84 | Chapter3:Threads

forward to fix this by joining to each thread before trying to use its result. Example 3-12
demonstrates.

Example 3-12. Avoid a race condition by joining to the thread that has a result you
need

import javax.xml.bind.DatatypeConverter;
public class JoinDigestUserInterface {
public static void main(String[] args) {
ReturnDigest[] digestThreads = new ReturnDigest[args.length];

for (int 1 = 0; 1 < args.length; i++) {
// Calculate the digest
digestThreads[1] = new ReturnDigest(args[i]);
digestThreads[i].start();

}

for (int 1 = 0; 1 < args.length; i++) {
try {
digestThreads[i].join();
// Now print the result
StringBuffer result = new StringBuffer(args[i]);
result.append(": ");
byte[] digest = digestThreads[i].getDigest();
result.append(DatatypeConverter.printHexBinary(digest));
System.out.println(result);
} catch (InterruptedException ex) {
System.err.println("Thread Interrupted before completion");
}
}
}
}

Because Example 3-12 joins to threads in the same order as the threads are started, this
fix also has the side effect of printing the output in the same order as the arguments
used to construct the threads, rather than in the order the threads finish. This modifi-
cation doesn’t make the program any slower, but it may occasionally be an issue if you
want to get the output of a thread as soon as it's done, without waiting for other unrelated
threads to finish first.

Joining is perhaps not as important as it was prior to Java 5. In partic-
. ular, many designs that used to require join() can now more easily be
- implemented using an Executor and a Future instead.

Thread Scheduling | 85

Waiting on an object

A thread can wait on an object it has locked. While waiting, it releases the lock on the
object and pauses until it is notified by some other thread. Another thread changes the
object in some way, notifies the thread waiting on that object, and then continues. This
differs from joining in that neither the waiting nor the notifying thread has to finish
before the other thread can continue. Waiting pauses execution until an object or re-
source reaches a certain state. Joining pauses execution until a thread finishes.

Waiting on an object is one of the lesser-known ways a thread can pause. That’s because
it doesn’'t involve any methods in the Thread class. Instead, to wait on a particular object,
the thread that wants to pause must first obtain the lock on the object using
synchronized and then invoke one of the object’s three overloaded wait() methods:

public final void wait() throws InterruptedException

public final void wait(long milliseconds) throws InterruptedException

public final void wait(long milliseconds, int nanoseconds)

throws InterruptedException

These methods are not in the Thread class; rather, they are in the java.lang.0Object
class. Consequently, they can be invoked on any object of any class. When one of these
methods is invoked, the thread that invoked it releases the lock on the object it’s waiting
on (though not any locks it possesses on other objects) and goes to sleep. It remains
asleep until one of three things happens:

o The timeout expires.
o The thread is interrupted.
o The object is notified.

The timeout is the same as for the sleep() and join() methods; that is, the thread
wakes up after the specified amount of time has passed (within the limits of the local
hardware clock accuracy). When the timeout expires, execution of the thread resumes
with the statement immediately following the invocation of wait(). However, if the
thread can’t immediately regain the lock on the object it was waiting on, it may still be
blocked for some time.

Interruption works the same way as sleep() and join(): some other thread invokes
the thread’s interrupt() method. This causes an InterruptedException, and execu-
tion resumes in the catch block that catches the exception. The thread regains the lock
on the object it was waiting on before the exception is thrown, however, so the thread
may still be blocked for some time after the interrupt() method is invoked.

The third possibility, notification, is new. Notification occurs when some other thread
invokes the notify() or notifyAll() method on the object on which the thread is
waiting. Both of these methods are in the java.lang.0Object class:

86 | Chapter3:Threads

public final void notify()

public final void notifyAll()
These must be invoked on the object the thread was waiting on, not generally on the
Thread itself. Before notifying an object, a thread must first obtain the lock on the object
using a synchronized method or block. The notify() method selects one thread more
or less at random from the list of threads waiting on the object and wakes it up. The
notifyAll() method wakes up every thread waiting on the given object.

Once a waiting thread is notified, it attempts to regain the lock of the object it was waiting
on. If it succeeds, execution resumes with the statement immediately following the
invocation of wait(). If it fails, it blocks on the object until its lock becomes available;
then execution resumes with the statement immediately following the invocation of
wait().

For example, suppose one thread is reading a JAR archive from a network connection.
The first entry in the archive is the manifest file. Another thread might be interested in
the contents of the manifest file even before the rest of the archive is available. The
interested thread could create a custom ManifestFile object, pass a reference to this
object to the thread that would read the JAR archive, and wait on it. The thread reading
the archive would first fill the ManifestFile with entries from the stream, then notify
the ManifestFile, then continue reading the rest of the JAR archive. When the reader
thread notified the ManifestFile, the original thread would wake up and do whatever
it planned to do with the now fully prepared ManifestFile object. The first thread
works something like this:

ManifestFile m = new ManifestFile();
JarThread t = new JarThread(m, in);
synchronized (m) {
t.start();
try {
m.wait();
// work with the manifest file...
} catch (InterruptedException ex) {
// handle exception...
}
}

The JarThread class works like this:

ManifestFile theManifest;
InputStream in;

public JarThread(Manifest m, InputStream in) {
theManifest = m;
this.in= in;

}

Thread Scheduling | 87

public void run() {
synchronized (theManifest) {
// read the manifest from the stream in...
theManifest.notify();

}
// read the rest of the strean...

}

Waiting and notification are more commonly used when multiple threads want to wait
on the same object. For example, one thread may be reading a web server logfile in which
each line contains one entry to be processed. Each line is placed in a java.util.List
as it’s read. Several threads wait on the List to process entries as they’re added. Every
time an entry is added, the waiting threads are notified using the notifyAll() method.
If more than one thread is waiting on an object, not1fyAl1() is preferred, because there’s
no way to select which thread to notify. When all threads waiting on one object are
notified, all will wake up and try to get the lock on the object. However, only one can
succeed immediately. That one continues; the rest are blocked until the first one releases
the lock. If several threads are all waiting on the same object, a significant amount of
time may pass before the last one gets its turn at the lock on the object and continues.
It’s entirely possible that the object on which the thread was waiting will once again have
been placed in an unacceptable state during this time. Thus, you’ll generally put the call
towatit() in aloop that checks the current state of the object. Do not assume that just
because the thread was notified, the object is now in the correct state. Check it explicitly
ifyou can’t guarantee that once the object reaches a correct state it will never again reach
an incorrect state. For example, this is how the client threads waiting on the logfile
entries might look:

private List<String> entries;
public void processEntry() {

synchronized (entries) { // must synchronize on the object we wait on
while (entries.isEmpty()) {
try {
entries.wait();
// We stopped waiting because entries.size() became non-zero
// However we don't know that it's still non-zero so we
// pass through the loop again to test its state now.
} catch (InterruptedException ex) {
// If interrupted, the last entry has been processed so
return;
}
}
String entry = entries.remove(entries.size()-1);
// process this entry...
}
}

88 | Chapter3: Threads

The code reading the logfile and adding entries to the list might look something like
this:

public void readlLogFile() {
while (true) {

String entry = log.getNextEntry();

if (entry == null) {
// There are no more entries to add to the list so
// we interrupt all threads that are still waiting.
// Otherwise, they'll wait forever.
for (Thread thread : threads) thread.interrupt();
break;

3
synchronized (entries) {
entries.add(0, entry);
entries.notifyAll();
3
}
}
Finish
The final way a thread can give up control of the CPU in an orderly fashion is by
finishing. When the run() method returns, the thread dies and other threads can take
over. In network applications, this tends to occur with threads that wrap a single blocking
operation, such as downloading a file from a server, so that the rest of the application
won't be blocked.

Otherwise, if your run() method is so simple that it always finishes quickly enough
without blocking, there’s a very real question of whether you should spawn a thread at
all. There’s a nontrivial amount of overhead for the virtual machine in setting up and
tearing down threads. If a thread is finishing in a small fraction of a second anyway,
chances are it would finish even faster if you used a simple method call rather than a
separate thread.

Thread Pools and Executors

Adding multiple threads to a program dramatically improves performance, especially
for I/O-bound programs such as most network programs. However, threads are not
without overhead of their own. Starting a thread and cleaning up after a thread that has
died takes a noticeable amount of work from the virtual machine, especially ifa program
spawns hundreds of threads—not an unusual occurrence for even a low- to medium-
volume network server. Even if the threads finish quickly, this can overload the garbage
collector or other parts of the VM and hurt performance, just like allocating thousands
of any other kind of object every minute. Even more importantly, switching between
running threads carries overhead. If the threads are blocking naturally—for instance,
by waiting for data from the network—there’s no real penalty to this; but if the threads

Thread Pools and Executors | 89

are CPU-bound, then the total task may finish more quickly if you can avoid a lot of
switching between threads. Finally, and most importantly, although threads help make
more efficient use of a computer’s limited CPU resources, there is still only a finite
amount of resources to go around. Once you've spawned enough threads to use all the
computer’s available idle time, spawning more threads just wastes MIPS and memory
on thread management.

The Executors class in java.util.concurrent makes it quite easy to set up thread
pools. You simply submit each task as a Runnable object to the pool. You get back a
Future object you can use to check on the progress of the task.

Let’s look at an example. Suppose you want to gzip every file in the current directory
using a java.util.zip.GZIPOutputStream. This is a filter stream that compresses all
the data it writes.

On the one hand, this is an I/O-heavy operation because all the files have to be read and
written. On the other hand, data compression is a very CPU-intensive operation, so you
don’t want too many threads running at once. This is a good opportunity to use a thread
pool. Each client thread will compress files while the main program will determine
which files to compress. In this example, the main program is likely to significantly
outpace the compressing threads because all it has to do is list the files in a directory.
Therefore, it’s not out of the question to fill the pool first, then start the threads that
compress the files in the pool. However, to make this example as general as possible,
you'll allow the main program to run in parallel with the zipping threads.

Example 3-13 shows the GZipRunnable class. It has a single field that identifies the file
to compress. The run() method compresses this file and returns.

Example 3-13. The GZipRunnable class

import java.io.*;
import java.util.zip.*;

public class GZipRunnable implements Runnable {
private final File input;

public GZipRunnable(File input) {
this.input = input;

}

public void run() {
// don't compress an already compressed file
if (!input.getName().endsWith(".gz")) {
File output = new File(input.getParent(), input.getName() +
if (loutput.exists()) { // Don't overwrite an existing file
try (// with resources; requires Java 7
InputStream in = new BufferedInputStream(new FileInputStream(input));

92"

90 | Chapter3:Threads

OutputStream out = new BufferedOutputStream(
new GZIPOutputStream(
new FileOutputStream(output)));
) {
int b;
while ((b = in.read()) != -1) out.write(b);
out.flush();
} catch (IOException ex) {
System.err.println(ex);

Notice the use of Java 7’s try-with-resources statement in GZipRunnable. Both the input
and output stream are declared at the beginning of the try block and automatically
closed at the end of the try block.

Also notice the buffering of both input and output. This is very important for perfor-
mance in I/O-limited applications, and especially important in network programs. At
worst, buffering has no impact on performance, while at best it can give you an order
of magnitude speedup or more.

Example 3-14 is the main program. It constructs the pool with a fixed thread count of
four, and iterates through all the files and directories listed on the command line. Each
of those files and files in those directories is used to construct a GZipRunnable. This
runnable is submitted to the pool for eventual processing by one of the four threads.

Example 3-14. The GZipThread user interface class

import java.ilo.*;
import java.util.concurrent.*;

public class GZipAllFiles {
public final static int THREAD_COUNT = 4;
public static void main(String[] args) {
ExecutorService pool = Executors.newFixedThreadPool(THREAD_COUNT);

for (String filename : args) {
File f = new File(filename);
if (f.exists()) {
if (f.isDirectory()) {
File[] files = f.listFiles();
for (int 1 = 0; 1 < files.length; i++) {
if (!files[i].1isDirectory()) { // don't recurse directories
Runnable task = new GZipRunnable(files[i]);
pool.submit(task);

Thread Pools and Executors | 91

}

}

} else {
Runnable task = new GZipRunnable(f);
pool.submit(task);

}

}
}

pool.shutdown();

3
}

Once you have added all the files to the pool, you call pool.shutdown(). Chances are
this happens while there’s still work to be done. This method does not abort pending
jobs. It simply notifies the pool that no further tasks will be added to its internal queue
and that it should shut down once it has finished all pending work.

Shutting down like this is mostly atypical of the heavily threaded network programs
you'll write because it does have such a definite ending point: the point at which all files
are processed. Most network servers continue indefinitely until shut down through an
administration interface. In those cases, you may want to invoke shutdownNow() instead
to abort currently processing tasks and skip any pending tasks.

92 | Chapter3:Threads

CHAPTER 4
Internet Addresses

Devices connected to the Internet are called nodes. Nodes that are computers are called
hosts. Each node or host is identified by at least one unique number called an Internet
address or an IP address. Most current IP addresses are 4-byte-long IPv4 addresses.
However, a small but growing number of IP addresses are 16-byte-long IPv6 addresses.
(4 and 6 refer to the version of the Internet Protocol, not the number of the bytes in the
address.) Both IPv4 and IPv6 addresses are ordered sequences of bytes, like an array.
They aren’t numbers, and they aren’t ordered in any predictable or useful sense.

An IPv4 address is normally written as four unsigned bytes, each ranging from 0 to 255,
with the most significant byte first. Bytes are separated by periods for the convenience
of human eyes. For example, the address for login.ibiblio.org is 152.19.134.132. This is
called the dotted quad format.

AnIPv6 address is normally written as eight blocks of four hexadecimal digits separated
by colons. For example, at the time of this writing, the address of www.hamiltonweath-
er.tk is 2400:cb00:2048:0001:0000:0000:6¢a2:c665. Leading zeros do not need to be writ-
ten. Therefore, the address of www.hamiltonweather.tk can be written as
2400:¢b00:2048:1:0:0:6¢ca2:c665. A double colon, at most one of which may appear in
any address, indicates multiple zero blocks. For example, the address
2001:4860:4860:0000:0000:0000:0000:8888 can be written more compactly as
2001:4860:4860::8888. In mixed networks of IPv6 and IPv4, the last four bytes of the
IPv6 address are sometimes written as an IPv4 dotted quad address. For example,
FEDC:BA98:7654:3210:FEDC:BA98:7654:3210 could instead be written as
FEDC:BA98:7654:3210:FEDC:BA98:118.84.50.16.

IP addresses are great for computers, but they are a problem for humans, who have a
hard time remembering long numbers. In the 1950s, G. A. Miller discovered that most
people could remember about seven digits per number; some can remember as many
as nine, while others remember as few as five. For more information on this, see “The
Magical Number Seven, Plus or Minus Two: Some Limits on Our Capacity for Pro-

93

cessing Information,” in the Psychological Review, Vol. 63, pp. 81-97. This is why phone
numbers are broken into three- and four-digit pieces with three-digit area codes. Ob-
viously, an IP address, which can have as many as 12 decimal digits, is beyond the
capacity of most humans to remember. I can remember about two IP addresses, and
then only if I use both daily and the second is on the same subnet as the first.

To avoid the need to carry around Rolodexes full of IP addresses, the Internet’s designers
invented the Domain Name System (DNS). DNS associates hostnames that humans can
remember (such as login.ibiblio.org) with IP addresses that computers can remember
(such as 152.19.134.132). Servers usually have at least one hostname. Clients often have
a hostname, but often don't, especially if their IP address is dynamically assigned at
startup.

W S
Colloquially, people often use “Internet address” to mean a host-
. hame (or even an email address, or full URL). In a book about net-
o2 work programming, it is crucial to be precise about addresses and
hostnames. In this book, an address is always a numeric IP address,
never a human-readable hostname.

as
[N

.

Some machines have multiple names. For instance, www.beand.com and xom.nu are
really the same Linux box. The name www.beand.com really refers to a website rather
than a particular machine. In the past, when this website moved from one machine to
another, the name was reassigned to the new machine so it always pointed to the site’s
current server. This way, URLs around the Web don’t need to be updated just because
the site has moved to a new host. Some common names like www and news are often
aliases for the machines providing those services. For example, news.speakeasy.net is an
alias for my ISP’s news server. Because the server may change over time, the alias can
move with the service.

On occasion, one name maps to multiple IP addresses. It is then the responsibility of
the DNS server to randomly choose machines to respond to each request. This feature
is most frequently used for very high-traffic websites, where it splits the load across
multiple systems. For instance, www.oreilly.com is actually two machines, one at
208.201.239.100 and one at 208.201.239.101.

Every computer connected to the Internet should have access to a machine called a
domain name server, generally a Unix box running special DNS software that knows
the mappings between different hostnames and IP addresses. Most domain name
servers only know the addresses of the hosts on their local network, plus the addresses
of a few domain name servers at other sites. If a client asks for the address of a machine
outside the local domain, the local domain name server asks a domain name server at
the remote location and relays the answer to the requester.

94 | Chapter4: Internet Addresses

Most of the time, you can use hostnames and let DNS handle the translation to IP
addresses. Aslong as you can connect to a domain name server, you don’t need to worry
about the details of how names and addresses are passed between your machine, the
local domain name server, and the rest of the Internet. However, you will need access
to at least one domain name server to use the examples in this chapter and most of the
rest of thisbook. These programs will not work on a standalone computer. Your machine
must be connected to the Internet.

The InetAddress Class

The java.net.InetAddress class is Java’s high-level representation of an IP address,
both IPv4 and IPv6. It is used by most of the other networking classes, including Socket,
ServerSocket, URL, DatagramSocket, DatagramPacket, and more. Usually, it includes
both a hostname and an IP address.

Creating New InetAddress Objects

There are no public constructors in the InetAddress class. Instead, InetAddress has
static factory methods that connect to a DNS server to resolve a hostname. The most
common is InetAddress.getByName(). For example, this is how you look up
www.oreilly.com:

InetAddress address = InetAddress.getByName("www.oreilly.com");

This method does not merely set a private String field in the InetAddress class. It
actually makesa connection to thelocal DNS server to look up the name and the numeric
address. (Ifyou've looked up this host previously, the information may be cached locally,
in which case a network connection is not required.) If the DNS server can't find the
address, this method throws an UnknownHostException, a subclass of IOException.

Example 4-1 shows a complete program that creates an InetAddress object for
www.oreilly.com including all the necessary imports and exception handling.

Example 4-1. A program that prints the address of www.oreilly.com

import java.net.¥;
public class OReillyByName {

public static void main (String[] args) {
try {
InetAddress address = InetAddress.getByName("www.oreilly.com");
System.out.println(address);
} catch (UnknownHostException ex) {
System.out.println("Could not find www.oreilly.com");

}

The InetAddress Class | 95

3
}

Here’s the result:

% java OReillyByName

www.oreilly.com/208.201.239.36
You can also do a reverse lookup by IP address. For example, if you want the hostname
for the address 208.201.239.100, pass the dotted quad address to InetAddress.getBy
Name():

InetAddress address = InetAddress.getByName("208.201.239.100");
System.out.println(address.getHostName());

If the address you look up does not have a hostname, getHostName() simply returns
the dotted quad address you supplied.

I mentioned earlier that www.oreilly.com actually has two addresses. Which one
getHostName() returns is indeterminate. If, for some reason, you need all the addresses
of a host, call getAl1ByName() instead, which returns an array:

try {
InetAddress[] addresses = InetAddress.getAllByName("www.oreilly.com");
for (InetAddress address : addresses) {
System.out.println(address);

}
} catch (UnknownHostException ex) {
System.out.println("Could not find www.oreilly.com");

}

Finally, the getLocalHost() method returns an InetAddress object for the host on
which your code is running:

InetAddress me = InetAddress.getlLocalHost();

This method tries to connect to DNS to get a real hostname and IP address such as
“elharo.laptop.corp.com” and “192.1.254.68”; but if that fails it may return the loop-
back address instead. This is the hostname “localhost” and the dotted quad address
“127.0.0.17

Example 4-2 prints the address of the machine it’s run on.
Example 4-2. Find the address of the local machine

import java.net.*;

public class MyAddress {

public static void main (String[] args) {
try {
InetAddress address = InetAddress.getLocalHost();
System.out.println(address);

96 | Chapter4: Internet Addresses

} catch (UnknownHostException ex) {
System.out.println("Could not find this computer's address.");
}
}
}

Here’s the output; I ran the program on titan.oit.unc.edu:

% java MyAddress

titan.oit.unc.edu/152.2.22.14
Whether you see a fully qualified name like titan.oit.unc.edu or a partial name like titan
depends on what the local DNS server returns for hosts in the local domain. If you're
not connected to the Internet, and the system does not have a fixed IP address or domain
name, you'll probably see localhost as the domain name and 127.0.0.1 as the IP address.

If you know a numeric address, you can create an InetAddress object from that address
without talking to DNS using InetAddress.getByAddress(). This method can create
addresses for hosts that do not exist or cannot be resolved:

public static InetAddress getByAddress(byte[] addr) throws UnknownHostException
public static InetAddress getByAddress(String hostname, byte[] addr)
throws UnknownHostException

The first InetAddress.getByAddress() factory method creates an InetAddress object
with an IP address and no hostname. The second InetAddress.getByAddress() meth-
od creates an InetAddress object with an IP address and a hostname. For example, this
code fragment makes an InetAddress for 107.23.216.196:

byte[] address = {107, 23, (byte) 216, (byte) 196};

InetAddress lessWrong = InetAddress.getByAddress(address);

InetAddress lessWrongWithname = InetAddress.getByAddress(
"lesswrong.com", address);

Note that it had to cast the two large values to bytes.

Unlike the other factory methods, these two methods make no guarantees that such a
host exists or that the hostname is correctly mapped to the IP address. They throw an
UnknownHostException onlyifabyte array of an illegal size (neither 4 nor 16 byteslong)
is passed as the address argument. This could be useful if a domain name server is not
available or might have inaccurate information. For example, none of the computers,
printers, or routers in my basement area network are registered with any DNS server.
Because I can never remember which addresses I've assigned to which systems, I wrote
a simple program that attempts to connect to all 254 possible local addresses in turn to
see which ones are active. (This only took me about 10 times as long as writing down
all the addresses on a piece of paper.)

The InetAddress Class | 97

Caching

Because DNS lookups can be relatively expensive (on the order of several seconds for
a request that has to go through several intermediate servers, or one that’s trying to
resolve an unreachable host) the InetAddress class caches the results of lookups. Once
it has the address of a given host, it won't look it up again, even if you create a new
InetAddress object for the same host. As long as IP addresses don't change while your
program is running, this is not a problem.

Negative results (host not found errors) are slightly more problematic. It’s not uncom-
mon for an initial attempt to resolve a host to fail, but the immediately following one
to succeed. The first attempt timed out while the information was still in transit from
the remote DNS server. Then the address arrived at the local server and was immediately
available for the next request. For this reason, Java only caches unsuccessful DNS queries
for 10 seconds.

These times can be controlled by the system properties networkaddress.cache. ttl
and networkaddress.cache.negative.ttl. The first of those, networkad

dress.cache. ttl, specifies the number of seconds a successful DNS lookup will remain
in Java’s cache. networkaddress.cache.negative. ttlis the number of seconds an un-
successful lookup will be cached. Attempting to look up the same host again within
these limits will only return the same value. Negative 1 is interpreted as “never expire”

Besideslocal cachinginside the InetAddress class, thelocal host, the local domain name
server, and other DNS servers elsewhere on the Internet also cache the results of various
queries. Java provides no way to control this. As a result, it may take several hours for
the information about an IP address change to propagate across the Internet. In the
meantime, your program may encounter various exceptions, including UnknownHos
tException, NoRouteToHostException, and ConnectException, depending on the
changes made to the DNS.

Lookups by IP address

When you call getByName() with an IP address string as an argument, it creates an
InetAddress object for the requested IP address without checking with DNS. This
means it’s possible to create InetAddress objects for hosts that don't really exist and
that you can’t connect to. The hostname of an InetAddress object created from a string
containing an IP address is initially set to that string. A DNS lookup for the actual
hostname is only performed when the hostname is requested, either explicitly via a
getHostName(). That's how www.oreilly.com was determined from the dotted quad ad-
dress 208.201.239.37. If, at the time the hostname is requested and a DNS lookup is
finally performed, the host with the specified IP address can’t be found, the hostname
remains the original dotted quad string. However, no UnknownHos tExceptionisthrown.

Hostnames are much more stable than IP addresses. Some services have lived at the
same hostname for years, but have switched IP addresses several times. If you have a

98 | Chapter4: Internet Addresses

choice between using a hostname such as www.oreilly.com or an IP address such as
208.201.239.37, always choose the hostname. Use an IP address only when a hostname
is not available.

Security issues

Creating anew InetAddress object from a hostname is considered a potentially insecure
operation because it requires a DNS lookup. An untrusted applet under the control of
the default security manager will only be allowed to get the IP address of the host it
came from (its codebase) and possibly the local host. Untrusted code is not allowed to
create an InetAddress object from any other hostname. This is true whether the code
uses the InetAddress.getByName() method, the InetAddress.getAl1ByName() meth-
od, the InetAddress.getLocalHost() method, or something else. Untrusted code can
construct an InetAddress object from the string form of the IP address, though it will
not perform DNS lookups for such addresses.

Untrusted code is not allowed to perform arbitrary DNS lookups for third-party hosts
because of the prohibition against making network connections to hosts other than the
codebase. Arbitrary DNS lookups would open a covert channel by which a program
could talk to third-party hosts. For instance, suppose an applet downloaded from
www.bigisp.com wants to send the message “macfaq.dialup.cloud9.net is vulnerable” to
crackersinc.com. All it has to do is request DNS information for macfaq.dial-
up.cloud9.net.is.vulnerable.crackersinc.com. To resolve that hostname, the applet would
contact the local DNS server. The local DNS server would contact the DNS server at
crackersinc.com. Even though these hosts don’t exist, the cracker can inspect the DNS
error log for crackersinc.com to retrieve the message. This scheme could be considerably
more sophisticated with compression, error correction, encryption, custom DNS
servers that email the messages to a fourth site,and more, but this version is good enough
for a proof of concept. Arbitrary DNS lookups are prohibited because arbitrary DNS
lookups leak information.

Untrusted code is allowed to call InetAddress.getLocalHost(). However, in such an
environment, getLocalHost() always returns a hostname of localhost/127.0.0.1. The
reason for prohibiting the applet from finding out the true hostname and address is that
the computer on which the applet is running may be deliberately hidden behind a fire-
wall. In this case, an applet should not be a channel for information the web server
doesn’t already have.

Like all security checks, prohibitions against DNS resolutions can be relaxed for trusted
code. The specific SecurityManager method used to test whether a host can be resolved
is checkConnect():

public void checkConnect(String hostname, int port)

When the port argument is -1, this method checks whether DNS may be invoked to
resolve the specified host. (If the port argument is greater than -1, this method checks

The InetAddress Class | 99

whether a connection to the named host on the specified port is allowed.) The host
argument may be either a hostname such as www.oreilly.com, a dotted quad IP address
such as 208.201.239.37, or a hexadecimal IPv6 address such as FEDC::DC:0:7076:10.

Getter Methods

The InetAddress class contains four getter methods that return the hostname as a string
and the IP address as both a string and a byte array:

public String getHostName()

public String getCanonicalHostName()
public byte[] getAddress()

public String getHostAddress()

There are no corresponding setHostName () and setAddress() methods, which means

that packages outside of java.net can’t change an InetAddress object’s fields behind
its back. This makes InetAddress immutable and thus thread safe.

The getHostName() method returns a String that contains the name of the host with
the IP address represented by this InetAddress object. If the machine in question
doesn’'t have a hostname or if the security manager prevents the name from being de-
termined, a dotted quad format of the numeric IP address is returned. For example:

InetAddress machine = InetAddress.getlLocalHost();

String localhost = machine.getHostName();
The getCanonicalHostName() method is similar, but it’s a bit more aggressive about
contacting DNS. getHostName() will only call DNS if it doesn’t think it already knows
the hostname. getCanonicalHostName() calls DNS if it can, and may replace the ex-
isting cached hostname. For example:

InetAddress machine = InetAddress.getlLocalHost();

String localhost = machine.getCanonicalHostName();
The getCanonicalHostName() method is particularly useful when you're starting with
a dotted quad IP address rather than the hostname. Example 4-3 converts the dotted
quad address 208.201.239.37 into a hostname by using InetAddress.getByName() and
then applying getCanonicalHostName() on the resulting object.

Example 4-3. Given the address, find the hostname

import java.net.*;
public class ReverseTest {

public static void main (String[] args) throws UnknownHostException {
InetAddress ia = InetAddress.getByName("208.201.239.100");
System.out.println(ia.getCanonicalHostName());
}
}

100 | Chapter4: Internet Addresses

Here’s the result:

% java ReverseTest
oreilly.com

The getHostAddress() method returns a string containing the dotted quad format of
the IP address. Example 4-4 uses this method to print the IP address of the local machine
in the customary format.

Example 4-4. Find the IP address of the local machine

import java.net.*;
public class MyAddress {

public static void main(String[] args) {
try {
InetAddress me = InetAddress.getlLocalHost();
String dottedQuad = me.getHostAddress();
System.out.println("My address is " + dottedQuad);
} catch (UnknownHostException ex) {
System.out.println("I'm sorry. I don't know my own address.");
}
}
}

Here’s the result:

% java MyAddress
My address is 152.2.22.14.

Of course, the exact output depends on where the program is run.

If you want to know the IP address of a machine (and you rarely do), then use the
getAddress() method, which returns an IP address as an array of bytes in network byte
order. The most significant byte (i.e., the first byte in the address’s dotted quad form) is
the first byte in the array, or element zero. To be ready for IPv6 addresses, try not to
assume anything about the length of this array. If you need to know the length of the
array, use the array’s length field:

InetAddress me = InetAddress.getlLocalHost();

byte[] address = me.getAddress();
The bytes returned are unsigned, which poses a problem. Unlike C, Java doesn't have
an unsigned byte primitive data type. Bytes with values higher than 127 are treated as
negative numbers. Therefore, if you want to do anything with the bytes returned by
getAddress(), you need to promote the bytes to ints and make appropriate adjust-
ments. Here’s one way to do it:

int unsignedByte = signedByte < 0 ? signedByte + 256 : signedByte;

The InetAddress Class | 101

Here, signedByte may be either positive or negative. The conditional operator ? tests
whether signedByte is negative. If it is, 256 is added to signedByte to make it positive.
Otherwise, it’s left alone. signedByte is automatically promoted to an int before the
addition is performed, so wraparound is not a problem.

One reason to look at the raw bytes of an IP address is to determine the type of the
address. Test the number of bytes in the array returned by getAddress() to determine
whether youre dealing with an IPv4 or IPv6 address. Example 4-5 demonstrates.

Example 4-5. Determining whether an IP address is v4 or v6

import java.net.¥;
public class AddressTests {

public static int getVersion(InetAddress ia) {
byte[] address = ia.getAddress();
if (address.length == 4) return 4;
else if (address.length == 16) return 6;
else return -1;
}
}

Address Types

Some IP addresses and some patterns of addresses have special meanings. For instance,
I've already mentioned that 127.0.0.1 is the local loopback address. IPv4 addresses in
the range 224.0.0.0 to 239.255.255.255 are multicast addresses that send to several sub-
scribed hosts at once. Java includes 10 methods for testing whether an InetAddress
object meets any of these criteria:

public boolean isAnyLocalAddress()
public boolean isLoopbackAddress()
public boolean isLinkLocalAddress()
public boolean isSitelLocalAddress()
public boolean isMulticastAddress()
public boolean isMCGlobal()

public boolean isMCNodelLocal()
public boolean isMCLinkLocal()
public boolean isMCSitelLocal()
public boolean isMCOrgLocal()

The isAnyLocalAddress() method returns true if the address is a wildcard address,
false otherwise. A wildcard address matches any address of the local system. This is
important if the system has multiple network interfaces, as might be the case on a system
with multiple Ethernet cards or an Ethernet card and an 802.11 WiFi interface. In IPv4,
the wildcard address is 0.0.0.0. In IPv6, this address is 0:0:0:0:0:0:0:0 (a.k.a. ::).

102 | Chapter4: Internet Addresses

The isLoopbackAddress() method returns true if the address is the loopback address,
false otherwise. The loopback address connects to the same computer directly in the IP
layer without using any physical hardware. Thus, connecting to the loopback address
enables tests to bypass potentially buggy or nonexistent Ethernet, PPP, and other drivers,
helping to isolate problems. Connecting to the loopback address is not the same as
connecting to the system’s normal IP address from the same system. In IPv4, this address
is 127.0.0.1. In IPv6, this address is 0:0:0:0:0:0:0:1 (a.k.a. ::1).

The isLinkLocalAddress() method returns true if the address is an IPv6 link-local
address, false otherwise. This is an address used to help IPv6 networks self-configure,
much like DHCP on IPv4 networks but without necessarily using a server. Routers do
not forward packets addressed to a link-local address beyond the local subnet. All link-
local addresses begin with the eight bytes FE80:0000:0000:0000. The next eight bytes
are filled with a local address, often copied from the Ethernet MAC address assigned
by the Ethernet card manufacturer.

The isSiteLocalAddress() method returns true if the address is an IPv6 site-local
address, false otherwise. Site-local addresses are similar to link-local addresses except
that they may be forwarded by routers within a site or campus but should not be for-
warded beyond that site. Site-local addresses begin with the eight bytes
FEC0:0000:0000:0000. The next eight bytes are filled with a local address, often copied
from the Ethernet MAC address assigned by the Ethernet card manufacturer.

The isMulticastAddress() method returns true if the address is a multicast address,
false otherwise. Multicasting broadcasts content to all subscribed computers rather than
to one particular computer. In IPv4, multicast addresses all fall in the range 224.0.0.0
to 239.255.255.255. In IPv6, they all begin with byte FE. Multicasting will be discussed
in Chapter 13.

The 1sMCGlobal() method returns true if the address is a global multicast address, false
otherwise. A global multicast address may have subscribers around the world. All mul-
ticast addresses begin with FE. In IPv6, global multicast addresses begin with FFOE or
FF1E depending on whether the multicast address is a well known permanently assigned
address or a transient address. In IPv4, all multicast addresses have global scope, at least
as far as this method is concerned. As you'll see in Chapter 13, IPv4 uses time-to-live
(TTL) values to control scope rather than addressing.

The 1sMCOrgLocal() method returns true if the address is an organization-wide mul-
ticast address, false otherwise. An organization-wide multicast address may have sub-
scribers within all the sites of a company or organization, but not outside that organi-
zation. Organization multicast addresses begin with FF08 or FF18, depending on
whether the multicast address is a well known permanently assigned address or a tran-
sient address.

The InetAddress Class | 103

The i1sMCSitelLocal() method returns true if the address is a site-wide multicast ad-
dress, false otherwise. Packets addressed to a site-wide address will only be transmitted
within their local site. Site-wide multicast addresses begin with FF05 or FF15, depending
on whether the multicast address is a well known permanently assigned address or a
transient address.

The isMCLinkLocal() method returns true if the address is a subnet-wide multicast
address, false otherwise. Packets addressed to a link-local address will only be trans-
mitted within their own subnet. Link-local multicast addresses begin with FF02 or FF12,
depending on whether the multicast address is a well known permanently assigned
address or a transient address.

The isMCNodeLocal() method returns true if the address is an interface-local multicast
address, false otherwise. Packets addressed to an interface-local address are not sent
beyond the network interface from which they originate, not even to a different network
interface on the same node. This is primarily useful for network debugging and testing.
Interface-local multicast addresses begin with the two bytes FFO1 or FF11, depending
on whether the multicast address is a well known permanently assigned address or a
transient address.

The method name is out of sync with current terminology. Earlier
.'s . drafts of the IPv6 protocol called this type of address “node-local,”
"o} hence the name “isMCNodeLocal.” The IPNG working group actual-
ly changed the name before this method was added to the JDK, but

Sun didn’t get the memo in time.

Example 4-6 is a simple program to test the nature of an address entered from the
command line using these 10 methods.

Example 4-6. Testing the characteristics of an IP address

import java.net.*;
public class IPCharacteristics {
public static void main(String[] args) {

try {
InetAddress address = InetAddress.getByName(args[0]);

if (address.isAnylLocalAddress()) {
System.out.println(address + " is a wildcard address.");

}
if (address.isLoopbackAddress()) {
System.out.println(address + " i1s loopback address.");

}

104 | Chapter4: Internet Addresses

if (address.isLinkLocalAddress()) {
System.out.println(address + " is a link-local address.");

} else if (address.isSitelocalAddress()) {
System.out.println(address + " is a site-local address.");

} else {
System.out.println(address +

}

is a global address.");

if (address.isMulticastAddress()) {
if (address.isMCGlobal()) {
System.out.println(address + " is a global multicast address.");
} else if (address.isMCOrglLocal()) {
System.out.println(address
+ " 1s an organization wide multicast address.");
} else if (address.isMCSiteLocal()) {
System.out.println(address + " is a site wide multicast
address.");
} else if (address.isMCLinkLocal()) {
System.out.println(address + " is a subnet wide multicast
address.");
} else if (address.isMCNodelLocal()) {
System.out.println(address
+ " 1s an interface-local multicast address.");
} else {
System.out.println(address + " i1s an unknown multicast
address type.");

}
} else {
System.out.println(address +
}
} catch (UnknownHostException ex) {
System.err.println("Could not resolve

is a unicast address.");

+ args[0]);
}
}
}

Here’s the output from an IPv4 and IPv6 address:

$ java IPCharacteristics 127.0.0.1

/127.0.0.1 is loopback address.

/127.0.0.1 is a global address.

/127.0.0.1 is a unicast address.

$ java IPCharacteristics 192.168.254.32
/192.168.254.32 is a site-local address.
/192.168.254.32 is a unicast address.

$ java IPCharacteristics www.oreilly.com
www.oreilly.com/208.201.239.37 is a global address.
www.oreilly.com/208.201.239.37 is a unicast address.
$ java IPCharacteristics 224.0.2.1

/224.0.2.1 is a global address.

/224.0.2.1 is a global multicast address.

$ java IPCharacteristics FF01:0:0:0:0:0:0:1

The InetAddress Class

/ff01:0:0:0:0:0:0:1 is a global address.

/ff01:0:0:0:0:0:0:1 is an interface-local multicast address.
$ java IPCharacteristics FF05:0:0:0:0:0:0:101
/ff05:0:0:0:0:0:0:101 is a global address.
/ff05:0:0:0:0:0:0:101 1s a site wide multicast address.

$ java IPCharacteristics 0::1

/0:0:0:0:0:0:0:1 is loopback address.

/0:0:0:0:0:0:0:1 is a global address.

/0:0:0:0:0:0:0:1 is a unicast address.

Testing Reachability

The InetAddress class has two isReachable() methods that test whether a particular
node is reachable from the current host (i.e., whether a network connection can be
made). Connections can be blocked for many reasons, including firewalls, proxy servers,
misbehaving routers, and broken cables, or simply because the remote host is not turned
on when you try to connect.

public boolean isReachable(int timeout) throws IOException
public boolean isReachable(NetworkInterface interface, int ttl, int timeout)
throws IOException

These methods attempt to use traceroute (more specifically, ICMP echo requests) to
find out if the specified address is reachable. If the host responds within timeout mil-
liseconds, the methods return true; otherwise, they return false. An I0Exception will
be thrown if there’s a network error. The second variant also lets you specify the local
network interface the connection is made from and the “time-to-live” (the maximum
number of network hops the connection will attempt before being discarded).

Object Methods

Like every other class, java.net. InetAddress inherits from java.lang.0Object. Thus,
it has access to all the methods of that class. It overrides three methods to provide more
specialized behavior:

public boolean equals(Object o)

public int hashCode()

public String toString()
An object is equal to an InetAddress object only if it is itself an instance of the InetAd
dress class and it has the same IP address. It does not need to have the same hostname.
Thus, an InetAddress object for www.ibiblio.org is equal to an InetAddress object for
www.cafeaulait.org because both names refer to the same IP address. Example 4-7
creates InetAddress objects for www.ibiblio.org and helios.ibiblio.org and then tells you
whether theyre the same machine.

106 | Chapter4: Internet Addresses

Example 4-7. Are www.ibiblio.org and helios.ibiblio.org the same?

import java.net.*;
public class IBiblioAliases {

public static void main (String args[]) {
try {
InetAddress ibiblio = InetAddress.getByName("www.ibiblio.org");
InetAddress helios = InetAddress.getByName("helios.ibiblio.org");
if (ibiblio.equals(helios)) {
System.out.println
("www.ibiblio.org is the same as helios.ibiblio.org");
} else {
System.out.println
("www.ibiblio.org is not the same as helios.ibiblio.org");
}
} catch (UnknownHostException ex) {
System.out.println("Host lookup failed.");
}
}
}

When you run this program, you discover:

% java IBiblioAliases

www.ibiblio.org is the same as helios.ibiblio.org
The hashCode() method is consistent with the equals() method. The int that hash
Code() returns is calculated solely from the IP address. It does not take the hostname

into account. If two InetAddress objects have the same address, then they have the
same hash code, even if their hostnames are different.

Like all good classes, java.net.InetAddress hasa toString() method that returns a
short text representation of the object. Example 4-1 and Example 4-2 implicitly called
this method when passing InetAddress objects to System.out.println(). Asyou saw,
the string produced by toString() has the form:

hostname/dotted quad address

Not all InetAddress objects have hostnames. If one doesn't, the dotted quad address is
substituted in Java 1.3 and earlier. In Java 1.4 and later, the hostname is set to the empty
string.

Inet4Address and Inet6Address

Java uses two classes, Inet4Address and Inet6Address, in order to distinguish IPv4
addresses from IPv6 addresses:

public final class Inet4Address extends InetAddress
public final class Inet6Address extends InetAddress

Inet4Address and Inet6Address | 107

Most of the time, you really shouldn’t be concerned with whether an address is an IPv4
or IPv6 address. In the application layer where Java programs reside, you simply don’t
need to know this (and even if you do need to know, it’s quicker to check the size of the
byte array returned by getAddress() than to use instanceof to test which subclass you
have). Inet4Address overrides several of the methods in InetAddress but doesn’t
change their behavior in any public way. Inet6Address is similar, but it does add one
new method not present in the superclass, isIPv4CompatibleAddress():

public boolean isIPv4CompatibleAddress()

This method returns true if and only if the address is essentially an IPv4 address stuffed
into an IPv6 container—which means only the last four bytes are nonzero. That is, the
address has the form 0:0:0:0:0:0:0:xxxx. If this is the case, you can pull off the last four
bytes from the array returned by getBytes() and use this data to create an Inet4Ad
dress instead. However, you rarely need to do this.

The Networkinterface Class

The NetworkInterface class represents a local IP address. This can either be a physical
interface such as an additional Ethernet card (common on firewalls and routers) or it
can be a virtual interface bound to the same physical hardware as the machine’s other
IP addresses. The NetworkInterface class provides methods to enumerate all the local
addresses, regardless of interface, and to create InetAddress objects from them. These
InetAddress objects can then be used to create sockets, server sockets, and so forth.

Factory Methods

Because NetworkInterface objects represent physical hardware and virtual addresses,
they cannot be constructed arbitrarily. As with the InetAddress class, there are static
factory methods that return the NetworkInterface object associated with a particular
network interface. You can ask for a NetworkInterface by IP address, by name, or by
enumeration.

public static Networkinterface getByName(String name) throws SocketException

The getByName() method returns aNetworkInterface object representing the network
interface with the particular name. If there’s no interface with that name, it returns null.
If the underlying network stack encounters a problem while locating the relevant net-
work interface, a SocketException is thrown, but this isn’t too likely to happen.

The format of the names is platform dependent. On a typical Unix system, the Ethernet
interface names have the form eth0, ethl, and so forth. The local loopback address is
probably named something like “lo>. On Windows, the names are strings like “CE31”
and “ELX100” that are derived from the name of the vendor and model of hardware on

108 | Chapter4: Internet Addresses

that particular network interface. For example, this code fragment attempts to find the
primary Ethernet interface on a Unix system:

try {
NetworkInterface ni = NetworkInterface.getByName("eth0");

if (ni == null) {
System.err.println("No such interface: eth0");

}
} catch (SocketException ex) {
System.err.println("Could not list sockets.");

}
public static Networkinterface getBylnetAddress(InetAddress address) throws SocketException

The getByInetAddress() method returnsaNetworkInterface object representing the
network interface bound to the specified IP address. If no network interface is bound
to that IP address on the local host, it returns null. If anything goes wrong, it throws a
SocketException. For example, this code fragment finds the network interface for the
local loopback address:

try {
InetAddress local = InetAddress.getByName("127.0.0.1");

NetworkInterface ni = NetworkInterface.getByInetAddress(local);
if (nl == null) {
System.err.println("That's weird. No local loopback address.");
}
} catch (SocketException ex) {
System.err.println("Could not list network interfaces.");
} catch (UnknownHostException ex) {
System.err.println("That's weird. Could not lookup 127.0.0.1.");

}
public static Enumeration getNetworkinterfaces() throws SocketException

The getNetworkInterfaces() methodreturnsa java.util.Enumerationlistingall the
network interfaces on the local host. Example 4-8 is a simple program to list all network
interfaces on the local host:

Example 4-8. A program that lists all the network interfaces

import java.net.*;
import java.util.*;

public class InterfaceLister {

public static void main(String[] args) throws SocketException {
Enumeration<NetworkInterface> interfaces = NetworkInterface.getNetwork
Interfaces();
while (interfaces.hasMoreElements()) {
NetworkInterface ni = interfaces.nextElement();
System.out.println(ni);

}

The NetworkInterface Class | 109

3
}

Here’s the result of running this on the IBiblio login server:

% java InterfacelLister
name:ethl (eth1) index: 3 addresses:
/192.168.210.122;

name:eth® (eth0®) index: 2 addresses:
/152.2.210.122;

name:lo (lo) index: 1 addresses:

/127.0.0.1;
You can see that this host has two separate Ethernet cards plus the local loopback address.
The Ethernet card with index 2 has the IP address 152.2.210.122. The Ethernet card
with index 3 has the IP address 192.168.210.122. The loopback interface has address
127.0.0.1, as always.

Getter Methods

Once you have a NetworkInterface object, you can inquire about its IP address and
name. This is pretty much the only thing you can do with these objects.

public Enumeration getlnetAddresses()

A single network interface may be bound to more than one IP address. This situation
ism’t common these days, but it does happen. The getInetAddresses() method returns
a java.util.Enumeration containing an InetAddress object for each IP address the
interface is bound to. For example, this code fragment lists all the IP addresses for the
eth0 interface:

NetworkInterface eth® = NetworkInterrface.getByName('"eth0");

Enumeration addresses = eth0.getInetAddresses();

while (addresses.hasMoreElements()) {
System.out.println(addresses.nextElement());

}
public String getName()

The getName () method returns the name of a particular NetworkInterface object, such
as ethO or lo.

public String getDisplayName()

The getDisplayName() method allegedly returns a more human-friendly name for the
particular NetworkInterface—something like “Ethernet Card 0 However, in my tests
on Unix, it always returned the same string as getName(). On Windows, you may see
slightly friendlier names such as “Local Area Connection” or “Local Area Connection
27

110 | Chapter4: Internet Addresses

Some Useful Programs

You now know everything there is to know about the java.net.InetAddress class. The
tools in this class alone let you write some genuinely useful programs. Here you’ll look
at two examples: one that queries your domain name server interactively and another
that can improve the performance of your web server by processing logfiles offline.

SpamCheck

A number of services monitor spammers, and inform clients whether a host attempting
to connect to them is a known spammer or not. These real-time blackhole lists need to
respond to queries extremely quickly, and process a very high load. Thousands, maybe
millions, of hosts query them repeatedly to find out whether an IP address attempting
a connection is or is not a known spammer.

The nature of the problem requires that the response be fast, and ideally it should be
cacheable. Furthermore, the load should be distributed across many servers, ideally ones
located around the world. Although this could conceivably be done using a web server,
SOAP, UDP, a custom protocol, or some other mechanism, this service is in fact cleverly
implemented using DNS and DNS alone.

To find out if a certain IP address is a known spammer, reverse the bytes of the address,
add the domain of the blackhole service, and look it up. If the address is found, it’s a
spammer. If it isn't, it’s not. For instance, if you want to ask sbl.spamhaus.org if
207.87.34.17 is a spammer, you would look up the hostname 17.34.87.207.sbl.spam-
haus.org. (Note that despite the numeric component, this is a hostname ASCII string,
not a dotted quad IP address.)

If the DNS query succeeds (and, more specifically, if it returns the address 127.0.0.2),
then the host is known to be a spammer. If the lookup fails—that is, it throws an
UnknownHostException—it isn’'t. Example 4-9 implements this check.

Example 4-9. SpamCheck

import java.net.*;
public class SpamCheck {
public static final String BLACKHOLE = "sbl.spamhaus.org";

public static void main(String[] args) throws UnknownHostException {
for (String args) {
if (isSpammer(arg)) {
System.out.println(arg +
} else {
System.out.println(arg +
}
}

is a known spammer.");

appears legitimate.");

Some Useful Programs | 111

}

private static boolean isSpammer(String arg) {
try {

InetAddress address = InetAddress.getByName(arg);

byte[] quad = address.getAddress();

String query = BLACKHOLE;

for (byte octet : quad) {
int unsignedByte = octet < 0 ? octet + 256 : octet;
query = unsignedByte + "." + query;

}
InetAddress.getByName(query);

return true;
} catch (UnknownHostException e) {
return false;
}
}
}

Here’s some sample output:

$ java SpamCheck 207.34.56.23 125.12.32.4 130.130.130.130
207.34.56.23 appears legitimate.

125.12.32.4 appears legitimate.

130.130.130.130 appears legitimate.

If you use this technique, be careful to stay on top of changes to blackhole list policies
and addresses. For obvious reasons, blackhole servers are frequent targets of DDOS and
other attacks, so you want to be careful that if the blackhole server changes its address
or simply stops responding to any queries, you don’t begin blocking all traffic.

Further note that different blackhole lists can follow slightly different protocols. For
example, a few lists return 127.0.0.1 for spamming IPs instead of 127.0.0.2.

Processing Web Server Logfiles

Web server logs track the hosts that access a website. By default, the log reports the IP
addresses of the sites that connect to the server. However, you can often get more in-
formation from the names of those sites than from their IP addresses. Most web servers
have an option to store hostnames instead of IP addresses, but this can hurt performance
because the server needs to make a DNS request for each hit. It is much more efficient
to log the IP addresses and convert them to hostnames at a later time, when the server
isn’t busy or even on another machine completely. Example 4-10 is a program called
Weblog that reads a web server logfile and prints each line with IP addresses converted
to hostnames.

Most web servers have standardized on the common logfile format. A typical line in the
common logfile format looks like this:

112 | Chapter4: Internet Addresses

205.160.186.76 unknown - [17/Jun/2013:22:53:58 -0500]
"GET /bgs/greenbg.gif HTTP 1.0" 200 50

This line indicates that a web browser at IP address 205.160.186.76 requested the
file /bgs/greenbg.gif from this web server at 11:53 P.M (and 58 seconds) on June 17, 2013.
The file was found (response code 200) and 50 bytes of data were successfully transferred
to the browser.

The first field is the IP address or, if DNS resolution is turned on, the hostname from
which the connection was made. This is followed by a space. Therefore, for our purposes,
parsing the logfile is easy: everything before the first space is the IP address, and ev-
erything after it does not need to be changed.

The dotted quad format IP address is converted into a hostname using the usual methods
of java.net.InetAddress. Example 4-10 shows the code.

Example 4-10. Process web server logfiles

import java.ilo.*;
import java.net.¥*;

public class Weblog {

public static void main(String[] args) {
try (FileInputStream fin = new FileInputStream(args[0]);
Reader in = new InputStreamReader(fin);
BufferedReader bin = new BufferedReader(in);) {

for (String entry = bin.readLine();
entry != null;
entry = bin.readLine()) {
// separate out the IP address
int index = entry.indexOf(' ');
String ip = entry.substring(0, index);
String theRest = entry.substring(index);

// Ask DNS for the hostname and print it out
try {
InetAddress address = InetAddress.getByName(ip);
System.out.println(address.getHostName() + theRest);
} catch (UnknownHostException ex) {
System.err.println(entry);
}
}
} catch (IOException ex) {
System.out.println("Exception:

}

+ ex);

}

Some Useful Programs | 113

The name of the file to be processed is passed to Weblog as the first argument on the
command line. A FileInputStream fin is opened from this file and an InputStream
Reader is chained to fin. This InputStreamReader is buffered by chaining it to an
instance of the BufferedReader class. The file is processed line by line in a for loop.

Each pass through the loop places one line in the String variable entry. entry is then
split into two substrings: ip, which contains everything before the first space, and
theRest, which is everything from the first space to the end of the string. The position
of the first space is determined by entry.index0f (" "). The substring ip is converted
to an InetAddress object using getByName(). getHostName() then looks up the host-
name. Finally, the hostname and everything else on the line (theRest) are printed on
System.out. Output can be sent to a new file through the standard means for redirecting
output.

Weblog is more efficient than you might expect. Most web browsers generate multiple
logfile entries per page served, because there’s an entry in the log not just for the page
itself but for each graphic on the page. And many visitors request multiple pages while
visiting a site. DNS lookups are expensive and it simply doesn’t make sense to look up
each site every time it appears in the logfile. The InetAddress class caches requested
addresses. If the same address is requested again, it can be retrieved from the cache
much more quickly than from DNS.

Nonetheless, this program could certainly be faster. In my initial tests, it took more than
asecond perlog entry. (Exact numbers depend on the speed of your network connection,
the speed of the local and remote DNS servers, and network congestion when the pro-
gram is run.) The program spends a huge amount of time sitting and waiting for DNS
requests to return. Of course, this is exactly the problem multithreading is designed to
solve. One main thread can read the logfile and pass off individual entries to other
threads for processing.

A thread pool is absolutely necessary here. Over the space of a few days, even low-
volume web servers can generate a logfile with hundreds of thousands of lines. Trying
to process such a logfile by spawning a new thread for each entry would rapidly bring
even the strongest virtual machine to its knees, especially because the main thread can
read logfile entries much faster than individual threads can resolve domain names and
die. Consequently, reusing threads is essential. The number of threads is stored in a
tunable parameter, numberOfThreads, so that it can be adjusted to fit the VM and net-
work stack. (Launching too many simultaneous DNS requests can also cause problems.)

This program is now divided into two classes. The first class, LookupTask, shown in
Example 4-11, is a Callable that parses a logfile entry, looks up a single address, and
replaces that address with the corresponding hostname. This doesn’t seem like a lot of
work and CPU-wise, it isn’'t. However, because it involves a network connection, and

114 | Chapter4: Internet Addresses

possibly a hierarchical series of network connections between many different DNS
servers, it has a lot of downtime that can be put to better use by other threads.

Example 4-11. LookupTask

import java.net.*;
import java.util.concurrent.Callable;

public class LookupTask implements Callable<String> {
private String line;

public LookupTask(String line) {
this.line = line;

}

public String call() {
try {
// separate out the IP address
int index = line.indexOf(' ');
String address = line.substring(0, index);
String theRest = line.substring(index);
String hostname = InetAddress.getByName(address).getHostName();
return hostname + " " + theRest;
} catch (Exception ex) {
return line;
}
}
}

The second class, PooledwWeblog, shown in Example 4-12, contains the main() method
that reads the file and creates one LookupTask per line. Each task is submitted to an
executor that can run multiple (though not all) tasks in parallel and in sequence.

The Future that is returned from the submit() method is stored in a queue, along with
the original line (in case something goes wrong in the asynchronous thread). A loop
reads values out of the queue and prints them. This maintains the original order of the
logfile.

Example 4-12. PooledWebLog

import java.io.*;
import java.util.*;
import java.util.concurrent.*;

// Requires Java 7 for try-with-resources and multi-catch
public class PooledWeblog {

private final static int NUM_THREADS = 4;

public static void main(String[] args) throws IOException {

Some Useful Programs | 115

ExecutorService executor = Executors.newFixedThreadPool(NUM_THREADS);
Queue<LogEntry> results = new LinkedList<LogEntry>();

try (BufferedReader in = new BufferedReader(
new InputStreamReader(new FileInputStream(args[0]), "UTF-8"));) {
for (String entry = in.readlLine(); entry != null; entry = in.readLine()) {
LookupTask task = new LookupTask(entry);
Future<String> future = executor.submit(task);
LogEntry result = new LogEntry(entry, future);
results.add(result);
}
}

// Start printing the results. This blocks each time a result isn't ready.
for (LogEntry result : results) {
try {
System.out.println(result.future.get());
} catch (InterruptedException | ExecutionException ex) {
System.out.println(result.original);
}
}

executor.shutdown();

3

private static class LogEntry {
String original;
Future<String> future;

LogEntry(String original, Future<String> future) {
this.original = original;
this.future = future;
}
}
}

Using threads like this lets the same logfiles be processed in parallel—a huge time sav-
ings. In my unscientific tests, the threaded version is 10 to 50 times faster than the
sequential version. The tech editor ran the same test on a different system and only saw
a factor of four improvement, but either way it’s still a significant gain.

There’s still one downside to this design. Although the queue of Callable tasks is much
more efficient than spawning a thread for each logfile entry, logfiles can be huge and
this program can still burn a lot of memory. To avoid this, you could put the output into
a separate thread that shared the queue with the input thread. Because early entries
could be processed and output while the input was still being parsed, the queue would
not grow so large. This does, however, introduce another problem. You'd need a separate
signal to tell you when the output was complete because an empty queue is no longer
sufficient to prove the job is complete. The easiest way is simply to count the number
of input lines and make sure it matches up to the number of output lines.

116 | Chapter4: Internet Addresses

CHAPTER'5
URLs and URIs

In the last chapter, you learned how to address hosts on the Internet via host names and
IP addresses. In this chapter, we increase the granularity by addressing resources, any
number of which may reside on any given host.

HTML is a hypertext markup language because it includes a way to specify links to other
documents identified by URLs. A URL unambiguously identifies the location of a re-
source on the Internet. A URL is the most common type of URI, or Uniform Resource
Identifier. A URI can identify a resource by its network location, as in a URL, or by its
name, number, or other characteristics.

The URL class is the simplest way for a Java program to locate and retrieve data from the
network. You do not need to worry about the details of the protocol being used, or how
to communicate with the server; you simply tell Java the URL and it gets the data for
you.

URIs

A Uniform Resource Identifier (URI) is a string of characters in a particular syntax that
identifies a resource. The resource identified may be a file on a server; but it may also
be an email address, a news message, a book, a person’s name, an Internet host, the
current stock price of Oracle, or something else.

Aresourceisathingthatisidentified bya URIL. A URIisastring thatidentifies a resource.
Yes, it is exactly that circular. Don’t spend too much time worrying about what a resource
is or isn’t, because you’ll never see one anyway. All you ever receive from a server is a
representation of a resource which comes in the form of bytes. However a single resource
may have different representations. For instance, https://www.un.org/en/documents/
udhr/ identifies the Universal Declaration of Human Rights; but there are representa-
tions of the declaration in plain text, XML, PDE and other formats. There are also
representations of this resource in English, French, Arabic, and many other languages.

117

Some of these representations may themselves be resources. For instance, https://
www.un.org/en/documents/udhr/ identifies specifically the English version of the Uni-
versal Declaration of Human Rights.

W S
iy One of the key principles of good web architecture is to be profligate
,‘s . with URIs. If anyone might want to address something or refer to
o) something, give it a URI (and in practice a URL). Just because a re-

source is a part of another resource, or a collection of other resour-
ces, or a state of another resource at a particular time, doesn’t mean it
can't have its own URIL For instance, in an email service, every user,
every message received, every message sent, every filtered view of the
inbox, every contact, every filter rule, and every single page a user
might ever look at should have a unique URL

Although architecturally URIs are opaque strings, in practice it’s use-
ful to design them with human-readable substructure. For instance,
http://mail.example.com/ might be a particular mail server, http://
mail.example.com/johndoe might be John Doe’s mail box on that serv-
er, and http://mail.example.com/johndoe?messagelD=162977.1361.
JavaMail. nobody%40meetup.com might be a particular message in that
mailbox.

The syntax of a URI is composed of a scheme and a scheme-specific part, separated by
a colon, like this:

scheme: scheme-specific-part

The syntax of the scheme-specific part depends on the scheme being used. Current
schemes include:

data
Base64-encoded data included directly in a link; see RFC 2397

file
A file on a local disk

fip
An FTP server

http
A World Wide Web server using the Hypertext Transfer Protocol

mailto
An email address

magnet
A resource available for download via peer-to-peer networks such as BitTorrent

118 | Chapter5: URLs and URIs

telnet
A connection to a Telnet-based service

urn
A Uniform Resource Name

In addition, Java makes heavy use of nonstandard custom schemes such as rmi, jar,
jndi, and doc for various purposes.

There is no specific syntax that applies to the scheme-specific parts of all URIs. However,
many have a hierarchical form, like this:

//authority/path?query

The authority part of the URI names the authority responsible for resolving the rest of
the URI. For instance, the URI http://www.ietf.org/rfc/rfc3986.txt has the scheme http,
the authority www.ietf.org, and the path /rfc/rfc3986.txt (initial slash included). This
means the server at www.ietf.org is responsible for mapping the path /rfc/rfc3986.txt to
aresource. This URI does not have a query part. The URI http://www.powells.com/cgi-
bin/biblio?inkey=62-1565928709-0 has the scheme http, the authority www.po-
wells.com, the path /cgi-bin/biblio, and the query inkey=62-1565928709-0. The URI
urn:isbn:156592870 has the scheme urn but doesn't follow the hierarchical //authority/
path?query form for scheme-specific parts.

Although most current examples of URIs use an Internet host as an authority, future
schemes may not. However, if the authority is an Internet host, optional usernames and
ports may also be provided to make the authority more specific. For example, the URI
ftp://mp3:mp3@cid3198-a.ashvill.nc.home.com:33/VanHalen-Jump.mp3 has the au-
thority mp3:mp3@ci43198-a.ashvill.nc.home.com:33. This authority has the username
mp3, the password mp3, the host ci43198-a.ashvill.nc.home.com, and the port 33. It has
the scheme ftp and the path /VanHalen-Jump.mp3. (In most cases, including the pass-
word in the URI is a big security hole unless, as here, you really do want everyone in
the universe to know the password.)

The path is a string that the authority can use to determine which resource is identified.
Different authorities may interpret the same path to refer to different resources. For
instance, the path /index.html means one thing when the authority is www.landover-
baptist.org and something very different when the authority is www.churchofsa-
tan.com. The path may be hierarchical, in which case the individual parts are separated
by forward slashes, and the . and .. operators are used to navigate the hierarchy. These
are derived from the pathname syntax on the Unix operating systems where the Web
and URLs were invented. They conveniently map to a filesystem stored on a Unix web
server. However, there is no guarantee that the components of any particular path ac-
tually correspond to files or directories on any particular filesystem. For example, in the
URI http://www.amazon.com/exec/obidos/ISBN%3D1565924851/cafeaulaitA/
002-3777605-3043449, all the pieces of the hierarchy are just used to pull information

URIs | 119

out of a database that’s never stored in a filesystem. ISBN%3D1565924851 selects the
particular book from the database by its ISBN number, cafeaulaitA specifies who gets
thereferral feeifa purchase is made from thislink, and 002-3777605-3043449is a session
key used to track the visitor’s path through the site.

Some URIsaren’tatall hierarchical, at least in the filesystem sense. For example, snews://
secnews.netscape.com/netscape.devs-java has a path of /netscape.devs-java. Although
there’s some hierarchy to the newsgroup names indicated by the period between net-
scape and devs-java, it's not encoded as part of the URL

The scheme part is composed of lowercase letters, digits, and the plus sign, period, and
hyphen. The other three parts of a typical URI (authority, path, and query) should each
be composed of the ASCII alphanumeric characters (i.e., the letters A-Z, a-z, and the
digits 0-9). In addition, the punctuation characters - _ . ! and ~ may also be used.
Delimiters such as / ? & and = may be used for their predefined purposes. All other
characters, including non-ASCII alphanumerics such as 4 and (as well as delimiters
not being used as delimiters should be escaped by a percent sign (%) followed by the
hexadecimal codes for the character as encoded in UTF-8. For instance, in UTF-8, 4 is
the two bytes 0xC3 0xA1 so it would be encoded as %c3%al. The Chinese character 7K
is Unicode code point 0x6728. In UTF-8, this is encoded as the three bytes E6, 9C, and
A8. Thus, in a URI it would be encoded as %E6%9C%AS.

If you don’t hexadecimally encode non-ASCII characters like this, but just include them
directly, then instead of a URI you have an IRI (an Internationalized Resource Identi-
fier). IRIs are easier to type and much easier to read, but a lot of software and protocols
expect and support only ASCII URIs.

Punctuation characters such as / and @ must also be encoded with percent escapes if
they are used in any role other than what’s specified for them in the scheme-specific
partofaparticular URL. For example, the forward slashes in the URI http://www.cafeau-
lait.org/books/javaio2/ do not need to be encoded as %2F because they serve to delimit
the hierarchy as specified for the http URI scheme. However, if a filename includes a /
character—for instance, if the last directory were named Java I/O instead of javaio2 to
more closely match the name of the book—the URI would have to be written as http://
www.cafeaulait.org/books/Java%201%2FO/. This is not as far-fetched as it might sound
to Unix or Windows users. Mac filenames frequently include a forward slash. Filenames
on many platforms often contain characters that need to be encoded, including @, $, +,
=, and many more. And of course URLs are, more often than not, not derived from
filenames at all.

URLs

A URL is a URI that, as well as identifying a resource, provides a specific network
location for the resource that a client can use to retrieve a representation of that resource.
By contrast, a generic URI may tell you what a resource is, but not actually tell you where

120 | Chapter5: URLsand URIs

or how to get that resource. In the physical world, its the difference between the title
“Harry Potter and The Deathly Hallows” and the library location “Room 312, Row 28,
Shelf 7”. In Java, it’s the difference between the java.net.URI class that only identifies
resources and the java.net.URL class that can both identify and retrieve resources.

The network location in a URL usually includes the protocol used to access a server
(e.g., FTP, HTTP), the hostname or IP address of the server, and the path to the resource
on that server. A typical URL looks like http://www.ibiblio.org/javafaq/javatutori-
al.html. This specifies that there is a file called javatutorial.html in a directory called
javafaq on the server www.ibiblio.org, and that this file can be accessed via the HTTP
protocol.

The syntax of a URL is:

protocol:/[userInfo@host:port/path?query#fragment

Here the protocol is another word for what was called the scheme of the URL
(Scheme is the word used in the URI RFC. Protocol is the word used in the Java docu-
mentation.) In a URL, the protocol part can be file, ftp, http, https, magnet, telnet, or
various other strings (though not urn).

The host part of a URL is the name of the server that provides the resource you want.
It can be a hostname such as www.oreilly.com or utopia.poly.edu or an IP address, such
as 204.148.40.9 or 128.238.3.21.

The userInfo is optional login information for the server. If present, it contains a user-
name and, rarely, a password.

The port number is also optional. It's not necessary if the service is running on its default
port (port 80 for HTTP servers).

Together, the userInfo, host, and port constitute the authority.

The path points to a particular resource on the specified server. It often looks like a
filesystem path such as /forum/index.php. However, it may or may not actually map to
a filesystem on the server. If it does map to a filesystem, the path is relative to the
document root of the server, not necessarily to the root of the filesystem on the server.
Asarule, servers that are open to the public do not show their entire filesystem to clients.
Rather, they show only the contents of a specified directory. This directory is called the
document root, and all paths and filenames are relative to it. Thus, on a Unix server, all
files that are available to the public might be in /var/public/html, but to somebody con-
necting from a remote machine, this directory looks like the root of the filesystem.

The query string provides additional arguments for the server. It's commonly used only
in http URLs, where it contains form data for input to programs running on the server.

Finally, the fragment references a particular part of the remote resource. If the remote
resource is HTML, the fragment identifier names an anchor in the HTML document.

URIs | 121

If the remote resource is XML, the fragment identifier is an XPointer. Some sources
refer to the fragment part of the URL as a “section”. Java rather unaccountably refers to
the fragment identifier as a “Ref”. Fragment identifier targets are created in an HTML
document with an id attribute, like this:

<h3 1d="xtoc1d1902914">Comments</h3>

This tag identifies a particular point in a document. To refer to this point, a URL includes
not only the document’s filename but the fragment identifier separated from the rest of
the URL by a #:

http://www.cafeaulait.org/javafaq.html#xtocid1902914

A
\

Technically, a string that contains a fragment identifier is a URL refer-
. ence, not a URL. Java, however, does not distinguish between URLSs
0% and URL references.

Relative URLs

A URL tells a web browser a lot about a document: the protocol used to retrieve the
document, the host where the document lives, and the path to the document on that
host. Most of this information is likely to be the same for other URLs that are referenced
in the document. Therefore, rather than requiring each URL to be specified in its en-
tirety, a URL may inherit the protocol, hostname, and path of its parent document (i.e.,
the document in which it appears). URLs that aren’t complete but inherit pieces from
their parent are called relative URLs. In contrast, a completely specified URL is called
an absolute URL. In a relative URL, any pieces that are missing are assumed to be the
same as the corresponding pieces from the URL of the document in which the URL is
found. For example, suppose that while browsing http://www.ibiblio.org/javafaq/java-
tutorial.html you click on this hyperlink:

The browser cuts javatutorial.html off the end of http://www.ibiblio.org/javafaq/java-
tutorial.html to get http://www.ibiblio.org/javafaq/. Then it attaches javafaq.html onto
the end of http://www.ibiblio.org/javafaq/ to get http://www.ibiblio.org/javafaq/java-
faq.html. Finally, it loads that document.

If the relative link begins with a /, then it is relative to the document root instead of
relative to the current file. Thus, if you click on the following link while browsing http://
www.ibiblio.org/javafaq/javatutorial html:

the browser would throw away /javafaq/javatutorial. html and attach /projects/ipv6/ to
the end of http://www.ibiblio.org to get http://www.ibiblio.org/projects/ipv6/.

122 | Chapter5: URLsand URIs

Relative URLs have a number of advantages. First—and least important—they save a
little typing. More importantly, relative URLs allow a single document tree to be served
by multiple protocols: for instance, both HTTP and FTP. HT TP might be used for direct
surfing, while FTP could be used for mirroring the site. Most importantly of all, relative
URLs allow entire trees of documents to be moved or copied from one site to another
without breaking all the internal links.

The URL Class

The java.net.URL class is an abstraction of a Uniform Resource Locator such as http://
www.lolcats.com/ or ftp://ftp.redhat.com/pub/. It extends java.lang.Object, and itisa
final class that cannot be subclassed. Rather than relying on inheritance to configure
instances for different kinds of URLSs, it uses the strategy design pattern. Protocol han-
dlers are the strategies, and the URL class itself forms the context through which the
different strategies are selected.

Although storing a URL as a string would be trivial, it is helpful to think of URLs as
objects with fields that include the scheme (a.k.a. the protocol), hostname, port, path,
query string, and fragment identifier (a.k.a. the ref), each of which may be set inde-
pendently. Indeed, this is almost exactly how the java.net.URL class is organized,
though the details vary a little between different versions of Java.

URLs are immutable. After a URL object has been constructed, its fields do not change.
This has the side effect of making them thread safe.

Creating New URLs

Unlike the InetAddress objects in Chapter 4, you can construct instances of
java.net.URL. The constructors differ in the information they require:

public URL(String url) throws MalformedURLException

public URL(String protocol, String hostname, String file)
throws MalformedURLException

public URL(String protocol, String host, int port, String file)
throws MalformedURLException

public URL(URL base, String relative) throws MalformedURLException

Which constructor you use depends on the information you have and the form it’s in.

All these constructors throw a MalformedURLException if you try to create a URL for an
unsupported protocol or if the URL is syntactically incorrect.

Exactly which protocols are supported is implementation dependent. The only proto-
cols that have been available in all virtual machines are http and file, and the latter is
notoriously flaky. Today, Java also supports the https, jar, and ftp protocols. Some virtual
machines support mailto and gopher as well as some custom protocols like doc, netdoc,
systemresource, and verbatim used internally by Java.

TheURLClass | 123

If the protocol you need isn’t supported by a particular VM, you may

. beable to install a protocol handler for that scheme to enable the URL

' class to speak that protocol. In practice, this is way more trouble than

it’s worth. You're better off using a library that exposes a custom API
just for that protocol.

aqs
[N
N

Other than verifying that it recognizes the URL scheme, Java does not check the cor-
rectness of the URLs it constructs. The programmer is responsible for making sure that
URLs created are valid. For instance, Java does not check that the hostname in an HTTP
URL does not contain spaces or that the query string is x-www-form-URL-encoded. It
does not check that a mailto URL actually contains an email address. You can create
URLSs for hosts that don't exist and for hosts that do exist but that you won't be allowed
to connect to.

Constructing a URL from a string

The simplest URL constructor just takes an absolute URL in string form as its single
argument:

public URL(String url) throws MalformedURLException

Like all constructors, this may only be called after the new operator, and like all URL
constructors, it can throw a MalformedURLException. The following code constructs a
URL object from a String, catching the exception that might be thrown:
try {
URL u = new URL("http://www.audubon.org/");
} catch (MalformedURLException ex) {
System.err.println(ex);
}
Example 5-1 is a simple program for determining which protocols a virtual machine
supports. It attempts to construct a URL object for each of 15 protocols (8 standard
protocols, 3 custom protocols for various Java APIs, and 4 undocumented protocols
used internally by Java). If the constructor succeeds, you know the protocol is supported.
Otherwise, a MalformedURLException is thrown and you know the protocol is not sup-
ported.

Example 5-1. Which protocols does a virtual machine support?

import java.net.¥*;
public class ProtocolTester {
public static void main(String[] args) {

// hypertext transfer protocol
testProtocol("http://www.adc.org");

124 | Chapter5: URLsand URIs

// secure http
testProtocol("https://www.amazon.com/exec/obidos/order2/");

// file transfer protocol
testProtocol("ftp://ibiblio.org/pub/languages/java/javafaq/");

// Simple Mail Transfer Protocol
testProtocol("mailto:elharo@ibiblio.org");

// telnet
testProtocol("telnet://dibner.poly.edu/");

// local file access
testProtocol("file:///etc/passwd");

// gopher
testProtocol("gopher://gopher.anc.org.za/");

// Lightweight Directory Access Protocol
testProtocol(
"ldap://ldap.itd.umich.edu/o=University%200f%20Michigan,c=US?postalAddress");

// JAR

testProtocol(
"jar:http://cafeaulait.org/books/javaio/ioexamples/javaio.jar!"
+ "/com/macfaq/io/StreamCopier.class");

// NFS, Network File System
testProtocol("nfs://utopia.poly.edu/usr/tmp/");

// a custom protocol for JDBC
testProtocol("jdbc:mysql://luna.ibiblio.0org:3306/NEWS");

// rmi, a custom protocol for remote method invocation
testProtocol("rmi://ibiblio.org/RenderkEngine");

// custom protocols for HotJava
testProtocol("doc: /UsersGuide/release.html");
testProtocol("netdoc: /UsersGuide/release.html");
testProtocol("systemresource://www.adc.org/+/index.html");
testProtocol("verbatim:http://www.adc.org/");

}

private static void testProtocol(String url) {
try {
URL u = new URL(url);
System.out.println(u.getProtocol() + " is supported");
} catch (MalformedURLException ex) {
String protocol = url.substring(®, url.indexOf(':"'));
System.out.println(protocol + " is not supported");

}

TheURLClass | 125

3
}

The results of this program depend on which virtual machine runs it. Here are the results
from Java 7 on Mac OS X:

http is supported

https is supported

ftp is supported

mailto is supported
telnet is not supported
file is supported

gopher is not supported
ldap is not supported

jar is supported

nfs is not supported

jdbc is not supported

rmi is not supported

doc is not supported
netdoc is supported
systemresource is not supported
verbatim is not supported

The nonsupport of RMI and JDBC is actually a little deceptive; in fact, the JDK does
support these protocols. However, that support is through various parts of the java. rmi
and java.sql packages, respectively. These protocols are not accessible through the URL
class like the other supported protocols (although I have no idea why Sun chose to wrap
up RMI and JDBC parameters in URL clothing if it wasn't intending to interface with
these via Java’s quite sophisticated mechanism for handling URLs).

Other Java 7 virtual machines will show similar results. VMs that are not derived from
the Oracle codebase may vary somewhat in which protocols they support. For example,
Android’s Dalvik VM only supports the required http, https, file, ftp, and jar protocols.

Constructing a URL from its component parts
You can also build a URL by specifying the protocol, the hostname, and the file:

public URL(String protocol, String hostname, String file)
throws MalformedURLException

This constructor sets the port to -1 so the default port for the protocol will be used. The
file argument should begin with a slash and include a path, a filename, and optionally
a fragment identifier. Forgetting the initial slash is a common mistake, and one that is
not easy to spot. Like all URL constructors, it can throw a MalformedURLException. For
example:

try {

URL u = new URL("http", "www.eff.org", "/blueribbon.html#intro");
} catch (MalformedURLException ex) {

126 | Chapter5: URLsand URIs

throw new RuntimeException("shouldn't happen; all VMs recognize http");

}

This creates a URL object that points to http://www.eff.org/blueribbon.html#intro, using
the default port for the HTTP protocol (port 80). The file specification includes a ref-
erence to a named anchor. The code catches the exception that would be thrown if the
virtual machine did not support the HTTP protocol. However, this shouldn’t happen
in practice.

For the rare occasions when the default port isn’t correct, the next constructor lets you
specify the port explicitly as an int. The other arguments are the same. For example,
this code fragment creates a URL object that points to http://fourier.dur.ac.uk:8000/
~dma3mjh/jsci/, specifying port 8000 explicitly:
try {
URL u = new URL("http", "fourier.dur.ac.uk", 8000, "/~dma3mjh/jsci/");

} catch (MalformedURLException ex) {
throw new RuntimeException("shouldn't happen; all VMs recognize http");

}
Constructing relative URLs

This constructor builds an absolute URL from a relative URL and a base URL:
public URL(URL base, String relative) throws MalformedURLException

For instance, you may be parsingan HTML documentat http://www.ibiblio.org/javafaq/
index.html and encounter a link to a file called mailinglists.html with no further quali-
fying information. In this case, you use the URL to the document that contains the link
to provide the missing information. The constructor computes the new URL as http://
www.ibiblio.org/javafaq/mailinglists.html. For example:
try {
URL ul = new URL("http://www.ibiblio.org/javafaq/index.html");
URL u2 = new URL (ul, "mailinglists.html");
} catch (MalformedURLException ex) {
System.err.println(ex);
}
The filename is removed from the path of ul and the new filename mailinglists.html is
appended to make u2. This constructor is particularly useful when you want to loop
through a list of files that are all in the same directory. You can create a URL for the first
file and then use this initial URL to create URL objects for the other files by substituting
their filenames.

Other sources of URL objects

Besides the constructors discussed here, a number of other methods in the Java class
library return URL objects. In applets, getDocumentBase() returns the URL of the page
that contains the applet and getCodeBase() returns the URL of the applet .class file.

TheURLClass | 127

The java.ilo.File class has a toURL() method that returns a file URL matching the
given file. The exact format of the URL returned by this method is platform dependent.
For example, on Windows it may return something like file:/D:/JAVA/INP4/05/
ToURLTest.java. On Linux and other Unixes, you're likely to see file:/home/elharo/
books/INP4/05/ToURLTest.java. In practice, file URLs are heavily platform and pro-
gram dependent. Java file URLs often cannot be interchanged with the URLs used by
web browsers and other programs, or even with Java programs running on different
platforms.

Class loaders are used not only to load classes but also to load resources such as images
and audio files. The static ClassLoader.getSystemResource(String name) method
returns a URL from which a single resource can be read. The ClassLoader.getSystem
Resources(String name) method returns an Enumeration containing a list of URLs
from which the named resource can be read. And finally, the instance method getRe
source(String name) searches the path used by the referenced class loader for a URL
to the named resource. The URLs returned by these methods may be file URLs, HTTP
URLSs, or some other scheme. The full path of the resource is a package qualified Java
name with slashes instead of periods such as /com/macfaq/sounds/swale.au or com/
macfaq/images/headshot.jpg. The Java virtual machine will attempt to find the requested
resource in the classpath, potentially inside a JAR archive.

There are a few other methods that return URL objects here and there throughout the
classlibrary, but most are simple getter methods that return a URL you probably already
know because you used it to construct the object in the first place; for instance, the
getPage() method of javax.swing.JEditorPane and the getURL() method of
java.net.URLConnection.

Retrieving Data from a URL

Naked URLs aren’t very exciting. What’s interesting is the data contained in the docu-
ments they point to. The URL class has several methods that retrieve data from a URL:

public InputStream openStream() throws IOException

public URLConnection openConnection() throws IOException

public URLConnection openConnection(Proxy proxy) throws IOException

public Object getContent() throws IOException

public Object getContent(Class[] classes) throws IOException
The most basic and most commonly used of these methods is openStream(), which
returns an InputStream from which you can read the data. If you need more control
over the download process, call openConnection() instead, which gives you a URLCon
nection which you can configure, and then get an InputStream from it. We'll take this
up in Chapter 7. Finally, you can ask the URL for its content with getContent() which
may give you a more complete object such as String or an Image. Then again, it may
just give you an InputStream anyway.

128 | Chapter5: URLsand URIs

public final InputStream openStream() throws I0Exception

The openStream() method connects to the resource referenced by the URL, performs
any necessary handshaking between the client and the server, and returns an Input
Stream from which data can be read. The data you get from this InputStreamis the raw
(i.e., uninterpreted) content the URL references: ASCII if youre reading an ASCII text
file, raw HTML if you're reading an HTML file, binary image data if youre reading an
image file, and so forth. It does not include any of the HTTP headers or any other
protocol-related information. You can read from this InputStream as you would read
from any other InputStream. For example:

try {
URL u = new URL("http://www.lolcats.com");
InputStream in = u.openStream();
int c;
while ((c = in.read()) != -1) System.out.write(c);
in.close();

} catch (IOException ex) {
System.err.println(ex);

}

The preceding code fragment catches an I0Exception, which also catches the Malfor
medURLException that the URL constructor can throw, since MalformedURLException
subclasses IOException.

As with most network streams, reliably closing the stream takes a bit of effort. In Java
6 and earlier, we use the dispose pattern: declare the stream variable outside the try
block, set it to null, and then close it in the finally block if it’s not null. For example:

InputStream in = null
try {
URL u = new URL("http://www.lolcats.com");
in = u.openStream();
int c;
while ((c = in.read()) != -1) System.out.write(c);
} catch (IOException ex) {
System.err.println(ex);
} finally {
try {
if (in !'= null) {
in.close();
}
} catch (IOException ex) {
// ignore
}
}

Java 7 makes this somewhat cleaner by using a nested try-with-resources statement:

try {
URL u = new URL("http://www.lolcats.com");

TheURLClass | 129

try (InputStream in = u.openStream()) {
int c;
while ((c = in.read()) != -1) System.out.write(c);
}
} catch (IOException ex) {
System.err.println(ex);

}

Example 5-2 reads a URL from the command line, opens an InputStream from that
URL, chains the resulting InputStream to an InputStreamReader using the default
encoding, and then uses InputStreamReader’s read() method to read successive char-
acters from the file, each of which is printed on System.out. That is, it prints the raw
data located at the URL if the URL references an HTML file; the program’s output is raw
HTML.

Example 5-2. Download a web page

import java.io.*;
import java.net.*;

public class SourceViewer {
public static void main (String[] args) {

if (args.length > 0) {
InputStream in = null;
try {
// Open the URL for reading
URL u = new URL(args[0]);
in = u.openStream();
// buffer the input to increase performance
in = new BufferedInputStream(in);
// chain the InputStream to a Reader
Reader r = new InputStreamReader(in);
int c;
while ((c = r.read()) '= -1) {
System.out.print((char) c);
}
} catch (MalformedURLException ex) {
System.err.println(args[0] + " 1s not a parseable URL");
} catch (IOException ex) {
System.err.println(ex);
} finally {
if (in != null) {
try {
in.close();
} catch (IOException e) {
// ignore
}
}
}
}

130 | Chapter5: URLsand URIs

3
}

And here are the first few lines of output when SourceViewer downloads http://
www.oreilly.com:

< !DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

<html xmlns="http://www.w3.0rg/1999/xhtml" lang="en-US" lang="en-US">
<headagt;
<title>oreilly.com -- Welcome to O'Reilly Media, Inc. -- computer books,

software conferences, online publishing</title>

<meta name="keywords" content="0'Reilly, oreilly, computer books, technical

books, UNIX, unix, Perl, Java, Linux, Internet, Web, C, C++, Windows, Windows

NT, Security, Sys Admin, System Administration, Oracle, PL/SQL, online books,

books online, computer book online, e-books, ebooks, Perl Conference, Open Source

Conference, Java Conference, open source, free software, XML, Mac 0S X, .Net, dot

net, C#, PHP, CGI, VB, VB Script, Java Script, javascript, Windows 2000, XP,
There are quite a few more lines in that web page; if you want to see them, you can fire

up your web browser.

The shakiest part of this program is that it blithely assumes that the URL points to text,
which is not necessarily true. It could well be pointing to a GIF or JPEG image, an MP3
sound file, or something else entirely. Even if does resolve to text, the document en-
coding may not be the same as the default encoding of the client system. The remote
host and local client may not have the same default character set. As a general rule, for
pages that use a character set radically different from ASCII, the HTML will include a
META tag in the header specifying the character set in use. For instance, this META tag
specifies the Big-5 encoding for Chinese:

<meta http-equiv="Content-Type" content="text/html; charset=big5">
An XML document will likely have an XML declaration instead:
<?xml version="1.0" encoding="Big5"?>

In practice, there’s no easy way to get at this information other than by parsing the file
and looking for a header like this one, and even that approach is limited. Many HTML
files handcoded in Latin alphabets don’t have such a META tag. Since Windows, Mac, and
most Unixes have somewhat different interpretations of the characters from 128 to 255,
the extended characters in these documents do not translate correctly on platforms
other than the one on which they were created.

And as if this isn’t confusing enough, the HTTP header that precedes the actual docu-
ment is likely to have its own encoding information, which may completely contradict
what the document itself says. You can’t read this header using the URL class, but you
can with the URLConnection object returned by the openConnection() method. En-
coding detection and declaration is one of the thornier parts of the architecture of the
Web.

TheURLClass | 131

public URLConnection openConnection() throws IOException

The openConnection() method opens a socket to the specified URL and returns a
URLConnection object. A URLConnection represents an open connection to a network
resource. If the call fails, openConnection() throws an IOException. For example:

try {
URL u = new URL("https://news.ycombinator.com/");

try {
URLConnection uc = u.openConnection();
InputStream in = uc.getInputStream();
// read from the connection...

} catch (IOException ex) {
System.err.println(ex);

} iatch (MalformedURLException ex) {
System.err.println(ex);

}
You should use this method when you want to communicate directly with the server.
The URLConnection gives you access to everything sent by the server: in addition to the
document itself in its raw form (e.g., HTML, plain text, binary image data), you can
access all the metadata specified by the protocol. For example, if the scheme is HTTP
or HTTPS, the URLConnection lets you access the HTTP headers as well as the raw
HTML. The URLConnection class also lets you write data to as well as read from a URL
—for instance, in order to send email to a mailto URL or post form data. The URLCon
nection class will be the primary subject of Chapter 7.

An overloaded variant of this method specifies the proxy server to pass the connection
through:

public URLConnection openConnection(Proxy proxy) throws IOException

This overrides any proxy server set with the usual socksProxyHost, socksProxyPort,
http.proxyHost, http.proxyPort, http.nonProxyHosts, and similar system proper-
ties. If the protocol handler does not support proxies, the argument is ignored and the
connection is made directly if possible.

public final Object getContent() throws I0Exception

The getContent() method is the third way to download data referenced by a URL. The
getContent() method retrieves the data referenced by the URL and tries to make it into
some type of object. If the URL refers to some kind of text such as an ASCII or HTML
file, the object returned is usually some sort of InputStream. If the URL refers to an
image such as a GIF or a JPEG file, getContent() usually returns a java.awt.Image
Producer. What unifies these two disparate classes is that they are not the thing itself
but a means by which a program can construct the thing:

132 | Chapter5: URLs and URIs

URL u = new URL("http://mesola.obspm.fr/");
Object o = u.getContent();
// cast the Object to the appropriate type
// work with the Object...

getContent() operates by looking at the Content- type field in the header of the data
it gets from the server. If the server does not use MIME headers or sends an unfamiliar
Content-type, getContent() returns some sort of InputStream with which the data
can be read. An IOException is thrown if the object can't be retrieved. Example 5-3
demonstrates this.

Example 5-3. Download an object

import java.ilo.*;
import java.net.*;

public class ContentGetter {
public static void main (String[] args) {

if (args.length > 0) {
// Open the URL for reading
try {
URL u = new URL(args[0]);
Object o = u.getContent();
System.out.println("I got a " + o.getClass().getName());
} catch (MalformedURLException ex) {
System.err.println(args[0] + " is not a parseable URL");
} catch (IOException ex) {
System.err.println(ex);
}
}

}
}

Here’s the result of trying to get the content of http://www.oreilly.com:

% java ContentGetter //www.oreilly.com/ I got a
sun.net.www.protocol.http.HttpURLConnectionSHttpInputStream</programlisting>

The exact class may vary from one version of Java to the next (in earlier versions, it’s
been java.io.PushbackInputStream or sun.net.www.http.KeepAliveStream) but it
should be some form of InputStream.

Here’s what you get when you try to load a header image from that page:

% java ContentGetter //www.oreilly.com/graphics_new/animation. gif
I got a sun.awt.image.URLImageSource</programlisting>

Here’s what happens when you try to load a Java applet using getContent():

TheURLClass | 133

% java ContentGetter //www.cafeaulait.org/RelativeURLTest.class</userinput>
I got a sun.net.www.protocol.http.HttpURLConnection$HttpInputStream
</programlisting>

Here’s what happens when you try to load an audio file using getContent():

% java ContentGetter //www.cafeaulait.org/course/week9/spacemusic.au
</userinput>
I got a sun.applet.AppletAudioClip</programlisting>
The last result is the most unusual because it is as close as the Java core API gets to a
class that represents a sound file. It’s not just an interface through which you can load
the sound data.

This example demonstrates the biggest problems with using getContent(): it’s hard to
predict what kind of object you'll get. You could get some kind of InputStream or an
ImageProducer or perhaps an AudioClip; it’s easy to check using the instanceof op-
erator. This information should be enough to let you read a text file or display an image.

public final Object getContent(Class[] classes) throws I0Exception

A URLs content handler may provide different views of a resource. This overloaded
variant of the getContent() method lets you choose which class you'd like the content
to be returned as. The method attempts to return the URLSs content in the first available
format. For instance, if you prefer an HTML file to be returned as a String, but your
second choice is a Reader and your third choice is an InputStream, write:

URL u = new URL("http://www.nwu.org");
Class<?>[] types = new Class[3];
types[0] = String.class;

types[1] = Reader.class;

types[2] = InputStream.class;

Object o = u.getContent(types);

If the content handler knows how to return a string representation of the resource, then
it returns a String. If it doesn’t know how to return a string representation of the re-
source, then it returns a Reader. And if it doesn’t know how to present the resource as
a reader, then it returns an InputStream. You have to test for the type of the returned
object using instanceof. For example:

if (o instanceof String) {

System.out.println(o);
} else if (o instanceof Reader) {

int c;
Reader r = (Reader) o;
while ((c = r.read()) != -1) System.out.print((char) c);
r.close();
} else if (o instanceof InputStream) {
int c;
InputStream in = (InputStream) o;
while ((c = in.read()) != -1) System.out.write(c);

134 | Chapter5: URLs and URIs

in.close();
} else {
System.out.println("Error: unexpected type

}

+ o.getClass());

Splitting a URL into Pieces

URLs are composed of five pieces:

o The scheme, also known as the protocol

o The authority

o The path

o The fragment identifier, also known as the section or ref

o The query string

For example, in the URL http://www.ibiblio.org/javafaq/books/inp/index.html?
isbn=156592206%#toc, the scheme is http, the authority is www.ibiblio.org, the path is /
javafaq/books/jnp/index.html, the fragment identifier is foc, and the query string is
isbn=1565922069. However, not all URLs have all these pieces. For instance, the URL
http://www.fags.org/rfcs/rfc3986.html has a scheme, an authority, and a path, but no
fragment identifier or query string.

The authority may further be divided into the user info, the host, and the port. For
example, in the URL http://admin@www.blackstar.com:8080/, the authority is ad
min@www.blackstar.com:8080. This has the user info admin, the host www.black-
star.com, and the port 8080.

Read-only access to these parts of a URL is provided by nine public methods: get
File(), getHost(), getPort(), getProtocol(), getRef(), getQuery(), getPath(),
getUserInfo(), and getAuthority().

public String getProtocol()

The getProtocol() method returns a String containing the scheme of the URL (e.g.,
“http”, “https”, or “file”). For example, this code fragment prints https:

URL u = new URL("https://xkcd.com/727/");
System.out.println(u.getProtocol());

public String getHost()

The getHost() method returns a String containing the hostname of the URL. For
example, this code fragment prints xkcd.com:

URL u = new URL("https://xkcd.com/727/");
System.out.println(u.getHost());

TheURLClass | 135

publicint getPort()

The getPort() method returns the port number specified in the URL as an int. If no
port was specified in the URL, getPort() returns -1 to signify that the URL does not
specify the port explicitly, and will use the default port for the protocol. For example, if
the URL is http://www.userfriendly.org/, getPort() returns -1; if the URL is http://
www.userfriendly.org:80/, getPort() returns 80. The following code prints -1 for the
port number because it isn’t specified in the URL:

URL u = new URL("http://www.ncsa.illinoils.edu/AboutUs/");
System.out.println("The port part of " + u + " is " + u.getPort());

publicint getDefaultPort()

The getDefaultPort() method returns the default port used for this URL’s protocol
when none is specified in the URL. If no default port is defined for the protocol, then
getDefaultPort() returns -1. For example, if the URL is http://www.userfriendly.org/,
getDefaultPort() returns 80; if the URL is ftp://ftp.userfriendly.org:8000/, getDefault
Port() returns 21.

public String getFile()

The getFile() method returns a String that contains the path portion of a URL; re-
member that Java does not break a URL into separate path and file parts. Everything
from the first slash (/) after the hostname until the character preceding the # sign that
begins a fragment identifier is considered to be part of the file. For example:

URL page = this.getDocumentBase();
System.out.println("This page's path is

+ page.getFile());
If the URL does not have a file part, Java sets the file to the empty string.
public String getPath()

The getPath() method is a near synonym for getFile(); that is, it returns a String
containing the path and file portion of a URL. However, unlike getFile(), it does not
include the query string in the String it returns, just the path.

Note that the getPath() method does not return only the directory
“’@ path and getFile() does not return only the filename, as you might

expect. Both getPath() and getFile() return the full path and file-
name. The only difference is that getFile() also returns the query
string and getPath() does not.

136 | Chapter5: URLs and URIs

public String getRef()

The getRef () method returns the fragment identifier part of the URL. If the URL doesn’t
have a fragment identifier, the method returns null. In the following code, getRef()
returns the string xtoc1d1902914:

URL u = new URL(
"http://www.ibiblio.org/javafaq/javafaq.html#xtocid1902914");
System.out.println("The fragment ID of " + u + " is " + u.getRef());

public String getQuery()

The getQuery() method returns the query string of the URL. If the URL doesn’t have
a query string, the method returns null. In the following code, getQuery() returns the
string category=Piano:

URL u = new URL(
"http://www.ibiblio.org/nywc/compositions.phtml?category=Piano");

"o n

System.out.println("The query string of " + u + " is " + u.getQuery());
public String getUserInfo()

Some URLs include usernames and occasionally even password information. This in-
formation comes after the scheme and before the host; an @ symbol delimits it. For
instance, in the URL http://elharo@java.oreilly.com/, the user info is elharo. Some URLs
also include passwords in the user info. For instance, in the URL fip:/
mp3:secret@ftp.example.com/c%3a/stuff/mp3/, the user info is mp3:secret. However,
most of the time, including a password in a URL is a security risk. If the URL doesn’t
have any user info, getUserInfo() returns null.

Mailto URLs may not behave like you expect. In a URL like mailto:elharo@ibiblio.org,
“elharo@ibiblio.org” is the path, not the user info and the host. That’s because the URL
specifies the remote recipient of the message rather than the username and host that’s
sending the message.

public String getAuthority()

Between the scheme and the path of a URL, you'll find the authority. This part of the
URI indicates the authority that resolves the resource. In the most general case, the
authority includes the user info, the host, and the port. For example, in the URL
ftp://mp3:mp3@138.247.121.61:21000/c%3a/, the authority is
mp3:mp3@138.247.121.61:21000, the user info is mp3:mp3, the host is 138.247.121.61,
and the port is 21000. However, not all URLs have all parts. For instance, in the URL
http://conferences.oreilly.com/java/speakers/, the authority is simply the hostname con-
ferences.oreilly.com. The getAuthority() method returns the authority as it exists in
the URL, with or without the user info and port.

Example 5-4 uses these methods to split URLs entered on the command line into their
component parts.

TheURLClass | 137

Example 5-4. The parts of a URL

import java.net.*;
public class URLSplitter {
public static void main(String args[]) {

for (int 1 = 0; 1 < args.length; i++) {
try {
URL u = new URL(args[i]);
System.out.println("The URL is " + u);
System.out.println("The scheme is " + u.getProtocol());
System.out.println("The user info is " + u.getUserInfo());

String host = u.getHost();
if (host != null) {
int atSign = host.index0f('@");
if (atSign != -1) host = host.substring(atSign+1);
System.out.println("The host is " + host);
} else {
System.out.println("The host is null.");
}

System.out.println("The port is " + u.getPort());
System.out.println("The path is " + u.getPath());
System.out.println("The ref is " + u.getRef());
System.out.println("The query string is " + u.getQuery());

} catch (MalformedURLException ex) {
System.err.println(args[i] + " is not a URL I understand.");

}

System.out.println();

}
}
}

Here’s the result of running this against several of the URL examples in this chapter:

% java URLSplitter \

//mp3:mp3@138.247.121.61:21000/c%3a/ |
//www.oreilly.com |
//www.1bi1blio.org/nywc/compositions.phtml?category=Piano |
//admin@www.blackstar.com:8080/ |

The URL 1is //mp3:mp3@138.247.121.61:21000/c%3a/
The scheme is ftp

The user info is mp3

The host is 138.247.121.61

The port is 21000

The path is /c%3a/

The ref is null

The query string is null

138 | Chapter5: URLs and URIs

The URL is //www.oreilly.com
The scheme is http

The user info is null

The host is www.oreilly.com

The port is -1

The path 1is

The ref is null

The query string is null

The URL 1is //www.ibiblio.org/nywc/compositions.phtml?category=Piano
The scheme is http

The user info is null

The host is www.ibiblio.org

The port is -1

The path is /nywc/compositions.phtml

The ref is null

The query string is category=Piano

The URL is //admin@www.blackstar.com:8080/
The scheme is http

The user info is admin

The host is www.blackstar.com

The port is 8080

The path is /

The ref is null

The query string is null</programlisting>

Equality and Comparison

The URL class contains the usual equals() and hashCode() methods. These behave
almost as you'd expect. Two URLs are considered equal if and only if both URLs point
to the same resource on the same host, port, and path, with the same fragment identifier
and query string. However there is one surprise here. The equals() method actually
tries to resolve the host with DNS so that, for example, it can tell that http://
www.ibiblio.org/ and http://ibiblio.org/ are the same.

This means that equals() on a URL is potentially a blocking I/O oper-
‘g@ ation! For this reason, you should avoid storing URLs in data struc-

ture that depend on equals() such as java.util.HashMap. Prefer
java.net.URI for this, and convert back and forth from URIs to URLs
when necessary.

On the other hand, equals() does not go so far as to actually compare the resources
identified by two URLs. For example, http://www.oreilly.com/ is not equal to http://
www.oreilly.com/index.html; and http://www.oreilly.com:80 is not equal to http://
www.oreilly.com/.

TheURLClass | 139

Example 5-5 creates URL objects for http://www.ibiblio.org/ and http://ibiblio.org/ and
tells you if they’re the same using the equals() method.

Example 5-5. Are http://www.ibiblio.org and http://ibiblio.org the same?

import java.net.*;
public class URLEquality {

public static void main (String[] args) {
try {
URL www = new URL ("http://www.ibiblio.org/");
URL ibiblio = new URL("http://ibiblio.org/");
if (ibiblio.equals(www)) {

System.out.println(ibiblio + " i1s the same as " + www);
} else {

System.out.println(ibiblio + " 1s not the same as " + www);
}

} catch (MalformedURLException ex) {
System.err.println(ex);
}
}
}

When you run this program, you discover:

<programlisting format="linespecific" id="I_7_tt233">% <userinput moreinfo=
"none">
java URLEquality</userinput>
//www.1biblio.org/ is the same as http://ibiblio.org/</programlisting>

URL does not implement Comparable.

The URL class also has a sameFile() method that checks whether two URLSs point to the
same resource:

public boolean sameFile(URL other)

The comparison is essentially the same as with equals(), DNS queries included, except
that sameFile() does not consider the fragment identifier. This sameFile() returns
true when comparing http://www.oreilly.com/index.html#pl and http://www.oreil-
ly.com/index.html#q2 while equals() would return false.

Here’s a fragment of code that uses sameFile() to compare two URLs:

URL ul = new URL("http://www.ncsa.uiuc.edu/HTMLPrimer.html#GS");
URL u2 = new URL("http://www.ncsa.uiuc.edu/HTMLPrimer.html#HD");
if (ul.sameFile(u2)) {
System.out.println(ul +
} else {
System.out.println(ul +
}

is the same file as \n" + u2);

is not the same file as \n" + u2);

140 | Chapter5: URLsand URIs

The output is:

//www.ncsa.uiuc.edu/HTMLPrimer.html#GS is the same file as
//www.ncsa.uiuc.edu/HTMLPrimer .html#HD

Conversion

URL has three methods that convert an instance to another form: toString(),
toExternalForm(), and toURI().

Like all good classes, java.net.URL has a toString() method. The String produced
by toString() is always an absolute URL, such as http://www.cafeaulait.org/javatuto-
rial html. Its uncommon to call toString() explicitly. Print statements call to
String() implicitly. Outside of print statements, it's more proper to use toExternal
Form() instead:

public String toExternalForm()

The toExternalForm() method converts a URL object to a string that can be used in an
HTML link or a web browser’s Open URL dialog.

The toExternalForm() method returns a human-readable String representing the
URL. It is identical to the toString() method. In fact, all the toString() method does
is return toExternalForm().

Finally, the toURI() method converts a URL object to an equivalent URI object:
public URI toURI() throws URISyntaxException

We'll take up the URI class shortly. In the meantime, the main thing you need to know
is that the URI class provides much more accurate, specification-conformant behavior
than the URL class. For operations like absolutization and encoding, you should prefer
the URT class where you have the option. You should also prefer the URI class if you need
to store URLs in a hashtable or other data structure, since its equals() method is not
blocking. The URL class should be used primarily when you want to download content
from a server.

The URI Class

A URI is a generalization of a URL that includes not only Uniform Resource Locators
but also Uniform Resource Names (URNs). Most URIs used in practice are URLs, but
most specifications and standards such as XML are defined in terms of URIs. In Java,
URIs are represented by the java.net.URI class. This class differs from the
java.net.URL class in three important ways:

TheURIClass | 141

o The URI class is purely about identification of resources and parsing of URIs. It
provides no methods to retrieve a representation of the resource identified by its
URL

o The URI class is more conformant to the relevant specifications than the URL class.

+ A URI object can represent a relative URIL The URL class absolutizes all URIs before
storing them.

In brief, a URL object is a representation of an application layer protocol for network
retrieval, whereas a URI object is purely for string parsing and manipulation. The URI
class has no network retrieval capabilities. The URL class has some string parsing meth-
ods, such as getFile() and getRef(), but many of these are broken and don't always
behave exactly as the relevant specifications say they should. Normally, you should use
the URL class when you want to download the content at a URL and the URI class when
you want to use the URL for identification rather than retrieval, for instance, to represent
an XML namespace. When you need to do both, you may convert from a URI to a URL
with the toURL() method, and from a URL to a URI using the toURI() method.

Constructing a URI

URIs are built from strings. You can either pass the entire URI to the constructor in a
single string, or the individual pieces:

public URI(String uri) throws URISyntaxException

public URI(String scheme, String schemeSpecificPart, String fragment)
throws URISyntaxException

public URI(String scheme, String host, String path, String fragment)
throws URISyntaxException

public URI(String scheme, String authority, String path, String query,
String fragment) throws URISyntaxException

public URI(String scheme, String userInfo, String host, int port,
String path, String query, String fragment) throws URISyntaxException

Unlike the URL class, the URI class does not depend on an underlying protocol handler.
Aslong as the URI is syntactically correct, Java does not need to understand its protocol

in order to create a representative URI object. Thus, unlike the URL class, the URI class
can be used for new and experimental URI schemes.

The first constructor creates a new URI object from any convenient string. For example:

URI voice = new URI("tel:+1-800-9988-9938");

URI web = new URI("http://www.xml.com/pub/a/2003/09/17/stax.html#id=_hbc");

URI book = new URI("urn:isbn:1-565-92870-9");
If the string argument does not follow URI syntax rules—for example, if the URI begins
with a colon—this constructor throws a URISyntaxException. This is a checked ex-
ception, so either catch it or declare that the method where the constructor is invoked

142 | Chapter5: URLs and URIs

can throw it. However, one syntax rule is not checked. In contradiction to the URI
specification, the characters used in the URI are not limited to ASCII. They can include
other Unicode characters, such as ¢ and é. Syntactically, there are very few restrictions
on URIs, especially once the need to encode non-ASCII characters is removed and
relative URIs are allowed. Almost any string can be interpreted as a URL

The second constructor that takes a scheme specific part is mostly used for nonhier-
archical URIs. The scheme is the URT’s protocol, such as http, urn, tel, and so forth. It
must be composed exclusively of ASCII letters and digits and the three punctuation
characters +, -, and .. It must begin with a letter. Passing null for this argument omits
the scheme, thus creating a relative URI. For example:

URI absolute
URI relative

new URI("http", "//www.ibiblio.org" , null);
new URI(null, "/javafag/index.shtml", "today");

The scheme-specific part depends on the syntax of the URI scheme; it’s one thing for
an http URL, another for a mailto URL, and something else again for a tel URI Because
the URI class encodes illegal characters with percent escapes, there’s effectively no syntax
error you can make in this part.

Finally, the third argument contains the fragment identifier, if any. Again, characters
that are forbidden in a fragment identifier are escaped automatically. Passing null for
this argument simply omits the fragment identifier.

The third constructor is used for hierarchical URIs such as http and ftp URLs. The host
and path together (separated by a /) form the scheme-specific part for this URI. For
example:

URI today= new URI("http", "www.ibiblio.org", "/javafaq/index.html", "today");

This produces the URI http://www.ibiblio.org/javafaq/index.html#today.

If the constructor cannot form a legal hierarchical URI from the supplied pieces—for
instance, if there is a scheme so the URI has to be absolute but the path doesn’t start
with /—then it throws a URISyntaxException.

The fourth constructor is basically the same as the third, with the addition of a query
string. For example:

URI today = new URI("http", "www.ibiblio.org", "/javafaq/index.html",
"referrer=cnet&date=2014-02-23", "today");

As usual, any unescapable syntax errors cause a URISyntaxException to be thrown and
null can be passed to omit any of the arguments.

The fifth constructor is the master hierarchical URI constructor that the previous two
invoke. It divides the authority into separate user info, host, and port parts, each of which
has its own syntax rules. For example:

TheURIClass | 143

URI styles = new URI("ftp", "anonymous:elharo@ibiblio.org",
"ftp.oreilly.com", 21, "/pub/stylesheet", null, null);
However, the resulting URI still has to follow all the usual rules for URISs; and again null
can be passed for any argument to omit it from the result.

If you're sure your URIs are legal and do not violate any of the rules, you can use the
static factory URI.create() method instead. Unlike the constructors, it does not throw
a URISyntaxException. For example, this invocation creates a URI for anonymous FTP
access using an email address as password:

URI styles = URI.create(
"ftp://anonymous:elharo%40ibiblio.org@ftp.oreilly.com:21/pub/stylesheet");
If the URI does prove to be malformed, then an I1legalArgumentException is thrown
by this method. This is a runtime exception, so you don't have to explicitly declare it or
catch it.

The Parts of the URI

A URI reference has up to three parts: a scheme, a scheme-specific part, and a fragment
identifier. The general format is:

scheme: scheme-specific-part: fragment

If the scheme is omitted, the URI reference is relative. If the fragment identifier is omit-
ted, the URI reference is a pure URIL The URI class has getter methods that return these
three parts of each URI object. The getRawFoo() methods return the encoded forms of
the parts of the URI, while the equivalent getFoo() methods first decode any percent-
escaped characters and then return the decoded part:

public String getScheme()

public String getSchemeSpecificPart()
public String getRawSchemeSpecificPart()
public String getFragment()

public String getRawFragment()

A
Puy)

There’s no getRawScheme () method because the URI specification re-
. quires that all scheme names be composed exclusively of URI-legal
(180 ! ASCII characters and does not allow percent escapes in scheme names.

S5

These methods all return null if the particular URI object does not have the relevant
component: for example, a relative URI without a scheme or an http URI without a
fragment identifier.

A URI that has a scheme is an absolute URI. A URI without a scheme is relative. The
isAbsolute() method returns true if the URI is absolute, false if it’s relative:

144 | Chapter5: URLs and URIs

public boolean isAbsolute()

The details of the scheme-specific part vary depending on the type of the scheme. For
example, in a tel URL, the scheme-specific part has the syntax of a telephone number.
However, in many useful URIs, including the very common file and http URLs, the
scheme-specific part has a particular hierarchical format divided into an authority, a
path, and a query string. The authority is further divided into user info, host, and port.
The isOpaque() method returns false if the URI is hierarchical, true if it’s not hier-
archical—that is, if it’s opaque:

public boolean isOpaque()

If the URI is opaque, all you can get is the scheme, scheme-specific part, and fragment
identifier. However, if the URI is hierarchical, there are getter methods for all the dif-
ferent parts of a hierarchical URI:

public String getAuthority()
public String getFragment()
public String getHost()
public String getPath()
public String getPort()
public String getQuery()
public String getUserInfo()

These methods all return the decoded parts; in other words, percent escapes, such as

%3C, are changed into the characters they represent, such as <. If you want the raw,
encoded parts of the URI, there are five parallel getRaw_Foo_() methods:

public String getRawAuthority()
public String getRawFragment()
public String getRawPath()
public String getRawQuery()
public String getRawUserInfo()

Remember the URI class differs from the URI specification in that non-ASCII characters
such as é and U are never percent escaped in the first place, and thus will still be present

in the strings returned by the getRawFoo() methods unless the strings originally used
to construct the URI object were encoded.

There are no getRawPort() and getRawHost() methods because these
. components are always guaranteed to be made up of ASCII characters.

In the event that the specific URI does not contain this information—for instance, the
URI http://www.example.com has no user info, path, port, or query string—the relevant
methods return null. getPort() is the single exception. Since it’s declared to return an
int, it can’t return null. Instead, it returns -1 to indicate an omitted port.

TheURIClass | 145

For various technical reasons that don't have a lot of practical impact, Java can’t always
initially detect syntax errors in the authority component. The immediate symptom of
this failing is normally an inability to return the individual parts of the authority, port,
host, and user info. In this event, you can call parseServerAuthority() to force the
authority to be reparsed:

public URI parseServerAuthority() throws URISyntaxException

The original URI does not change (URI objects are immutable), but the URI returned will
have separate authority parts for user info, host, and port. If the authority cannot be
parsed, a URISyntaxException is thrown.

Example 5-6 uses these methods to split URIs entered on the command line into their
component parts. It's similar to Example 5-4 but works with any syntactically correct
URI, not just the ones Java has a protocol handler for.

Example 5-6. The parts of a URI

import java.net.*;
public class URISplitter {
public static void main(String args[]) {

for (int 1 = 0; 1 < args.length; i++) {
try {
URI u = new URI(args[i]);
System.out.println("The URI is
if (u.isOpaque()) {
System.out.println("This is an opaque URI.");
System.out.println("The scheme is " + u.getScheme());
System.out.println("The scheme specific part is "
+ u.getSchemeSpecificPart());
System.out.println("The fragment ID is
} else {
System.out.println("This is a hierarchical URI.");
System.out.println("The scheme is " + u.getScheme());
try {
u = u.parseServerAuthority();
System.out.println("The host is " + u.getHost());
System.out.println("The user info is " + u.getUserInfo());
System.out.println("The port is " + u.getPort());
} catch (URISyntaxException ex) {
// Must be a registry based authority
System.out.println("The authority is " + u.getAuthority());
}
System.out.println("The path is " + u.getPath());
System.out.println("The query string is " + u.getQuery());
System.out.println("The fragment ID is " + u.getFragment());

+U);

+ u.getFragment());

}
} catch (URISyntaxException ex) {

146 | Chapter5: URLsand URIs

System.err.println(args[i] + " does not seem to be a URI.");
}
System.out.println();
}
}
}

Here’s the result of running this against three of the URI examples in this section:

% java URISplitter +1-800-9988-9938 \
//www.xml.com/pub/a/2003/09/17/stax.html#id=_hbc |

1-565-92870-9

The URI 1is +1-800-9988-9938

This is an opaque URI.

The scheme is tel

The scheme specific part is +1-800-9988-9938

The fragment ID is null

The URI 1is //www.xml.com/pub/a/2003/09/17/stax.html#id=_hbc
This is a hierarchical URI.

The scheme is http

The host 1s www.xml.com

The user info is null

The port is -1

The path is /pub/a/2003/09/17/stax.html

The query string is null

The fragment ID is id=_hbc

The URI 1is 1-565-92870-9

This is an opaque URI.

The scheme is urn

The scheme specific part is 1-565-92870-9
The fragment ID is null</programlisting>

Resolving Relative URIs

The URI class has three methods for converting back and forth between relative and
absolute URIs:

public URI resolve(URI uri)
public URI resolve(String uri)
public URI relativize(URI uri)

The resolve() methods compare the uri argument to this URI and use it to construct
a new URI object that wraps an absolute URI. For example, consider these three lines of
code:

URI absolute = new URI("http://www.example.com/");

URI relative = new URI("images/logo.png");
URI resolved = absolute.resolve(relative);

TheURIClass | 147

After they’ve executed, resolved contains the absolute URI http:.//www.example.com/
images/logo.png.

If the invoking URI does not contain an absolute URI itself, the resolve() method
resolves as much of the URI as it can and returns a new relative URI object as a result.
For example, take these three statements:

URI top = new URI("javafaq/books/");
URI resolved = top.resolve("jnp3/examples/07/index.html");

After they’ve executed, resolved now contains the relative URI javafaq/books/jnp3/
examples/07/index.html with no scheme or authority.

It’s also possible to reverse this procedure; that is, to go from an absolute URI to a relative
one. The relativize() method creates a new URI object from the uri argument that
is relative to the invoking URI. The argument is not changed. For example:

URI absolute = new URI("http://www.example.com/images/logo.png");
URI top = new URI("http://www.example.com/");
URI relative = top.relativize(absolute);

The URI object relative now contains the relative URI images/logo.png.

Equality and Comparison

URIs are tested for equality pretty much as you'd expect. It's not quite direct string
comparison. Equal URIs must both either be hierarchical or opaque. The scheme and
authority parts are compared without considering case. That is, http and HTTP are the
same scheme, and www.example.com is the same authority as www.EXAMPLE.com.
The rest of the URI is case sensitive, except for hexadecimal digits used to escape illegal
characters. Escapes are not decoded before comparing. http://www.example.com/A and
http://www.example.com/%41 are unequal URIs.

The hashCode() method is consistent with equals. Equal URIs do have the same hash
code and unequal URIs are fairly unlikely to share the same hash code.

URI implements Comparable, and thus URIs can be ordered. The ordering is based on
string comparison of the individual parts, in this sequence:

1. If the schemes are different, the schemes are compared, without considering case.

2. Otherwise, if the schemes are the same, a hierarchical URI is considered to be less
than an opaque URI with the same scheme.

3. If both URIs are opaque URIs, they’re ordered according to their scheme-specific
parts.

4. If both the scheme and the opaque scheme-specific parts are equal, the URIs are
compared by their fragments.

148 | Chapter5: URLsand URIs

5. If both URIs are hierarchical, theyre ordered according to their authority compo-
nents, which are themselves ordered according to user info, host, and port, in that
order. Hosts are case insensitive.

6. If the schemes and the authorities are equal, the path is used to distinguish them.
7. If the paths are also equal, the query strings are compared.

8. If the query strings are equal, the fragments are compared.

URIs are not comparable to any type except themselves. Comparing a URI to anything
except another URI causes a ClassCastException.

String Representations
Two methods convert URI objects to strings, toString() and toASCIIString():

public String toString()
public String toASCIIString()

The toString() method returns an unencoded string form of the URI (i.e., characters
like é and \ are not percent escaped). Therefore, the result of calling this method is not
guaranteed to be a syntactically correct URI, though it is in fact a syntactically correct
IRI. This form is sometimes useful for display to human beings, but usually not for
retrieval.

The toASCIIString() method returns an encoded string form of the URI. Characters
like é and \ are always percent escaped whether or not they were originally escaped. This
is the string form of the URI you should use most of the time. Even if the form returned
by toString() is more legible for humans, they may still copy and paste it into areas
that are not expecting an illegal URI. toASCIIString() always returns a syntactically
correct URL

x-www-form-urlencoded

One of the challenges faced by the designers of the Web was dealing with the differences
between operating systems. These differences can cause problems with URLs: for ex-
ample, some operating systems allow spaces in filenames; some don’t. Most operating
systems won't complain about a # sign in a filename; but in a URL, a # sign indicates
that the filename has ended, and a fragment identifier follows. Other special characters,
nonalphanumeric characters, and so on, all of which may have a special meaning inside
a URL or on another operating system, present similar problems. Furthermore, Unicode
was not yet ubiquitous when the Web was invented, so not all systems could handle
characters such as é and Z%. To solve these problems, characters used in URLs must
come from a fixed subset of ASCII, specifically:

o The capital letters A-Z

x-www-form-urlencoded | 149

o The lowercase letters a—z
o The digits 0-9

o The punctuation characters - _.!~*"'(and,)

The characters : / & ? @ # ; $ + = and % may also be used, but only for their specified
purposes. If these characters occur as part of a path or query string, they and all other
characters should be encoded.

The encoding is very simple. Any characters that are not ASCII numerals, letters, or the
punctuation marks specified earlier are converted into bytes and each byte is written as
a percent sign followed by two hexadecimal digits. Spaces are a special case because
they’re so common. Besides being encoded as %20, they can be encoded as a plus sign
(+). The plus sign itself is encoded as %2B. The / # = & and ? characters should be
encoded when they are used as part of a name, and not as a separator between parts of
the URL.

The URL class does not encode or decode automatically. You can construct URL objects
that useillegal ASCIT and non-ASCII characters and/or percent escapes. Such characters
and escapes are not automatically encoded or decoded when output by methods such
as getPath() and toExternalForm(). You are responsible for making sure all such
characters are properly encoded in the strings used to construct a URL object.

Luckily, Java provides URLEncoder and URLDecoder classes to cipher strings in this for-
mat.

URLEncoder

To URL encode a string, pass the string and the character set name to the URLEncod
er.encode() method. For example:

String encoded = URLEncoder.encode("This*string*has*asterisks", "UTF-8");

URLEncoder .encode() returns a copy of the input string with a few changes. Any non-
alphanumeric characters are converted into % sequences (except the space, underscore,
hyphen, period, and asterisk characters). It also encodes all non-ASCII characters. The
space is converted into a plus sign. This method is a little overaggressive; it also converts
tildes, single quotes, exclamation points, and parentheses to percent escapes, even
though they don’t absolutely have to be. However, this change isn't forbidden by the
URL specification, so web browsers deal reasonably with these excessively encoded
URLs.

Although this method allows you to specify the character set, the only such character
set you should ever pick is UTF-8. UTE-8 is compatible with the IRI specification, the
URI class, modern web browsers, and more additional software than any other encoding
you could choose.

150 | Chapter5: URLsand URIs

Example 5-7 is a program that uses URLEncoder.encode() to print various encoded

strings.

Example 5-7. x-www-form-urlencoded strings

import java.ilo.*;

import java.net.*;

public class EncoderTest {

public static void main(String[] args) {

try {

System.

System.

System.

System.

System.

System.

System.

System.

System.

System.

System.

System.

System.

out.

out.

out.

out.

out.

out.

out.

out.

out.

out.

out

out

out

println(URLEncoder.
println(URLEncoder.
println(URLEncoder.
println(URLEncoder.
println(URLEncoder.
println(URLEncoder.
println(URLEncoder.
println(URLEncoder.
println(URLEncoder.

println(URLEncoder.

.println(URLEncoder.
.println(URLEncoder.

.println(URLEncoder.

encode("This string has spaces”,
"UTF-8"));
encode("This*string*has*asterisks",
"UTF-8"));
encode("This%string%has%percent%signs",
"UTF-8"));
encode("This+string+has+pluses”,
"UTF-8"));
encode("This/string/has/slashes",
"UTF-8"));
encode("This\"string\"has\"quote\"marks",
"UTF-8"));
encode("This:string:has:colons",
"UTF-8"));
encode("This~string~has~tildes",
"UTF-8"));
encode("This(string)has(parentheses)",
"UTF-8"));
encode("This.string.has.periods",
"UTF-8"));
encode("This=string=has=equals=signs",
"UTF-8"));
encode("This&string&has&ersands",
"UTF-8"));
encode("Thiséstringéhasé

non-ASCII characters", "UTF-8"));

} catch (UnsupportedEncodingException ex) {
throw new RuntimeException("Broken VM does not support UTF-8");

}
}
}

Here is the output (note that the code needs to be saved in something other than ASCII,
and the encoding chosen should be passed as an argument to the compiler to account
for the non-ASCII characters in the source code):

% javac -encoding UTF8 EncoderTest
% java EncoderTest
This+string+has+spaces

x-www-form-urlencoded

151

This*string*has*asterisks
This%25string%25has%25percent%25signs
This%2Bstring%2Bhas%2Bpluses
This%2Fstring%2Fhas%2Fslashes
This%22string%22has%22quote%22marks
This%3Astring%3Ahas%3Acolons
This%7Estring%7Ehas%7Etildes
This%28string%29has%28parentheses%29
This.string.has.periods
This%3Dstring%3Dhas%3Dequals%3Dsigns
This%26string%26has%26ampersands
This%C3%A9string%C3%A9has%C3%A9non-ASCII+characters</programlisting>

Notice in particular that this method encodes the forward slash, the ampersand, the
equals sign, and the colon. It does not attempt to determine how these characters are
being used in a URL. Consequently, you have to encode URLSs piece by piece rather than
encoding an entire URL in one method call. This is an important point, because the
most common use of URLEncoder is preparing query strings for communicating with
server-side programs that use GET. For example, suppose you want to encode this URL
for a Google search:

https://www.google.com/search?hl=en&as_q=Java&as_epq=1/0
This code fragment encodes it:

String query = URLEncoder.encode(
"https://www.google.com/search?hl=en&as_q=Java&as_epg=I1/0", "UTF-8");
System.out.println(query);

Unfortunately, the output is:
https%3A%2F%2Fwww.google.com%2Fsearch%3Fh1%3Den%26as_q%3DJava%26as_epq%3DI%2F0

The problem is that URLEncoder . encode () encodes blindly. It can’t distinguish between
special characters used as part of the URL or query string, like / and =, and characters
that need to be encoded. Consequently, URLs need to be encoded a piece at a time like
this:

String url = "https://www.google.com/search?";
url += URLEncoder.encode("hl", "UTF-8");

url += "=";

url += URLEncoder.encode("en", "UTF-8");

url += "&";

url += URLEncoder.encode("as_q", "UTF-8");
url += "=";

url += URLEncoder.encode("Java", "UTF-8");
url += "&";

url += URLEncoder.encode("as_epq", "UTF-8");
url += "=";

url += URLEncoder.encode("I/0", "UTF-8");

System.out.println(url);

152 | Chapter5: URLs and URIs

The output of this is what you actually want:

//www.google.com/search?hl=en&as_q=Java&as_epq=I1/0

In this case, you could have skipped encoding several of the constant strings such as
“Java” because you know from inspection that they don't contain any characters that
need to be encoded. However, in general, these values will be variables, not constants;
and you’ll need to encode each piece to be safe.

Example 5-8 is a QueryString class that uses URLEncoder to encode successive name
and value pairs in a Java object, which will be used for sending data to server-side
programs. To add name-value pairs, call the add() method, which takes two strings as
arguments and encodes them. The getQuery() method returns the accumulated list of
encoded name-value pairs.

Example 5-8. The QueryString class

import java.io.UnsupportedEncodingException;
import java.net.URLEncoder;

public class QueryString {

}

private StringBuilder query = new StringBuilder();

public QueryString() {
}

public synchronized void add(String name, String value) {
query.append('&");
encode(name, value);

}

private synchronized void encode(String name, String value) {
try {
query.append(URLEncoder.encode(name, "UTF-8"));
query.append('="');
query.append(URLEncoder.encode(value, "UTF-8"));
} catch (UnsupportedEncodingException ex) {
throw new RuntimeException("Broken VM does not support UTF-8");
}
}

public synchronized String getQuery() {
return query.toString();

}

public String toString() {
return getQuery();
}

x-www-form-urlencoded

153

Using this class, we can now encode the previous example:

QueryString gs = new QueryString();

gs.add("hl", "en");

gs.add("as_q", "Java");

gs.add("as_epq", "I/0");

String url = "http://www.google.com/search?" + gs;
System.out.println(url);

URLDecoder

The corresponding URLDecoder class has a static decode() method that decodes strings
encoded in x-www-form-url-encoded format. That is, it converts all plus signs to spaces
and all percent escapes to their corresponding character:

public static String decode(String s, String encoding)
throws UnsupportedEncodingException

If you have any doubt about which encoding to use, pick UTF-8. It's more likely to be
correct than anything else.

An IllegalArgumentException should be thrown if the string contains a percent sign
that isn’t followed by two hexadecimal digits or decodes into an illegal sequence.

Since URLDecoder does not touch non-escaped characters, you can pass an entire URL
to it rather than splitting it into pieces first. For example:

String input = "https://www.google.com/" +
"search?hl=en&as_qg=Java&as_epq=1%2F0";

String output = URLDecoder.decode(input, "UTF-8");

System.out.println(output);

Proxies

Many systems access the Web and sometimes other non-HTTP parts of the Internet
through proxy servers. A proxy server receives a request for a remote server from a local
client. The proxy server makes the request to the remote server and forwards the result
back to the local client. Sometimes this is done for security reasons, such as to prevent
remote hosts from learning private details about the local network configuration. Other
times it’s done to prevent users from accessing forbidden sites by filtering outgoing
requests and limiting which sites can be viewed. For instance, an elementary school
might want to block access to http://www.playboy.com. And still other times it’s done
purely for performance, to allow multiple users to retrieve the same popular documents
from a local cache rather than making repeated downloads from the remote server.

Java programs based on the URL class can work through most common proxy servers
and protocols. Indeed, this is one reason you might want to choose to use the URL class
rather than rolling your own HTTP or other client on top of raw sockets.

154 | Chapter5: URLs and URIs

System Properties

For basic operations, all you have to do is set a few system properties to point to the
addresses of your local proxy servers. If you are using a pure HTTP proxy, set
http.proxyHost to the domain name or the IP address of your proxy server and
http.proxyPort to the port of the proxy server (the default is 80). There are several
ways to do this, including calling System.setProperty() from within your Java code
or using the -D options when launching the program. This example sets the proxy server
to 192.168.254.254 and the port to 9000:

<programlisting format="1inespecific" 1d="I_7_tt264">% <userinput moreinfo=
"none">
java -Dhttp.proxyHost=192.168.254.254 -Dhttp.proxyPort=9000 </userinput>
<emphasis role="bolditalic">com.domain.Program</emphasis></programlisting>
If the proxy requires a username and password, you’ll need to install an Authentica
tor, as we'll discuss shortly in “Accessing Password-Protected Sites” on page 161.

If you want to exclude a host from being proxied and connect directly instead, set the
http.nonProxyHosts system property to its hostname or IP address. To exclude mul-
tiple hosts, separate their names by vertical bars. For example, this code fragment proxies
everything except java.oreilly.com and xml.oreilly.com:
System.setProperty("http.proxyHost", "192.168.254.254");
System.setProperty("http.proxyPort", "9000");
System.setProperty("http.nonProxyHosts", "java.oreilly.com|xml.oreilly.com");
You can also use an asterisk as a wildcard to indicate that all the hosts within a particular
domain or subdomain should not be proxied. For example, to proxy everything except
hosts in the oreilly.com domain:
% java -Dhttp.proxyHost=192.168.254.254 -Dhttp.nonProxyHosts=*.oreilly.com
<emphasis role="bolditalic">com.domain.Program</emphasis></programlisting>
If you are using an FTP proxy server, set the ftp.proxyHost, ftp.proxyPort, and
ftp.nonProxyHosts properties in the same way.

Java does not support any other application layer proxies, but if you're using a transport
layer SOCKS proxy for all TCP connections, you can identify it with the socksProxy
Host and socksProxyPort system properties. Java does not provide an option for non-
proxying with SOCKS. It’s an all-or-nothing decision.

The Proxy Class

The Proxy class allows more fine-grained control of proxy servers from within a Java
program. Specifically, it allows you to choose different proxy servers for different remote
hosts. The proxies themselves are represented by instances of the java.net.Proxy class.

Proxies | 155

There are still only three kinds of proxies, HTTP, SOCKS, and direct connections (no
proxy at all), represented by three constants in the Proxy. Type enum:

e Proxy.Type.DIRECT
e Proxy.Type.HTTP
e Proxy.Type.SOCKS

Besides its type, the other important piece of information about a proxy is its address
and port, given as a SocketAddress object. For example, this code fragment creates a
Proxy object representing an HTTP proxy server on port 80 of proxy.example.com:

SocketAddress address = new InetSocketAddress('proxy.example.com", 80);

Proxy proxy = new Proxy(Proxy.Type.HTTP, address);
Although there are only three kinds of proxy objects, there can be many proxies of the
same type for different proxy servers on different hosts.

The ProxySelector Class

Each running virtual machine has a single java.net.ProxySelector object it uses to
locate the proxy server for different connections. The default ProxySelector merely
inspects the various system properties and the URLs protocol to decide how to connect
to different hosts. However, you can install your own subclass of ProxySelector in place
of the default selector and use it to choose different proxies based on protocol, host,
path, time of day, or other criteria.

The key to this class is the abstract select() method:
public abstract List<Proxy> select(URI uri)

Java passes this method a URI object (not a URL object) representing the host to which
a connection is needed. For a connection made with the URL class, this object typically
has the form http://www.example.com/ or ftp://ftp.example.com/pub/files/, for example.
For a pure TCP connection made with the Socket class, this URI will have the form
socket://host:port:, for instance, socket://www.example.com:80. The ProxySelector ob-
ject then chooses the right proxies for this type of object and returns them in a
List<Proxy>.

The second abstract method in this class you must implement is connectFailed():

public void connectFailed(URI uri, SocketAddress address, IOException ex)

This is a callback method used to warn a program that the proxy server isn’t actually
making the connection. Example 5-9 demonstrates with a ProxySelector that attempts
to use the proxy server at proxy.example.com for all HTTP connections unless the proxy
server has previously failed to resolve a connection to a particular URL. In that case, it
suggests a direct connection instead.

156 | Chapter5: URLs and URIs

Example 5-9. A ProxySelector that remembers what it can connect to

import java.io.*;
import java.net.¥;
import java.util.*;

public class LocalProxySelector extends ProxySelector {
private List<URI> failed = new ArrayList<URI>();
public List<Proxy> select(URI uri) {

List<Proxy> result = new ArraylList<Proxy>();
if (failed.contains(uri)
|| !'"http".equalsIgnoreCase(uri.getScheme())) {
result.add(Proxy.NO_PROXY);
} else {
SocketAddress proxyAddress
= new InetSocketAddress("proxy.example.com", 8000);
Proxy proxy = new Proxy(Proxy.Type.HTTP, proxyAddress);
result.add(proxy);
}

return result;

}

public void connectFailed(URI uri, SocketAddress address, IOException ex) {
failed.add(uri);

3
}

As I said, each virtual machine has exactly one ProxySelector. To change the Proxy

Selector, pass the new selector to the static ProxySelector.setDefault() method,
like so:

ProxySelector selector = new LocalProxySelector():
ProxySelector.setDefault(selector);
From this point forward, all connections opened by that virtual machine will ask the
ProxySelector for the right proxy to use. You normally shouldn’t use this in code run-
ning in a shared environment. For instance, you wouldn’t change the ProxySelector
in a servlet because that would change the ProxySelector for all servlets running in the
same container.

Communicating with Server-Side Programs Through GET

The URL class makes it easy for Java applets and applications to communicate with server-
side programs such as CGIs, servlets, PHP pages, and others that use the GET method.
(Server-side programs that use the POST method require the URLConnection class and

Communicating with Server-Side Programs Through GET | 157

are discussed in Chapter 7.) All you need to know is what combination of names and
values the program expects to receive. Then you can constructa URL with a query string
that provides the requisite names and values. All names and values must be x-www-
form-url-encoded—as by the URLEncoder.encode() method, discussed earlier in this
chapter.

There are a number of ways to determine the exact syntax for a query string that talks
to a particular program. If you've written the server-side program yourself, you already
know the name-value pairs it expects. If you've installed a third-party program on your
own server, the documentation for that program should tell you what it expects. If you're
talking to a documented external network API such as the eBay Shopping API, then the
service usually provides fairly detailed documentation to tell you exactly what data to
send for which purposes.

Many programs are designed to process form input. If this is the case, it’s straightforward
to figure out what input the program expects. The method the form uses should be the
value of the METHOD attribute of the FORM element. This value should be either GET, in
which case you use the process described here, or POST, in which case you use the process
described in Chapter 7. The part of the URL that precedes the query string is given by
the value of the ACTION attribute of the FORM element. Note that this may be a relative
URL, in which case you’ll need to determine the corresponding absolute URL. Finally,
the names in the name-value pairs are simply the values of the NAME attributes of the
INPUT elements. The values of the pairs are whatever the user types into the form.

For example, consider this HTML form for the local search engine on my Cafe con
Leche site. You can see that it uses the GET method. The program that processes the form
is accessed via the URL http://www.google.com/search. It has four separate name-value
pairs, three of which have default values:

<form name="search" action="http://www.google.com/search" method="get">
<input name="q" />
<input type="hidden" value="cafeconleche.org" name="domains" />
<input type="hidden" name="sitesearch" value="cafeconleche.org" />
<input type="hidden" name="sitesearch2" value="cafeconleche.org" />

<input type="image" height="22" width="55"
src="1images/search_blue.gif" alt="search" border="0"
name="search-image" />
</form>

The type of the INPUT field doesn’t matter. For instance, it doesn’t matter if it’s a set of
checkboxes, a pop-up list, or a text field. Only the name of each INPUT field and the
value you give it is significant. The submit input tells the web browser when to send the
data but does not give the server any extra information. Sometimes you find hidden
INPUT fields that must have particular required default values. This form has three hid-
den INPUT fields. There are many different form tags in HTML that produce pop-up

158 | Chapter5: URLs and URIs

http://go.developer.ebay.com/developers/ebay/products/shopping-api

menus, radio buttons, and more. However, although these input widgets appear differ-
ent to the user, the format of data they send to the server is the same. Each form element
provides a name and an encoded string value.

In some cases, the program you're talking to may not be able to handle arbitrary text
strings for values of particular inputs. However, since the form is meant to be read and
filled in by human beings, it should provide sufficient clues to figure out what input is
expected; for instance, that a particular field is supposed to be a two-letter state abbre-
viation or a phone number. Sometimes the inputs may not have such obvious names.
There may not even be a form, just links to follow. In this case, you have to do some
experimenting, first copying some existing values and then tweaking them to see what
values are and aren’t accepted. You don't need to do this in a Java program. You can
simply edit the URL in the address or location bar of your web browser window.

)
The likelihood that other hackers may experiment with your own
,“:‘ . server-side programs in such a fashion is a good reason to make them
"_of3 extremely robust against unexpected input.

Regardless of how you determine the set of name-value pairs the server expects, com-
municating with it once you know them is simple. All you have to do is create a query
string that includes the necessary name-value pairs, then form a URL that includes that
query string. Send the query string to the server and read its response using the same
methods you use to connect to a server and retrieve a static HTML page. There’s no
special protocol to follow once the URL is constructed. (There is a special protocol to
follow for the POST method, however, which is why discussion of that method will have
to wait until Chapter 7.)

To demonstrate this procedure, let’s write a very simple command-line program to look
up topics in the Open Directory. This site is shown in Figure 5-1 and it has the advantage
of being really simple.

Communicating with Server-Side Programs Through GET | 159

http://dmoz.org/

&ODP - Open Directory Pro| [

[C [www.dmoz.org o 77 @ En d =

n pattnership with
[d][ml[o][z] open directory project ,I“éﬂ Search.

about dmoz | dmozbleg | suggest URL | help | link | editor login

I | Search | advanced

Arts Business Computers
Movies, Television, Music... Jobs, Real Estate, Investing... Internet, Software, Hardware...
Games Health Home

Video Games, RPGs, Gambling... Fitness, Medicine, Alternative... Family, Consumers, Cooking...

Kids and Teens News Recreation
Arts, School Time, Teen Life... Media, Newspapers, Weather... Travel, Food, Outdoors, Humor...

Reference Regional Science

Maps, Education, Libraries... US, Canada, UK, Europe... Biology, Psychology, Physics...
Shopping Society Sports

Clothing, Food, Gifts... People, Religion, Issues... Baseball, Soccer, Basketball...
World

Catala, Dansk, Deutsch, Espafiol, Francais, Italiano, HAGE, Nederlands, Polski, Pyecksii, Svenska...

FEDRGTTg Help build the largest human-edited directary of the web

Copyright © 2013 Netscape

5,168,997 sites - 97,584 editors - over 1,017,500 categories

Figure 5-1. The user interface for the Open Directory

The Open Directory interface is a simple form with one input field named search; input
typed in this field is sent to a program at http://search.dmoz.org/cgi-bin/search, which
does the actual search. The HTML for the form looks like this:

<form class="center mblem" action="search" method="GET">
<input style="*vertical-align:middle;" size="45" name="g" value=
<input style="*vertical-align:middle; *padding-top:1px;"
class="btn" type="submit">
advanced
</form>

class="gN">
value="Search"

There are only two input fields in this form: the Submit button and a text field named
q- Thus, to submit a search request to the Open Directory, you just need to append
q=searchTerm to http://www.dmoz.org/search. For example, to search for “java’, you

160 | Chapter5: URLsand URIs

would open a connection to the URL http://www.dmoz.org/search/?q=java and read the
resulting input stream. Example 5-10 does exactly this.

Example 5-10. Do an Open Directory search

import java.io.*;
import java.net.¥*;

public class DMoz {

public static void main(String[] args) {
String target = "";

for (int 1 = 0; 1 < args.length; i++) {
target += args[i] + " ";

}

target = target.trim();

QueryString query = new QueryString();
query.add("q", target);
try {
URL u = new URL("http://www.dmoz.org/search/q?" + query);
try (InputStream in = new BufferedInputStream(u.openStream())) {

InputStreamReader theHTML = new InputStreamReader(in);

int c;

while ((c = theHTML.read()) != -1) {
System.out.print((char) c);

}

}

} catch (MalformedURLException ex) {
System.err.println(ex);

} catch (IOException ex) {
System.err.println(ex);

}
3
}

Of course, a lot more effort could be expended on parsing and displaying the results.
But notice how simple the code was to talk to this server. Aside from the funky-looking
URL and the slightly greater likelihood that some pieces of it need to be x-www-form-
url-encoded, talking to a server-side program that uses GET is no harder than retrieving
any other HTML page.

Accessing Password-Protected Sites

Many popular sites require a username and password for access. Some sites, such as the
W3C member pages, implement this through HTTP authentication. Others, such as the
New York Times website, implement it through cookies and HTML forms. Java’s URL

Accessing Password-Protected Sites | 161

class can access sites that use HTTP authentication, although you’ll of course need to
tell it which username and password to use.

Supporting sites that use nonstandard, cookie-based authentication is more challeng-
ing, not least because this varies a lot from one site to another. Implementing cookie
authentication is hard short of implementing a complete web browser with full HTML
forms and cookie support; we'll discuss Javas cookie support in Chapter 7. Accessing
sites protected by standard HTTP authentication is much easier.

The Authenticator Class

The java.net package includes an Authenticator class you can use to provide a user-
name and password for sites that protect themselves using HTTP authentication:

public abstract class Authenticator extends Object

Since Authenticator is an abstract class, you must subclass it. Different subclasses may
retrieve the information in different ways. For example, a character mode program
might just ask the user to type the username and password on System.in. A GUI pro-
gram would likely put up a dialog box like the one shown in Figure 5-2. An automated
robot might read the username out of an encrypted file.

[|

lambdan?

0K % Cancel

Figure 5-2. An authentication dialog

To make the URL class use the subclass, install it as the default authenticator by passing
it to the static Authenticator.setDefault() method:

public static void setDefault(Authenticator a)

For example, if you've written an Authenticator subclass named DialogAuthentica
tor, youd install it like this:

Authenticator.setDefault(new DialogAuthenticator());

You only need to do this once. From this point forward, when the URL class needs a
username and password, it will ask the DialogAuthenticator using the static Authen
ticator.requestPasswordAuthentication() method:

public static PasswordAuthentication requestPasswordAuthentication(

InetAddress address, int port, String protocol, String prompt, String scheme)
throws SecurityException

162 | Chapter5: URLsand URIs

The address argument is the host for which authentication is required. The port ar-
gument is the port on that host, and the protocol argument is the application layer
protocol by which the site is being accessed. The HTTP server provides the prompt. It’s
typically the name of the realm for which authentication is required. (Some large web
servers such as www.ibiblio.org have multiple realms, each of which requires different
usernames and passwords.) The scheme is the authentication scheme being used. (Here
the word scheme is not being used as a synonym for protocol. Rather, it is an HTTP
authentication scheme, typically basic.)

Untrusted applets are not allowed to ask the user for a name and password. Trusted
applets can do so, but only if they possess the requestPasswordAuthentication Net
Permission. Otherwise, Authenticator.requestPasswordAuthentication() throws
a SecurityException.

The Authenticator subclass must override the getPasswordAuthentication() meth-
od. Inside this method, you collect the username and password from the user or some
other source and return it as an instance of the java.net.PasswordAuthentication
class:

protected PasswordAuthentication getPasswordAuthentication()

If you don’t want to authenticate this request, return null, and Java will tell the server
itdoesn’t know how to authenticate the connection. If you submit an incorrect username
or password, Java will call getPasswordAuthentication() again to give you another
chance to provide the right data. You normally have five tries to get the username and
password correct; after that, openStream() throws a ProtocolException.

Usernames and passwords are cached within the same virtual machine session. Once
you set the correct password for a realm, you shouldn’t be asked for it again unless you've
explicitly deleted the password by zeroing out the char array that contains it.

You can get more details about the request by invoking any of these methods inherited
from the Authenticator superclass:

protected final InetAddress getRequestingSite()

protected final int getRequestingPort()
protected final String getRequestingProtocol()
protected final String getRequestingPrompt()
protected final String getRequestingScheme()
protected final String getRequestingHost()
protected final String getRequestingURL()

protected Authenticator.RequestorType getRequestorType()

These methods either return the information as given in the last call to requestPass
wordAuthentication() or return null if that information is not available. (If the port
isn’t available, getRequestingPort() returns -1.)

Accessing Password-Protected Sites | 163

The getRequestingURL() method returns the complete URL for which authentication
has been requested—an important detail if a site uses different names and passwords
for different files. The getRequestorType() method returns one of the two named
constants (i.e., Authenticator.RequestorType.PROXY or Authenticator.Requestor
Type.SERVER) to indicate whether the server or the proxy server is requesting the au-
thentication.

The PasswordAuthentication Class

PasswordAuthentication isavery simple final class that supports two read-only prop-
erties: username and password. The username is a String. The password is a char array
so that the password can be erased when it’s no longer needed. A String would have to
wait to be garbage collected before it could be erased, and even then it might still exist
somewhere in memory on the local system, possibly even on disk if the block of memory
that contained it had been swapped out to virtual memory at one point. Both username
and password are set in the constructor:

public PasswordAuthentication(String userName, char[] password)
Each is accessed via a getter method:

public String getUserName()
public char[] getPassword()

The JPasswordField Class

One useful tool for asking users for their passwords in a more or less secure fashion is
the JPasswordField component from Swing:

public class JPasswordField extends JTextField

This lightweight component behaves almost exactly like a text field. However, anything
the user types into it is echoed as an asterisk. This way, the password is safe from anyone
looking over the user’s shoulder at what’s being typed on the screen.

JPasswordFieldalso stores the passwords as a char array so that when you’re done with
the password you can overwrite it with zeros. It provides the getPassword() method
to return this:

public char[] getPassword()

Otherwise, you mostly use the methods it inherits from the JTextField superclass.
Example 5-11 demonstrates a Swing-based Authenticator subclass that brings up a
dialog to ask the user for his username and password. Most of this code handles the
GUIL. A JPasswordField collects the password and a simple JTextField retrieves the
username. Flip back to Figure 5-2 to see the rather simple dialog box this produces.

164 | Chapter5: URLs and URIs

Example 5-11. A GUI authenticator

import java.awt.*;
import java.awt.event.*;
import java.net.*;
import javax.swing.*;

public class DialogAuthenticator extends Authenticator {

private JDialog passwordDialog;
private JTextField usernameField = new JTextField(20);
private JPasswordField passwordField = new JPasswordField(20);
private JButton okButton = new JButton("OK");
private JButton cancelButton = new JButton("Cancel");
private JLabel mainLabel
= new JLabel("Please enter username and password: ");

public DialogAuthenticator() {
this("", new JFrame());

}

public DialogAuthenticator(String username) {
this(username, new JFrame());

}

public DialogAuthenticator(JFrame parent) {
this("", parent);
}

public DialogAuthenticator(String username, JFrame parent) {
this.passwordDialog = new JDialog(parent, true);
Contailner pane = passwordDialog.getContentPane();
pane.setLayout(new GridLayout(4, 1));

JLabel userLabel = new JLabel("Username: ");
JLabel passwordLabel = new JLabel("Password: ");
pane.add(mainLabel);

JPanel p2 = new JPanel();

p2.add(userLabel);

p2.add(usernameField);
usernameField.setText(username);
pane.add(p2);

JPanel p3 = new JPanel();
p3.add(passwordLabel);
p3.add(passwordField);

pane.add(p3);

JPanel p4 = new JPanel();

p4.add(okButton);

p4.add(cancelButton);

pane.add(p4);

passwordDialog.pack();

ActionListener al = new OKResponse();

Accessing Password-Protected Sites

165

}

okButton.addActionListener(al);
usernameField.addActionListener(al);
passwordField.addActionListener(al);
cancelButton.addActionListener(new CancelResponse());

private void show() {

}

String prompt = this.getRequestingPrompt();
if (prompt == null) {
String site = this.getRequestingSite().getHostName();
String protocol = this.getRequestingProtocol();
int port this.getRequestingPort();
if (site != null & protocol != null) {
prompt = protocol + "://" + site;
if (port > 0) prompt += ":" + port;
} else {
prompt =
}
}

mainLabel.setText("Please enter username and password for
+ prompt + ": ");

passwordDialog.pack();

passwordDialog.setVisible(true);

PasswordAuthentication response = null;

class OKResponse implements ActionListener {

}

public void actionPerformed(ActionEvent e) {
passwordDialog.setVisible(false);
// The password is returned as an array of
// chars for security reasons.
char[] password = passwordField.getPassword();
String username = usernameField.getText();
// Erase the password in case this is used again.
passwordField.setText("");
response = new PasswordAuthentication(username, password);

}

class CancelResponse implements ActionListener {

}

public void actionPerformed(ActionEvent e) {
passwordDialog.setVisible(false);
// Erase the password in case this is used again.
passwordField.setText("");
response = null;

}

166

| Chapter5: URLs and URIs

public PasswordAuthentication getPasswordAuthentication() {
this.show();
return this.response;
}
}

Example 5-12 is a revised SourceViewer program that asks the user for a name and
password using the DialogAuthenticator class.

Example 5-12. A program to download password-protected web pages

import java.ilo.*;
import java.net.¥;

public class SecureSourceViewer {
public static void main (String args[]) {
Authenticator.setDefault(new DialogAuthenticator());

for (int 1 = 0; 1 < args.length; i++) {
try {

// Open the URL for reading

URL u = new URL(args[i]);

try (InputStream in = new BufferedInputStream(u.openStream())) {
// chain the InputStream to a Reader
Reader r = new InputStreamReader(in);
int c;
while ((c = r.read()) !'= -1) {

System.out.print((char) c);

}

}
} catch (MalformedURLException ex) {

System.err.println(args[0] + " is not a parseable URL");
} catch (IOException ex) {
System.err.println(ex);

}

// print a blank line to separate pages
System.out.println();

}

// Since we used the AWT, we have to explicitly exit.
System.exit(0);
}

Accessing Password-Protected Sites | 167

CHAPTER 6
HTTP

The Hypertext Transfer Protocol (HTTP) is a standard that defines how a web client
talks to a server and how data is transferred from the server back to the client. Although
HTTP is usually thought of as a means of transferring HTML files and the pictures
embedded in them, HTTP is data format agnostic. It can be used to transfer TIFF pic-
tures, Microsoft Word documents, Windows .exe files, or anything else that can be
represented in bytes. To write programs that use HT TP, you'll need to understand HTTP
atadeeper level than the average web page designer. This chapter goes behind the scenes
to show you what actually happens when you type http://www.google.com into the
browser’s address bar and press Return.

The Protocol

HTTP is the standard protocol for communication between web browsers and web
servers. HTTP specifies how a client and server establish a connection, how the client
requests data from the server, how the server responds to that request, and finally, how
the connection is closed. HTTP connections use the TCP/IP protocol for data trans-
fer. For each request from client to server, there is a sequence of four steps:

1. The client opens a TCP connection to the server on port 80, by default; other ports
may be specified in the URL.

2. The client sends a message to the server requesting the resource at a specified path.
The request includes a header, and optionally (depending on the nature of the
request) a blank line followed by data for the request.

3. The server sends a response to the client. The response begins with a response code,
followed by a header full of metadata, a blank line, and the requested document or
an error message.

4. The server closes the connection.

169

This is the basic HTTP 1.0 procedure. In HTTP 1.1 and later, multiple requests and
responses can be sent in series over a single TCP connection. That is, steps 2 and 3 can
repeat multiple times in between steps 1 and 4. Furthermore, in HTTP 1.1, requests and
responses can be sent in multiple chunks. This is more scalable.

Each request and response has the same basic form: a header line, an HTTP header
containing metadata, a blank line, and then a message body. A typical client request
looks something like this:

GET /index.html HTTP/1.1

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac 0S X 10.8; rv:20.0)
Gecko/20100101 Firefox/20.0

Host: en.wikipedia.org

Connection: keep-alive

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Accept: text/html,application/xhtml+xml,application/xml;g=0.9,*/*;q=0.8

GET requests like this one do not contain a message body, so the request ends with a
blank line.

The first line is called the request line, and includes a method, a path to a resource, and
the version of HTTP. The method specifies the operation being requested. The GET
method asks the server to return a representation of a resource. /index.html is the path
to the resource requested from the server. HTTP/1.1 is the version of the protocol that
the client understands.

Although the request line is all that is required, a client request usually includes other
information as well in a header. Each line takes the following form:

Keyword: Value

Keywords are not case sensitive. Values sometimes are and sometimes aren’t. Both key-
words and values should be ASCII only. If a value is too long, you can add a space or
tab to the beginning of the next line and continue it.

Lines in the header are terminated by a carriage-return linefeed pair.

The first keyword in this example is User-Agent, which lets the server know what
browser is being used and allows it to send files optimized for the particular browser
type. The following line says that the request comes from version 2.4 of the Lynx brows-
er:

User-Agent: Lynx/2.4 libwww/2.1.4

All but the oldest first-generation browsers also include a Host field specifying the
server’s name, which allows web servers to distinguish between different named hosts
served from the same IP address:

Host: www.cafeaulait.org

170 | Chapter 6: HTTP

The last keyword in this example is Accept, which tells the server the types of data the
client can handle (though servers often ignore this). For example, the following line says
that the client can handle four MIME media types, corresponding to HTML documents,
plain text, and JPEG and GIF images:

Accept: text/html, text/plain, image/gif, image/jpeg

MIME typesare classified at two levels: a type and a subtype. The type shows very generally
what kind of data is contained: is it a picture, text, or movie? The subtype identifies the
specific type of data: GIF image, JPEG image, TIFF image. For example, HTMLs content
typeis text/html; the type is text, and the subtype is html. The content type for a JPEG
image is image/jpeg; the type is image, and the subtype is jpeg. Eight top-level types
have been defined:

o text/* for human-readable words

« image/* for pictures

o model/* for 3D models such as VRML files

o audio/* for sound

« video/* for moving pictures, possibly including sound
o application/* for binary data

 message/* for protocol-specific envelopes such as email messages and HTTP re-
sponses

o multipart/* for containers of multiple documents and resources

Each of these has many different subtypes.

The most current list of registered MIME types is available from http://www.iana.org/
assignments/media-types/. In addition, nonstandard custom types and subtypes can be
freely defined as long as they begin with x-. For example, Flash files are commonly
assigned the type application/x-shockwave-flash.

Finally, the request is terminated with a blank line—that is, two carriage return/linefeed
pairs, \r\n\r\n.

Once the server sees that blank line, it begins sending its response to the client over the
same connection. The response begins with a statusline, followed by a header describing
the response using the same “name: value” syntax as the request header, a blank line,
and the requested resource. A typical successful response looks something like this:

HTTP/1.1 200 OK

Date: Sun, 21 Apr 2013 15:12:46 GMT

Server: Apache

Connection: close

Content-Type: text/html; charset=IS0-8859-1
Content-length: 115

The Protocol | 171

http://www.iana.org/assignments/media-types/
http://www.iana.org/assignments/media-types/

<html>

<head>

<title>

A Sample HTML file

</title>

</head>

<body>

The rest of the document goes here
</body>

</html>

The first line indicates the protocol the server is using (HTTP/1.1), followed by a re-
sponse code. 200 OK is the most common response code, indicating that the request was
successful. The other header lines identify the date the request was made in the server’s
time frame, the server software (Apache), a promise that the server will close the con-
nection when it’s finished sending, the MIME media type, and the length of the docu-

ment delivered (not counting this header)—in this case, 107 bytes.

Table 6-1 lists the standard and experimental response codes youre most likely to en-

counter, minus a few used by WebDAV.
Table 6-1. The HTTP 1.1 response codes

Code and message Meaning
1XX Informational.

100 Continue The server is prepared to accept the request body and the client should
send it; allows clients to ask whether the server will accept a request
before they send a large amount of data as part of the request.

101 Switching The server accepts the client’s request in the Upgrade header field to
Protocols change the application protocol (e.g., from HTTP to WebSockets.)
2XX Successful Request succeeded.

200 OK The most common response code. If the request method was GET or

POST, the requested data is contained in the response along with
the usual headers. If the request method was HEAD, only the header
information is included.

201 Created The server has created a resource at the URL specified in the body of
the response. The client should now attempt to load that URL. This
code is only sent in response to POST requests.

202 Accepted This rather uncommon response indicates that a request (generally
from POST)is being processed, but the processing is not yet complete,
50 no response can be returned. However, the server should return
an HTML page that explains the situation to the user and provide an
estimate of when the request is likely to be completed, and, ideally,
a link to a status monitor of some kind.

203 Non-authoritative The resource representation was returned from a caching proxy or
Information other local source and is not guaranteed to be up to date.

HttpURLConnection constant

N/A

N/A

HTTP_OK

HTTP_CREATED

HTTP_ACCEPTED

HTTP_NOT_AUTHORITA
TIVE

172 | Chapter 6: HTTP

Code and message
204 No Content

205 Reset Content

206 Partial Content

226 IM Used
3XX Redirection
300 Multiple Choices

301 Moved
Permanently

302 Moved
Temporarily

303 See Other

304 Not Modified

305 Use Proxy

307 Temporary
Redirect

308 Permanent
Redirect

4XX
400 Bad Request

401 Unauthorized

Meaning

The server has successfully processed the request but has no
information to send back to the client. This is normally the result of
a poorly written form-processing program on the server that accepts
data but does not return a response to the user.

The server has successfully processed the request but has no
information to send back to the client. Furthermore, the client should
clear the form to which the request is sent.

The server has returned the part of the resource the client requested
using the byte range extension to HTTP, rather than the whole

document.

Response is delta encoded.
Relocation and redirection.

The server is providing a list of different representations (e.g.,
PostScript and PDF) for the requested document.

The resource has moved to anew URL. The client should automatically
load the resource at this URL and update any bookmarks that point

to the old URL.

The resource is at a new URL temporarily, but its location will change
again in the foreseeable future; therefore, bookmarks should not be
updated. Sometimes used by proxies that require the user to log in
locally before accessing the Web.

Generally usedinresponse toa POST form request, this code indicates
that the user should retrieve a resource from a different URL using

GET.

The If-Modified-Since header indicates that the client wants the
document only if it has been recently updated. This status code is
returned if the document has not been updated. In this case, the client
should load the document from its cache.

The Location header field contains the address of a proxy that will

serve the response.

Similar to 302 but without allowing the HTTP method to change.

Similar to 301 but without allowing the HTTP method to change.

Client error.

The client request to the server used improper syntax. This is rather
unusual in normal web browsing but more common when debugging

custom clients.

Authorization, generally a username and password, is required to
access this page. Either a username and password have not yet been
presented or the username and password are invalid.

HttpURLConnection constant

HTTP_NO_CONTENT

HTTP_RESET

HTTP_PARTIAL

N/A

HTTP_MULT_CHOICE

HTTP_MOVED_PERM

HTTP_MOVED_TEMP

HTTP_SEE_OTHER

HTTP_NOT_MODIFIED

HTTP_USE_PROXY

N/A

N/A

HTTP_BAD_REQUEST

HTTP_UNAUTHORIZED

The Protocol |

173

Code and message Meaning

402 Payment Required Not used today, but may be used in the future to indicate that some
sort of payment is required to access the resource.

403 Forbidden The server understood the request, but is deliberately refusing to
process it. Authorization will not help. This is sometimes used when
a client has exceeded its quota.

404 Not Found This most common error response indicates that the server cannot
find the requested resource. It may indicate a bad link, a document
that has moved with no forwarding address, a mistyped URL, or
something similar.

405 Method Not The request method is not allowed for the specified resource; for

Allowed instance, you tried to PUT a file on a web server that doesn’t support
PUT or tried to POST to a URI that only allows GET.

406 Not Acceptable The requested resource cannot be provided in a format the client is
willing to accept, as indicated by the Accept field of the request HTTP
header.

407 Proxy An intermediate proxy server requires authentication from the client,

Authentication probably in the form of a username and password, before it will

Required retrieve the requested resource.

408 Request Timeout The client took too long to send the request, perhaps because of
network congestion.

409 Conflict A temporary conflict prevents the request from being fulfilled; for
instance, two clients are trying to PUT the same file at the same time.

410 Gone Like a 404, but makes a stronger assertion about the existence of the

resource. The resource has been deliberately deleted (not moved) and
will not be restored. Links to it should be removed.

411 Length Required The client must but did not send a Content-length field in the client

request HTTP header.

A condition for the request that the client specified in the request
HTTP header is not satisfied.

412 Precondition
Failed

413 Request Entity Too The body of the client request is larger than the server is able to

Large process at this time.

414 Request-URI Too The URI of the request is too long. This is important to prevent certain
Long buffer overflow attacks.

415 Unsupported The server does not understand or accept the MIME content type of
Media Type the request body.

416 Requested range The server cannot send the byte range the client requested.

Not Satisfiable

417 Expectation Failed The server cannot meet the client’s expectation given in an Expect-

request header field.
418 I'm a teapot Attempting to brew coffee with a teapot.

420 Enhance Your Calm The server is rate limiting the request. Nonstandard; used only by
Twitter.

HttpURLConnection constant

HTTP_PAYMENT_RE
QUIRED

HTTP_FORBIDDEN

HTTP_NOT_FOUND

HTTP_BAD_METHOD

HTTP_NOT_ACCEPTABLE

HTTP_PROXY_AUTH

HTTP_CLIENT_TIMEOUT

HTTP_CONFLICT

HTTP_GONE

HTTP_LENGTH_REQUIRED
HTTP_PRECON_FAILED
HTTP_ENTI
TY_TOO_LARGE
HTTP_REQ_TOO_LONG
HTTP_UNSUPPOR
TED_TYPE

N/A

N/A

N/A

174 | Chapter 6: HTTP

Code and message Meaning HttpURLConnection constant

422 Unprocessable The content type of the request body is recognized, and the bodyis N/A
Entity syntactically correct, but nonetheless the server can't process it.

424 Failed Dependency Request failed as a result of the failure of a previous request. N/A

426 Upgrade Required ~ Client is using a too old or insecure a version of the HTTP protocol. ~ N/A

428 Precondition Request must supply an If-Match header. N/A
Required
429Too Many Requests The client is being rate limited and should slow down. N/A

431 Request Header Either the header as a whole is too large, or one particular header ~ N/A
Fields Too Large field is too large.

451 Unavailable For Experimental; the server is prohibited by law from servicing the N/A
Legal Reasons request.
5XX Server error.

500 Internal Server An unexpected condition occurred that the server does not know how HTTP_SERVER_ERROR
Error to handle. HTTP_INTERNAL_ERROR

501 Not Implemented ~ The server does not have a feature that s needed to fulfill this request. HTTP_NOT_IMPLEMENTED
A server that cannot handle PUT requests might send this response
to a client that tried to PUT form data to it.

502 Bad Gateway This code is applicable only to servers that act as proxies or gateways. HTTP_BAD_GATEWAY
It indicates that the proxy received an invalid response from a server
it was connecting to in an effort to fulfill the request.

503 Service The server is temporarily unable to handle the request, perhaps due HTTP_UNAVAILABLE
Unavailable to overloading or maintenance.

504 Gateway Timeout The proxy server did not receive a response from the upstream server HTTP_GATEWAY_TIMEOUT
within a reasonable amount of time, so it can't send the desired
response to the client.

505 HTTP Version Not The server does not support the version of HTTP the clientis using HTTP_VERSION

Supported (e.g., the as-yet-nonexistent HTTP 2.0).

507 Insufficient Server does not have enough space to store the supplied request

Storage entity; typically used for POST or PUT.

511 Network The client needs to authenticate to gain network access (e.g.,ona ~ N/A
Authentication hotel wireless network).

Required

Regardless of version, a response code from 100 to 199 always indicates an informational
response, 200 to 299 always indicates success, 300 to 399 always indicates redirection,
400 to 499 always indicates a client error, and 500 to 599 indicates a server error.

Keep-Alive

HTTP 1.0 opens a new connection for each request. In practice, the time taken to open
and close all the connections in a typical web session can outweigh the time taken to
transmit the data, especially for sessions with many small documents. This is even more

The Protocol | 175

problematic for encrypted HTTPS connections using SSL or TLS, because the hand-
shake to set up a secure socket is substantially more work than setting up a regular
socket.

In HTTP 1.1 and later, the server doesn’t have to close the socket after it sends its re-
sponse. It can leave it open and wait for a new request from the client on the same socket.
Multiple requests and responses can be sent in series over a single TCP connection.
However, the lockstep pattern of a client request followed by a server response remains
the same.

A client indicates that it’s willing to reuse a socket by including a Connection field in the
HTTP request header with the value Keep-Alive:

Connection: Keep-Alive

The URL class transparently supports HT TP Keep-Alive unless explicitly turned oft. That
is, it will reuse a socket if you connect to the same server again before the server has
closed the connection. You can control Javas use of HTTP Keep-Alive with several
system properties:

o Set http.keepAlive to “true or false” to enable/disable HTTP Keep-Alive. (It is
enabled by default.)

o Set http.maxConnections to the number of sockets you're willing to hold open at
one time. The default is 5.

o Set http.keepAlive.remainingData to true to let Java clean up after abandoned
connections (Java 6 or later). It is false by default.

o Setsun.net.http.errorstream.enableBuffering to true to attempt to buffer the
relatively short error streams from 400- and 500-level responses, so the connection
can be freed up for reuse sooner. It is false by default.

o Set sun.net.http.errorstream.bufferSize to the number of bytes to use for
buffering error streams. The default is 4,096 bytes.

o Set sun.net.http.errorstream.timeout to the number of milliseconds before
timing out a read from the error stream. It is 300 milliseconds by default.

The defaults are reasonable, except that you probably do want to set sun.net.http.er
rorstream.enableBuffering to true unless you want to read the error streams from
failed requests.

176 | Chapter 6: HTTP

HTTP 2.0, which is mostly based on the SPDY protocol invented at

. Google, further optimizes HTTP transfers through header compres-

' sion, pipelining requests and responses, and asynchronous connec-
tion multiplexing. However, these optimizations are usually per-
formed in a translation layer that shields application programmers
from the details, so the code you write will still mostly follow the
preceding steps 1-4. Java does not yet support HTTP 2.0; but when
the capability is added, your programs shouldn’t need to change to take
advantage of it, as long as you access HTTP servers via the URL and
URLConnection classes.

aqs
[N
N

HTTP Methods

Communication with an HTTP server follows a request-response pattern: one stateless
request followed by one stateless response. Each HTTP request has two or three parts:

« A start line containing the HTTP method and a path to the resource on which the
method should be executed

o A header of name-value fields that provide meta-information such as authentica-
tion credentials and preferred formats to be used in the request

o A request body containing a representation of a resource (POST and PUT only)

There are four main HT'TP methods, four verbs if you will, that identify the operations
that can be performed:

o GET

o POST

o PUT

o DELETE

If that seems like too few, especially compared to the infinite number of object-oriented
methods you may be accustomed to designing programs around, that’s because HTTP
puts most of the emphasis on the nouns: the resources identified by URIs. The uniform
interface provided by these four methods is sufficient for nearly all practical purposes.

These four methods are not arbitrary. They have specific semantics that applications
should adhere to. The GET method retrieves a representation of a resource. GET is side-
effect free, and can be repeated without concern if it fails. Furthermore, its output is
often cached, though that can be controlled with the right headers, as you'll see shortly.
In a properly architected system, GET requests can be bookmarked and prefetched
without concern. For example, one should not allow a file to be deleted merely by fol-

HTTP Methods | 177

lowing a link because a browser may GET all links on a page before the user asks it to.
By contrast, a well-behaved browser or web spider will not POST to a link without explicit
user action.

The PUT method uploads a representation of a resource to the server at a known URL.
It is not side-effect free, but it is idempotent. That is, it can be repeated without concern
if it fails. Putting the same document in the same place on the same server twice in a
row leaves the server in the same state as only putting it once.

The DELETE method removes a resource from a specified URL. It, too, is not side-effect
free, but is idempotent. If you aren’t sure whether a delete request succeeded—for in-
stance, because the socket disconnected after you sent the request but before you re-
ceived a response—just send the request again. Deleting the same resource twice is not
a mistake.

The POST method is the most general method. It too uploads a representation of a re-
source to a server at a known URL, but it does not specify what the server is to do with
the newly supplied resource. For instance, the server does not necessarily have to make
that resource available at the target URL, but may instead move it to a different URL.
Or the server might use the data to update the state of one or more completely different
resources. POST should be used for unsafe operations that should not be repeated, such
as making a purchase.

Because GET requests include all necessary information in the URL, they can be book-
marked, linked to, spidered, and so forth. POST, PUT, and DELETE requests cannot be.
This is deliberate. GET is intended for noncommital actions, like browsing a static web
page. The other methods, especially POST, are intended for actions that commit to
something. For example, adding an item to a shopping cart should send a GET, because
this action doesn’t commit; the user can still abandon the cart. However, placing the
order should send a POST because that action makes a commitment. This is why browsers
ask you if youre sure when you go back to a page that uses POST (as shown in
Figure 6-1). Reposting data may buy two copies of a book and charge your credit card
twice.

Confirm Form Resubmission

The page that you're looking for used information that you entered.
Returning to that page might cause any action you took to be repeated.
Do you want to continue?

Cancel Continue

Figure 6-1. Repost confirmation

178 | Chapter 6: HTTP

In practice, POST is vastly overused on the Web today. Any safe operation that does not
commit the user to anything should use GET rather than POST. Only operations that
commit the user should use POST.

One sometimes mistaken reason for preferring POST over GET is when forms require
large amounts of input. There’s an outdated misconception that browsers can only work
with query strings of a few hundred bytes. Although this was true in the mid-1990s,
today all major browsers are good up to URL lengths of at least 2,000 characters. If you
have more form data to submit than that, you may indeed need to support POST; but
safe operations should still prefer GET for nonbrowser clients. This is less common than
you might think, though. You usually only exceed those limits if you're uploading data
to the server to create a new resource, rather than merely locating an existing resource
on the server; and in these cases POST or PUT is usually the right answer anyway.

In addition to these four main HTTP methods, a few others are used in special circum-
stances. The most common such method is HEAD, which acts like a GET except it only
returns the header for the resource, not the actual data. This is commonly used to check
the modification date of a file, to see whether a copy stored in the local cache is still
valid.

The other two that Java supports are OPTIONS, which lets the client ask the server what
it can do with a specified resource; and TRACE, which echoes back the client request for
debugging purposes, especially when proxy servers are misbehaving. Different servers
recognize other nonstandard methods including COPY and MOVE, but Java does not send
these.

The URL class described in the previous chapter uses GET to communicate with HTTP
servers. The URLConnection class (coming up in the Chapter 7) can use all four of these
methods.

The Request Body

The GET method retrieves a representation of a resource identified by a URL. The exact
location of the resource you want to GET from a server is specified by the various parts
of the path and query string. How different paths and query strings map to different
resources is determined by the server. The URL class doesn’t really care about that. As
long as it knows the URL, it can download from it.

POST and PUT are more complex. In these cases, the client supplies the representation of
the resource, in addition to the path and the query string. The representation of the
resource is sent in the body of the request, after the header. That is, it sends these four
items in order:

1. A starter line including the method, path and query string, and HTTP version

The RequestBody | 179

2. An HTTP header
3. A blank line (two successive carriage return/linefeed pairs)
4. The body

For example, this POST request sends form data to a server:

POST /cgi-bin/register.pl HTTP 1.0

Date: Sun, 27 Apr 2013 12:32:36

Host: www.cafeaulait.org

Content-type: application/x-www-form-urlencoded
Content-length: 54

username=Elliotte+Harold&email=elharo%40ibiblio.org

In this example, the body contains an application/x-www-form-urlencoded data, but
that’s just one possibility. In general, the body can contain arbitrary bytes. However, the
HTTP header should include two fields that specify the nature of the body:

« A Content-length field that specifies how many bytes are in the body (54 in the
preceding example)

o A Content-type field that specifies the MIME media type of the bytes (application/
x-www-form-urlencoded in the preceeding example).

The application/x-www-form-urlencoded MIME type used in the preceding example is
common because it'’s how web browsers encode most form submissions. Thus it’s used
by a lot of server-side programs that talk to browsers. However, it’s hardly the only
possible type you can send in the body. For example, a camera uploading a picture to a
photo sharing site can send image/jpeg. A text editor might send text/html. It’s all just
bytes in the end. For example, here’s a PUT request that uploads an Atom document:

PUT /blog/software-development/the-power-of-pomodoros/ HTTP/1.1
Host: elharo.com

User-Agent: AtomMaker/1.0

Authorization: Basic ZGFmZnk6c2VjzZXJldA==

Content-Type: application/atom+xml;type=entry

Content-Length: 322

<?2xml version="1.0"?>

<entry xmlns="http://www.w3.0rg/2005/Atom">

<title>The Power of Pomodoros</title>
<id>urn:uuid:101a41a6-722b-4d9b-8afb-ccfb01d77499</1d>
<updated>2013-02-22T19:40:52Z</updated>

<author><name>Elliotte Harold</name></author>

<content>I hadn’t paid much attention to Pomodoro...</content>
</entry>

180 | Chapter 6: HTTP

Cookies

Many websites use small strings of text known as cookies to store persistent client-side
state between connections. Cookies are passed from server to client and back again in
the HTTP headers of requests and responses. Cookies can be used by a server to indicate
session IDs, shopping cart contents, login credentials, user preferences, and more. For
instance, a cookie set by an online bookstore might have the value
ISBN=0802099912&price=$34.95 to specify a book that I've put in my shopping cart.
However, more likely, the value is a meaningless string such as ATVPDKIKXO0DER,
which identifies a particular record in a database of some kind where the real informa-
tion is kept. Usually the cookie values do not contain the data but merely point to it on
the server.

Cookies are limited to nonwhitespace ASCII text, and may not contain commas or
semicolons.

To set a cookie in a browser, the server includes a Set-Cookie header line in the HTTP
header. For example, this HTTP header sets the cookie “cart” to the value “ATVPD-
KIKX0DER”:

HTTP/1.1 200 OK
Content-type: text/html
Set-Cookie: cart=ATVPDKIKXODER

If a browser makes a second request to the same server, it will send the cookie back in
a Cookdie line in the HTTP request header like so:

GET /index.html HTTP/1.1
Host: www.example.org
Cookie: cart=ATVPDKIKXODER
Accept: text/html

As long as the server doesn’t reuse cookies, this enables it to track individual users and
sessions across multiple, otherwise stateless, HT'TP connections.

Servers can set more than one cookie. For example, a request I just made to Amazon
fed my browser five cookies:

Set-Cookie:skin=noskin
Set-Cookie:ubid-main=176-5578236-9590213
Set-Cookie:session-token=Zg6afPNgbaMv2WmYFOv57zCU106Ktr
Set-Cookie:session-1d-time=20827872011
Set-Cookie:session-1d=187-4969589-3049309

In addition to a simple name=value pair, cookies can have several attributes that control
their scope including expiration date, path, domain, port, version, and security options.

For example, by default, a cookie applies to the server it came from. If a cookie is orig-
inally set by www.foo.example.com, the browser will only send the cookie back to
www.foo.example.com. However, a site can also indicate that a cookie applies within an

Cookies | 181

entire subdomain, not just at the original server. For example, this request sets a user
cookie for the entire foo.example.com domain:

Set-Cookie: user=elharo;Domain=.foo.example.com

The browser will echo this cookie back not just to www.foo.example.com, but also to
lothar.foo.example.com, eliza.foo.example.com, enoch.foo.example.com, and any other
host somewhere in the foo.example.com domain. However, a server can only set cookies
for domains it immediately belongs to. www.foo.example.com cannot set a cookie for
www.oreilly.com, example.com, or .com, no matter how it sets the domain.

4

‘ Websites work around this restriction by embedding an image or oth-

,“:‘ . er content hosted on one domain in a page hosted at a second do-

"_o§%' main. The cookies set by the embedded content, not the page itself, are

called third-party cookies. Many users block all third-party cookies, and

some web browsers are starting to block them by default for privacy
reasons.

Cookies are also scoped by path, so theyre returned for some directories on the server,
but not all. The default scope is the original URL and any subdirectories. For instance,
ifa cookie is set for the URL http://www.cafeconleche.org/XOM/, the cookie also applies
in http://www.cafeconleche.org/XOM/apidocs/, but not in http://www.cafeconleche.org/
slides/ or http://www.cafeconleche.org/. However, the default scope can be changed using
aPath attribute in the cookie. For example, this next response sends the browser a cookie
with the name “user” and the value “elharo” that applies only within the server’s /restric-
ted subtree, not on the rest of the site:

Set-Cookie: user=elharo; Path=/restricted

When requesting a document in the subtree /restricted from the same server, the client
echoes that cookie back. However, it does not use the cookie in other directories on the
site.

A cookie can include both a domain and a path. For instance, this cookie applies in
the /restricted path on any servers within the example.com domain:

Set-Cookie: user=elharo;Path=/restricted;Domain=.example.com

The order of the different cookie attributes doesn’t matter, as long as they’re all separated
by semicolons and the cookie’s own name and value come first. However, this isn’t true
when the client is sending the cookie back to the server. In this case, the path must
precede the domain, like so:

Cookie: user=elharo; Path=/restricted;Domain=.fo00.example.com

A cookie can be set to expire at a certain point in time by setting the expires attribute
to a date in the form Wdy, DD-Mon-YYYY HH:MM:SS GMT. Weekday and month are

182 | Chapter 6: HTTP

given as three-letter abbreviations. The rest are numeric, padded with initial zeros if
necessary. In the pattern language used by java.text.SimpleDateFormat, this is E,
dd-MMM-yyyy H:m:s z. For instance, this cookie expires at 3:23 PM. on December 21,
2015:

Set-Cookie: user=elharo; expires=Wed, 21-Dec-2015 15:23:00 GMT

The browser should remove this cookie from its cache after that date has passed.

The Max-Age attribute that sets the cookie to expire after a certain number of seconds
have passed instead of at a specific moment. For instance, this cookie expires one hour
(3,600 seconds) after it’s first set:

Set-Cookie: user="elharo"; Max-Age=3600
The browser should delete this cookie after this amount of time has elapsed.

Because cookies can contain sensitive information such as passwords and session keys,
some cookie transactions should be secure. Most of the time this means using HTTPS
instead of HTTP; but whatever it means, each cookie can have a secure attribute with
no value, like so:

Set-Cookie: key=etrogl7*;Domain=.foo.example.com; secure

Browsers are supposed to refuse to send such cookies over insecure channels.

For additional security against cookie-stealing attacks like XSRE, cookies can set the
HttpOnly attribute. This tells the browser to only return the cookie via HTTP and
HTTPS and specifically not by JavaScript:

Set-Cookie: key=etrogl7*;Domain=.foo.example.com; secure; httponly

That’s how cookies work behind the scenes. Here’s a complete set of cookies sent by
Amazon:

Set-Cookie: skin=noskin; path=/; domain=.amazon.com;

expires=Fri, 03-May-2013 21:46:43 GMT

Set-Cookie: ubid-main=176-5578236-9590213; path=/;

domain=.amazon.com; expires=Tue, 01-Jan-2036 08:00:01 GMT

Set-Cookie: session-token=Zg6afPNgbaMv2WmYFOv57zCU106KtrMMdskemllbz
cY4q6tOPrMywq082PR6AGEFIIhtBABhomNUW2dITwuL fOZUhXILp7Toya+
AvWaYJIxpfY1lj4cidcnIxiuUZTeviWV31p5bcwzRM1Cmn3Q0CezNNgenhzZD8TZUNOL/9Ya;
path=/; domain=.amazon.com; expires=Thu, 28-Apr-2033 21:46:43 GMT
Set-Cookie: session-id-time=20827872011; path=/; domain=.amazon.com;
expires=Tue, 01-Jan-2036 08:00:01 GMT

Set-Cookie: session-1d=187-4969589-3049309; path=/; domain=.amazon.com;
expires=Tue, 01-Jan-2036 08:00:01 GMT

Amazon wants my browser to send these cookie with the request for any page in the
amazon.com domain, for the next 30-33 years. Of course, browsers are free to ignore
all these requests, and users can delete or block cookies at any time.

Cookies | 183

CookieManager

Java 5 includes an abstract java.net.CookieHandler class that defines an API for stor-
ing and retrieving cookies. However, it does not include an implementation of that
abstractclass, soitrequires alot of grunt work. Java 6 fleshes this out by adding a concrete
java.net.CookieManager subclass of CookieHandler that you can use. However, it is
not turned on by default. Before Java will store and return cookies, you need to enable
it:

CookieManager manager = new CookieManager();

CookieHandler.setDefault(manager);
If all you want is to receive cookies from sites and send them back to those sites, youre
done. That’s all there is to it. After installing a CookieManager with those two lines of
code, Java will store any cookies sent by HTTP servers you connect to with the URL class,
and will send the stored cookies back to those same servers in subsequent requests.

However, you may wish to be a bit more careful about whose cookies you accept. You
can do this by specifying a CookiePolicy. Three policies are predefined:

o CookiePolicy.ACCEPT_ALL All cookies allowed

o CookiePolicy.ACCEPT_NONE No cookies allowed

o CookiePolicy.ACCEPT_ORIGINAL_SERVER Only first party cookies allowed
For example, this code fragment tells Java to block third-party cookies but accept first-
party cookies:

CookieManager manager = new CookieManager();
manager.setCookiePolicy(CookiePolicy.ACCEPT_ORIGINAL_SERVER);
CookieHandler.setDefault(manager);

That is, it will only accept cookies for the server that you're talking to, not for any server
on the Internet.

If you want more fine-grained control, for instance to allow cookies from some known
domains but not others, you can implement the CookiePolicy interface yourself and
override the shouldAccept() method:

public boolean shouldAccept(URI uri, HttpCookie cookie)

Example 6-1 shows a simple CookiePolicy that blocks cookies from .gov domains, but
allows others.

Example 6-1. A cookie policy that blocks all .gov cookies but allows others

import java.net.¥*;

public class NoGovernmentCookies implements CookiePolicy {

184 | Chapter 6: HTTP

public boolean shouldAccept(URI uri, HttpCookie cookie) {
if (uri.getAuthority().toLowerCase().endsWith(".gov")
|| cookie.getDomain().tolLowerCase().endsWith(".gov")) {
return false;
}
return true;
}
}

CookieStore

It is sometimes necessary to put and get cookies locally. For instance, when an applica-
tion quits, it can save the cookie store to disk and load those cookies again when it next
starts up. You can retrieve the store in which the CookieManager saves its cookies with
the getCookieStore() method:

CookieStore store = manager.getCookieStore();

The CookieStore class allows you to add, remove, and list cookies so you can control
the cookies that are sent outside the normal flow of HTTP requests and responses:

public void add(URI uri, HttpCookie cookie)
public List<HttpCookie> get(URI uri)

public List<HttpCookie> getCookies()

public List<URI> getURIs()

public boolean remove(URI uri, HttpCookie cookie)
public boolean removeAll()

Each cookie in the store is encapsulated in an HttpCookie object that provides methods
for inspecting the attributes of the cookie summarized in Example 6-2.

Example 6-2. The HTTPCookie class

package java.net;

public class HttpCookie implements Cloneable {
public HttpCookie(String name, String value)

public boolean hasExpired()

public void setComment(String comment)
public String getComment()

public void setCommentURL(String url)
public String getCommentURL()

public void setDiscard(boolean discard)
public boolean getDiscard()

public void setPortlist(String ports)
public String getPortlist()

public void setDomain(String domain)
public String getDomain()

public void setMaxAge(long expiry)
public long getMaxAge()

Cookies | 185

public void setPath(String path)
public String getPath()

public void setSecure(boolean flag)
public boolean getSecure()

public String getName()

public void setValue(String value)
public String getValue()

public int getVersion()

public void setVersion(int v)

public static boolean domainMatches(String domain, String host)
public static List<HttpCookie> parse(String header)

public String toString()
public boolean equals(Object obj)
public int hashCode()
public Object clone()
}

Several of these attributes are not actually used any more. In particular comment, comment
URL, discard, and version are only used by the now obsolete Cookie 2 specification
that never caught on.

186 | Chapter 6: HTTP

CHAPTER 7
URLConnections

URLConnection is an abstract class that represents an active connection to a resource
specified by a URL. The URLConnection class has two different but related purposes.
First, it provides more control over the interaction with a server (especially an HTTP
server) than the URL class. A URLConnection can inspect the header sent by the server
and respond accordingly. It can set the header fields used in the client request. Finally,
a URLConnection can send data back to a web server with POST, PUT, and other HTTP
request methods. We will explore all of these techniques in this chapter.

Second, the URLConnection class is part of Java’s protocol handler mechanism, which
also includes the URLStreamHandler class. The idea behind protocol handlers is simple:
they separate the details of processing a protocol from processing particular data types,
providing user interfaces, and doing the other work that a monolithic web browser
performs. The base java.net.URLConnection class is abstract; to implement a specific
protocol, you write a subclass. These subclasses can beloaded at runtime by applications.
For example, if the browser runs across a URL with a strange scheme, such as com-
press, rather than throwing up its hands and issuing an error message, it can download
a protocol handler for this unknown protocol and use it to communicate with the server.

Only abstract URLConnection classes are present in the java.net package. The concrete
subclasses are hidden inside the sun.net package hierarchy. Many of the methods and
fields as well as the single constructor in the URLConnection class are protected. In other
words, they can only be accessed by instances of the URLConnection class or its sub-
classes. It is rare to instantiate URLConnection objects directly in your source code;
instead, the runtime environment creates these objects as needed, depending on the
protocol in use. The class (which is unknown at compile time) is then instantiated using
the forName() and newInstance() methods of the java.lang.Class class.

187

URLConnection does not have the best-designed API in the Java class
library. One of several problems is that the URLConnection class is too

i, closely tied to the HTTP protocol. For instance, it assumes that each
file transferred is preceded by a MIME header or something very much
like one. However, most classic protocols such as FTP and SMTP don’t
use MIME headers.

aqs
[N
N

Opening URLConnections

A program that uses the URLConnection class directly follows this basic sequence of
steps:
1. Construct a URL object.

2. Invoke the URL object’s openConnection() method to retrieve a URLConnection
object for that URL.

Configure the URLConnection.
Read the header fields.
Get an input stream and read data.

Get an output stream and write data.

Ny W

Close the connection.

You don't always perform all these steps. For instance, if the default setup for a particular
kind of URL is acceptable, you can skip step 3. If you only want the data from the server
and don’t care about any metainformation, or if the protocol doesn’t provide any met-
ainformation, you can skip step 4. If you only want to receive data from the server but
not send data to the server, you'll skip step 6. Depending on the protocol, steps 5 and 6
may be reversed or interlaced.

The single constructor for the URLConnection class is protected:
protected URLConnection(URL url)

Consequently, unless youre subclassing URLConnection to handle a new kind of URL
(i.e., writing a protocol handler), you create one of these objects by invoking the open
Connection() method of the URL class. For example:

try {
URL u = new URL("http://www.overcomingbias.com/");
URLConnection uc = u.openConnection();
// read from the URL...

} catch (MalformedURLException ex) {
System.err.println(ex);

} catch (IOException ex) {

188 | Chapter7: URLConnections

System.err.println(ex);
}

The URLConnection class is declared abstract. However, all but one of its methods are
implemented. You may find it convenient or necessary to override other methods in the
class; but the single method that subclasses must implement is connect (), which makes
a connection to a server and thus depends on the type of service (HTTP, FTP, and so
on). For example, a sun.net.www.protocol.file.FileURLConnection’s connect()
method converts the URL to a filename in the appropriate directory, creates MIME
information for the file, and then opens a buffered FileInputStreanm to the file. The
connect() method of sun.net.www.protocol.http.HttpURLConnection creates a
sun.net.www.http.HttpClient object, which is responsible for connecting to the serv-
er:

public abstract void connect() throws IOException

When a URLConnection is first constructed, it is unconnected; that is, the local and
remote host cannot send and receive data. There is no socket connecting the two hosts.
The connect() method establishes a connection—normally using TCP sockets but
possibly through some other mechanism—between the local and remote host so they
can send and receive data. However, getInputStream(), getContent(), getHeader
Field(), and other methods that require an open connection will call connect() if the
connection isn't yet open. Therefore, you rarely need to call connect() directly.

Reading Data from a Server

The following is the minimal set of steps needed to retrieve data from a URL using a
URLConnection object:

1. Construct a URL object.

2. Invoke the URL object’s openConnection() method to retrieve a URLConnection
object for that URL.

3. Invoke the URLConnection’s getInputStream() method.

4. Read from the input stream using the usual stream API.

The getInputStream() method returns a generic InputStreanm that lets you read and
parse the data that the server sends. Example 7-1 uses the getInputStream() method
to download a web page.

Example 7-1. Download a web page with a URLConnection

import java.io.*;

import java.net.*;

public class SourceViewer2 {

Reading Data froma Server | 189

public static void main (String[] args) {
if (args.length > 0) {
try {
// Open the URLConnection for reading
URL u = new URL(args[0]);
URLConnection uc = u.openConnection();
try (InputStream raw = uc.getInputStream()) { // autoclose
InputStream buffer = new BufferedInputStream(raw);
// chain the InputStream to a Reader
Reader reader = new InputStreamReader(buffer);
int c;
while ((c = reader.read()) != -1) {
System.out.print((char) c);
}
}
} catch (MalformedURLException ex) {
System.err.println(args[0] + " 1s not a parseable URL");
} catch (IOException ex) {
System.err.println(ex);
}
}
}
}

It is no accident that this program is almost the same as Example 5-2. The open
Stream() method of the URL class just returns an InputStream from its own URLCon
nection object. The output is identical as well, so I won't repeat it here.

The differences between URL and URLConnection aren’t apparent with just a simple input
stream as in this example. The biggest differences between the two classes are:

« URLConnection provides access to the HTTP header.

 URLConnection can configure the request parameters sent to the server.

o URLConnection can write data to the server as well as read data from the server.

Reading the Header

HTTP servers provide a substantial amount of information in the header that precedes
each response. For example, here’s a typical HTTP header returned by an Apache web
server:

HTTP/1.1 301 Moved Permanently
Date: Sun, 21 Apr 2013 15:12:46 GMT
Server: Apache

Location: http://www.ibiblio.org/
Content-Length: 296

190 | Chapter7: URLConnections

Connection: close

Content-Type: text/html; charset=1s0-8859-1
There’s alot of information there. In general, an HTTP header may include the content
type of the requested document, the length of the document in bytes, the character set
in which the content is encoded, the date and time, the date the content expires, and the
date the content was last modified. However, the information depends on the server;
some servers send all this information for each request, others send some information,
and a few don’t send anything. The methods of this section allow you to query a URL
Connection to find out what metadata the server has provided.

Aside from HTTP, very few protocols use MIME headers (and technically speaking,
even the HTTP header isn’t actually a MIME header; it just looks a lot like one). When
writing your own subclass of URLConnection, it is often necessary to override these
methods so that they return sensible values. The most important piece of information
you may be lacking is the content type. URLConnection provides some utility methods
that guess the data’s content type based on its filename or the first few bytes of the data
itself.

Retrieving Specific Header Fields

The first six methods request specific, particularly common fields from the header.
These are:

» Content-type

« Content-length

« Content-encoding
o Date

o Last-modified

« Expires

public String getContentType()

The getContentType() method returns the MIME media type of the response body. It
relies on the web server to send a valid content type. It throws no exceptions and returns
nullifthe content type isn't available. text/html will be the most common content type
you’ll encounter when connecting to web servers. Other commonly used types include
text/plain, image/gif, application/xml, and image/jpeg.

If the content type is some form of text, this header may also contain a character set part
identifying the document’s character encoding. For example:

Content-type: text/html; charset=UTF-8
Or:

Reading the Header | 191

Content-Type: application/xml; charset=1s0-2022-jp

In this case, getContentType() returns the full value of the Content-type field, including
the character encoding. You can use this to improve on Example 7-1 by using the en-
coding specified in the HT TP header to decode the document, or ISO-8859-1 (the HT TP
default) if no such encoding is specified. If a nontext type is encountered, an exception
is thrown. Example 7-2 demonstrates.

Example 7-2. Download a web page with the correct character set

import java.ilo.*;
import java.net.*;

public class EncodingAwareSourceViewer {

public static void main (String[] args) {
for (int 1 = 0; 1 < args.length; i++) {
try {
// set default encoding
String encoding = "IS0-8859-1";
URL u = new URL(args[i]);
URLConnection uc = u.openConnection();
String contentType = uc.getContentType();
int encodingStart = contentType.indexOf("charset=");
if (encodingStart != -1) {
encoding = contentType.substring(encodingStart + 8);
}
InputStream in = new BufferedInputStream(uc.getInputStream());
Reader r = new InputStreamReader(in, encoding);
int c;
while ((c = r.read()) !'= -1) {
System.out.print((char) c);
}
r.close();
} catch (MalformedURLException ex) {
System.err.println(args[0] + " is not a parseable URL");
} catch (UnsupportedEncodingException ex) {
System.err.println(
"Server sent an encoding Java does not support:
} catch (IOException ex) {
System.err.println(ex);
}
}
}
}

+ ex.getMessage());

publicint getContentLength()

The getContentLength() method tells you how many bytes there are in the content. If
there isno Content-length header, getContentLength() returns —1. The method throws

192 | Chapter7: URLConnections

no exceptions. It is used when you need to know exactly how many bytes to read or
when you need to create a buffer large enough to hold the data in advance.

As networks get faster and files get bigger, it is actually possible to find resources whose
size exceeds the maximum 1int value (about 2.1 billion bytes). In this case, getConten
tLength() returns -1. Java 7 adds a getContentLengthLong() method that works just
like getContentLength() except that it returns a long instead of an int and thus can
handle much larger resources:

public int getContentLengthLong() // Java 7

Chapter 5 showed how to use the openStream() method of the URL class to download
text files from an HT TP server. Although in theory you should be able to use the same
method to download a binary file, such as a GIF image or a .class byte code file, in
practice this procedure presents a problem. HTTP servers don't always close the con-
nection exactly where the data is finished; therefore, you don’t know when to stop read-
ing. To download a binary file, it is more reliable to use a URLConnection’s getConten
tLength() method to find the file’s length, then read exactly the number of bytes indi-
cated. Example 7-3 is a program that uses this technique to save a binary file on a disk.

Example 7-3. Downloading a binary file from a website and saving it to disk

import java.ilo.*;
import java.net.¥;

public class BinarySaver {

public static void main (String[] args) {
for (int 1 = 0; 1 < args.length; i++) {
try {
URL root = new URL(args[i]);
saveBinaryFile(root);
} catch (MalformedURLException ex) {
System.err.println(args[i] + " i1s not URL I understand.");
} catch (IOException ex) {
System.err.println(ex);
}
}
}

public static void saveBinaryFile(URL u) throws IOException {
URLConnection uc = u.openConnection();
String contentType = uc.getContentType();
int contentLength = uc.getContentLength();
if (contentType.startsWith("text/") || contentLength == -1) {
throw new IOException("This is not a binary file.");

}

try (InputStream raw = uc.getInputStream()) {
InputStream in = new BufferedInputStream(raw);

Reading the Header | 193

byte[] data = new byte[contentLength];

int offset = 0;

while (offset < contentLength) {
int bytesRead = in.read(data, offset, data.length - offset);
if (bytesRead == -1) break;
offset += bytesRead;

}

if (offset != contentLength) {

throw new IOException("Only read " + offset
+ " bytes; Expected " + contentLength + " bytes");

}

String filename = u.getFile();

filename = filename.substring(filename.lastIndexOf('/') + 1);

try (FileOutputStream fout = new FileOutputStream(filename)) {
fout.write(data);
fout.flush();

}

}
}
}

Asusual, themain() methodloops over the URLs entered on the command line, passing
each URL to the saveBinaryFile() method. saveBinaryFile() opens a URLConnec
tion uc to the URL. It puts the type into the variable contentType and the content length
into the variable contentLength. Next, an 1f statement checks whether the content type
is text or the Content-length field is missing or invalid (contentLength == -1). If
either of these is true, an I0Exception is thrown. If these checks are both false, you
have a binary file of known length: that’s what you want.

Now that you have a genuine binary file on your hands, you prepare to read it into an
array of bytes called data. data is initialized to the number of bytes required to hold the
binary object, contentLength. Ideally, you would like to fill data with a single call to
read() but you probably won’t get all the bytes at once, so the read is placed in a loop.
The number of bytes read up to this pointis accumulated into the of fset variable, which
also keeps track of the location in the data array at which to start placing the data
retrieved by the next call to read(). The loop continues until of fset equals or exceeds
contentLength; that is, the array has been filled with the expected number of bytes. You
also break out of the while loop if read() returns -1, indicating an unexpected end of
stream. The of fset variable now contains the total number of bytes read, which should
be equal to the content length. If they are not equal, an error has occurred, so saveBi
naryFile() throws an I0Exception. This is the general procedure for reading binary
files from HTTP connections.

Now you're ready to save the data in a file. saveBinaryFile() gets the filename from
the URL using the getFile() method and strips any path information by calling file
name.substring(theFile.lastIndex0f(/) + 1). A new FileOutputStream fout is

194 | Chapter7: URLConnections

opened into this file and the data is written in one large burst with fout.write(b).
AutoCloseable is used to clean up throughout.

public String getContentEncoding()

The getContentEncoding() method returns a String that tells you how the content is
encoded. If the content is sent unencoded (as is commonly the case with HT TP servers),
this method returns null. It throws no exceptions. The most commonly used content
encoding on the Web is probably x-gzip, which can be straightforwardly decoded using
a java.util.zip.GZipInputStream.

W N
N The content encoding is not the same as the character encoding. The
,‘& . character encoding is determined by the Content-type header or in-
" a3 formation internal to the document, and specifies how characters are

encoded in bytes. Content encoding specifies how the bytes are enco-

ded in other bytes.

publiclong getDate()

The getDate() method returns a long that tells you when the document was sent, in
milliseconds since midnight, Greenwich Mean Time (GMT), January 1, 1970. You can
convert it to a java.util.Date. For example:

Date documentSent = new Date(uc.getDate());

This is the time the document was sent as seen from the server; it may not agree with
the time on your local machine. If the HTTP header does not include a Date field,
getDate() returns 0.

public long getExpiration()

Some documents have server-based expiration dates that indicate when the document
should be deleted from the cache and reloaded from the server. getExpiration() is
very similar to getDate(), differing only in how the return value is interpreted. It returns
a long indicating the number of milliseconds after 12:00 A.M., GMT, January 1, 1970,
at which the document expires. If the HT TP header does not include an Expiration field,
getExpiration() returns 0, which means that the document does not expire and can
remain in the cache indefinitely.

public long getLastModified()

The final date method, getLastModified(), returns the date on which the document
was last modified. Again, the date is given as the number of milliseconds since midnight,
GMT, January 1, 1970. If the HTTP header does not include a Last-modified field (and
many don’t), this method returns 0.

Reading the Header | 195

Example 7-4 reads URLs from the command line and uses these six methods to print
their content type, content length, content encoding, date of last modification, expira-
tion date, and current date.

Example 7-4. Return the header

import java.ilo.*;
import java.net.¥;
import java.util.*;

public class HeaderViewer {

public static void main(String[] args) {
for (int 1 = 0; 1 < args.length; i++) {
try {
URL u = new URL(args[0]);
URLConnection uc = u.openConnection();
System.out.println("Content-type: " + uc.getContentType());
if (uc.getContentEncoding() != null) {
System.out.println("Content-encoding:
+ uc.getContentEncoding());

}
if (uc.getDate() != 0) {
System.out.println("Date: " + new Date(uc.getDate()));
}
if (uc.getLastModified() != 0) {
System.out.println("Last modified:
+ new Date(uc.getlLastModified()));

}
if (uc.getExpiration() !'= 0) {
System.out.println("Expiration date:
+ new Date(uc.getExpiration()));

}

if (uc.getContentLength() !'= -1) {
System.out.println("Content-length: " + uc.getContentLength());

}

} catch (MalformedURLException ex) {
System.err.println(args[i] + " i1s not a URL I understand");

} catch (IOException ex) {
System.err.println(ex);

}

System.out.println();

}
}
}

Here’s the result when used to look at http://www.oreilly.com:

% java HeaderViewer http://www.oreilly.com
Content-type: text/html; charset=utf-8
Date: Fri May 31 18:08:09 EDT 2013

Last modified: Fri May 31 17:04:14 EDT 2013

196 | Chapter7: URLConnections

Expiration date: Fri May 31 22:08:09 EDT 2013
Content-length: 83273

The content type of the file at http://www.oreilly.com is text /html. No content encoding
was used. The file was sent on Friday, May 31, 2013 at 6:08 P.M., Eastern Daylight Time.
It was last modified on the same day at 5:04 PM. and it expires four hours in the future.

There was no Content-length header. Many servers don’t bother to provide a Content-
length header for text files. However, a Content-length header should always be sent for
a binary file. Here’s the HTTP header you get when you request the GIF image http://
oreilly.com/favicon.ico. Now the server sends a Content-length header with a value of
2294:

% java HeaderViewer http://oreilly.com/favicon.ico
Content-type: image/x-icon

Date: Fri May 31 18:16:01 EDT 2013

Last modified: Wed Mar 26 19:14:36 EST 2003
Expiration date: Fri Jun 07 18:16:01 EDT 2013
Content-length: 2294

Retrieving Arbitrary Header Fields

The last six methods requested specific fields from the header, but there’s no theoretical
limit to the number ofheader fields a message can contain. The next five methods inspect
arbitrary fields in a header. Indeed, the methods of the preceding section are just thin
wrappers over the methods discussed here; you can use these methods to get header
fields that Java’s designers did not plan for. If the requested header is found, it is returned.
Otherwise, the method returns null.

public String getHeaderField(String name)

The getHeaderField() method returns the value of a named header field. The name
of the header is not case sensitive and does not include a closing colon. For example, to
get the value of the Content-type and Content-encoding header fields of a URLConnec
tion object uc, you could write:

String contentType = uc.getHeaderField("content-type");
String contentEncoding = uc.getHeaderField("content-encoding"));

To get the Date, Content-length, or Expires headers, you'd do the same:

String data = uc.getHeaderField("date");

String expires = uc.getHeaderField("expires");

String contentLength = uc.getHeaderField("Content-length");
These methods all return String, not int or long as the getContentLength(), getEx
pirationDate(), getLastModified(), and getDate() methods that the preceding sec-
tion did. If you're interested in a numeric value, convert the String to a long or an int.

Reading the Header | 197

Do not assume the value returned by getHeaderField() is valid. You must check to
make sure it is nonnull.

public String getHeaderFieldKey(int n)

This method returns the key (i.e., the field name) of the n™ header field (e.g., Content-
length or Server). The request method is header zero and has a null key. The first
header is one. For example, in order to get the sixth key of the header of the URLConnec
tion uc, you would write:

String header6 = uc.getHeaderFieldKey(6);
public String getHeaderField(int n)

This method returns the value of the n header field. In HTTP, the starter line containing
the request method and path is header field zero and the first actual header is one.
Example 7-5 uses this method in conjunction with getHeaderFieldKey() to print the
entire HTTP header.

Example 7-5. Print the entire HT'TP header

import java.ilo.*;
import java.net.¥;

public class AllHeaders {

public static void main(String[] args) {
for (int 1 = 0; 1 < args.length; i++) {
try {
URL u = new URL(args[i]);
URLConnection uc = u.openConnection();
for (int j = 1; ; j++) {
String header = uc.getHeaderField(j);
if (header == null) break;
System.out.println(uc.getHeaderFieldKey(j) +

+ header);
}
} catch (MalformedURLException ex) {
System.err.println(args[i] + " is not a URL I understand.");
} catch (IOException ex) {
System.err.println(ex);
}
System.out.println();
}
}
}

For example, here’s the output when this program is run against http://www.oreilly.com:

% java AllHeaders http://www.oreilly.com
Date: Sat, 04 May 2013 11:28:26 GMT

Server: Apache

Last-Modified: Sat, 04 May 2013 07:35:04 GMT

198 | Chapter7: URLConnections

Accept-Ranges: bytes

Content-Length: 80366

Content-Type: text/html; charset=utf-8

Cache-Control: max-age=14400

Expires: Sat, 04 May 2013 15:28:26 GMT

Vary: Accept-Encoding

Keep-Alive: timeout=3, max=100

Connection: Keep-Alive
Besides the headers with named getter methods, this server also provides Server, Accept-
Ranges, Cache-control, Vary, Keep-Alive, and Connection headers. Other servers may
have different sets of headers.

public long getHeaderFieldDate(String name, long default)

This method first retrieves the header field specified by the name argument and tries to
convert the string to a long that specifies the milliseconds since midnight, January 1,
1970, GMT. getHeaderFieldDate() canbe used to retrieve a header field that represents
a date (e.g., the Expires, Date, or Last-modified headers). To convert the string to an
integer, getHeaderFieldDate() usesthe parseDate() method of java.util.Date. The
parseDate() method does a decent job of understanding and converting most common
date formats, but it can be stumped—for instance, if you ask for a header field that
contains something other than a date. If parseDate() doesn’t understand the date or if
getHeaderFieldDate() is unable to find the requested header field, getHeaderField
Date() returns the default argument. For example:
Date expires = new Date(uc.getHeaderFieldDate("expires", 0));

long lastModified = uc.getHeaderFieldDate("last-modified", 0);
Date now = new Date(uc.getHeaderFieldDate("date", 0));

You can use the methods of the java.util.Date class to convert the long to a String.
publicint getHeaderFieldInt(String name, int default)

This method retrieves the value of the header field name and tries to convert it to an
int. If it fails, either because it can’t find the requested header field or because that field
does not contain a recognizable integer, getHeaderFieldInt() returns the default
argument. This method is often used to retrieve the Content - length field. For example,
to get the content length from a URLConnection uc, you would write:

int contentlLength = uc.getHeaderFieldInt("content-length", -1);

In this code fragment, getHeaderFieldInt() returns -1 if the Content-length header
isn’t present.

Caches

Web browsers have been caching pages and images for years. If a logo is repeated on
every page of a site, the browser normally loads it from the remote server only once,

Caches | 199

stores it in its cache, and reloads it from the cache whenever it’s needed rather than
requesting it from the remote server every time the logo is encountered. Several HTTP
headers, including Expires and Cache-control, can control caching.

By default, the assumption is that a page accessed with GET over HT'TP can and should
be cached. A page accessed with HT'TPS or POST usually shouldn't be. However, HTTP
headers can adjust this:

» An Expires header (primarily for HTTP 1.0) indicates that it’s OK to cache this
representation until the specified time.

o The Cache-control header (HTTP 1.1) offers fine-grained cache policies:

— max-age=[seconds]: Number of seconds from now before the cached entry
should expire

— s-maxage=[seconds]: Number of seconds from now before the cached entry
should expire from a shared cache. Private caches can store the entry for longer.

— public: OK to cache an authenticated response. Otherwise authenticated re-
sponses are not cached.

— private: Onlysingle user caches should store the response; shared caches should
not.

— no-cache: Not quite what it sounds like. The entry may still be cached, but the
client should reverify the state of the resource with an ETag or Last-modified
header on each access.

— no-store: Do not cache the entry no matter what.

Cache-control overrides Expires if both are present. A server can send multiple
Cache-control headers in a single header as long as they don't conflict.

o The Last-modified header is the date when the resource was last changed. A client
can use a HEAD request to check this and only come back for a full GET if its local
cached copy is older than the Last-modified date.

o The ETag header (HTTP 1.1) is a unique identifier for the resource that changes
when the resource does. A client can use a HEAD request to check this and only come
back for a full GET if its local cached copy has a different ETag.

For example, this HTTP response says that the resource may be cached for 604,800
seconds (HTTP 1.1) or one week later (HTTP 1.0). It also says it was last modified on
April 20 and has an ETag, so if the local cache already has a copy more recent than that,
there’s no need to load the whole document now:

HTTP/1.1 200 OK

Date: Sun, 21 Apr 2013 15:12:46 GMT
Server: Apache

Connection: close

200 | Chapter7: URLConnections

Content-Type: text/html; charset=IS0-8859-1
Cache-control: max-age=604800

Expires: Sun, 28 Apr 2013 15:12:46 GMT
Last-modified: Sat, 20 Apr 2013 09:55:04 GMT
ETag: "67099097696afcf1b67e"

Example 7-6 is a simple Java class for parsing and querying Cache-control headers.

Example 7-6. How to inspect a Cache-control header

import java.util.Date;
import java.util.Locale;

public class CacheControl {

private Date maxAge = null;

private Date sMaxAge = null;

private boolean mustRevalidate = false;
private boolean noCache = false;

private boolean noStore = false;

private boolean proxyRevalidate = false;
private boolean publicCache = false;
private boolean privateCache = false;

public CacheControl(String s) {
if (s == null || !s.contains(":")) {
return; // default policy
}

String value = s.split(":")[1].trim();
String[] components = value.split(",");

Date now = new Date();
for (String component : components) {
try {

component = component.trim().toLowerCase(Locale.US);

if (component.startsWith("max-age=")) {
int secondsInTheFuture = Integer.parselnt(component.substring(8));
maxAge = new Date(now.getTime() + 1000 * secondsInTheFuture);

} else if (component.startsWith("s-maxage=")) {
int secondsInTheFuture = Integer.parselnt(component.substring(8));
sMaxAge = new Date(now.getTime() + 1000 * secondsInTheFuture);

} else if (component.equals('"must-revalidate")) {
mustRevalidate = true;

} else if (component.equals("proxy-revalidate")) {
proxyRevalidate = true;

} else if (component.equals("no-cache")) {
noCache = true;

} else if (component.equals("public")) {
publicCache = true;

} else if (component.equals("private")) {
privateCache = true;

Caches | 201

}
} catch (RuntimeException ex) {
continue;
}
}
}

public Date getMaxAge() {
return maxAge;

3

public Date getSharedMaxAge() {
return sMaxAge;

3

public boolean mustRevalidate() {
return mustRevalidate;

3

public boolean proxyRevalidate() {
return proxyRevalidate;

3

public boolean noStore() {
return noStore;

3

public boolean noCache() {
return noCache;

3

public boolean publicCache() {
return publicCache;

3

public boolean privateCache() {
return privateCache;
}
}

A client can take advantage of this information:

o Ifarepresentation of the resource is available in the local cache, and its expiry date
has not arrived, just use it. Don't even bother talking to the server.

o Ifarepresentation of the resource is available in the local cache, but the expiry date
has arrived, check the server with HEAD to see if the resource has changed before
performing a full GET.

202 | Chapter7: URLConnections

Web Cache for Java

By default, Java does not cache anything. To install a system-wide cache of the URL class
will use, you need the following:

o A concrete subclass of ResponseCache
« A concrete subclass of CacheRequest

o A concrete subclass of CacheResponse

You install your subclass of ResponseCache that works with your subclass of CacheRe
quest and CacheResponse by passing it to the static method ResponseCache.setDe
fault(). This installs your cache object as the system default. A Java virtual machine
can only support a single shared cache.

Once a cache is installed whenever the system tries to load a new URL, it will first look
for it in the cache. If the cache returns the desired content, the URLConnection won't
need to connect to the remote server. However, if the requested data is not in the cache,
the protocol handler will download it. After it’s done so, it will put its response into the
cache so the content is more quickly available the next time that URL is loaded.

Two abstract methods in the ResponseCache class store and retrieve data from the sys-
tem’s single cache:
public abstract CacheResponse get(URI uri, String requestMethod,
Map<String, List<String>> requestHeaders) throws IOException
public abstract CacheRequest put(URI uri, URLConnection connection)
throws IOException
The put() method returns a CacheRequest object that wraps an OutputStream into
which the URL will write cacheable data it reads. CacheRequest is an abstract class with
two methods, as shown in Example 7-7.

Example 7-7. The CacheRequest class

package java.net;

public abstract class CacheRequest {
public abstract OutputStream getBody() throws IOException;
public abstract void abort();

}

The getOutputStream() method in the subclass should return an OutputStream that
points into the cache’s data store for the URI passed to the put() method at the same
time. For instance, if youre storing the data in a file, youd return a FileOutput
Stream connected to that file. The protocol handler will copy the data it reads onto this
OutputStreanm. If a problem arises while copying (e.g., the server unexpectedly closes

Caches | 203

the connection), the protocol handler calls the abort() method. This method should
then remove any data from the cache that has been stored for this request.

Example 7-8 demonstrates a basic CacheRequest subclass that passes back a
ByteArrayOutputStream. Later, the data can be retrieved using the getData() method,
a custom method in this subclass just retrieving the data Java wrote onto the Output
Strean this class supplied. An obvious alternative strategy would be to store results in
files and use a FileOutputStream instead.

Example 7-8. A concrete CacheRequest subclass

import java.io.*;
import java.net.*;

public class SimpleCacheRequest extends CacheRequest {

private ByteArrayOutputStream out = new ByteArrayOutputStream();

public OutputStream getBody() throws IOException {
return out;

}

public void abort() {
out.reset();

}

public byte[] getData() {
if (out.size() == 0) return null;
else return out.toByteArray();
}
}

The get() method in ResponseCache retrieves the data and headers from the cache and
returns them wrapped in a CacheResponse object. It returns null if the desired URI is
not in the cache, in which case the protocol handler loads the URI from the remote
server as normal. Again, this is an abstract class that you have to implement in a subclass.
Example 7-9 summarizes this class. It has two methods: one to return the data of the
request and one to return the headers. When caching the original response, you need
to store both. The headers should be returned in an unmodifiable map with keys that
are the HTTP header field names and values that are lists of values for each named
HTTP header.

Example 7-9. The CacheResponse class

public abstract class CacheResponse {
public abstract Map<String, List<String>> getHeaders() throws IOException;
public abstract InputStream getBody() throws IOException;

}

204 | Chapter7: URLConnections

Example 7-10 shows a simple CacheResponse subclass that is tied to a SimpleCacheRe
questandaCacheControl. In thisexample, shared references pass data from the request
class to the response class. If you were storing responses in files, you'd just need to share
the filenames instead. Along with the SimpleCacheRequest object from which it will
read the data, you must also pass the original URLConnection object into the constructor.
This is used to read the HTTP header so it can be stored for later retrieval. The object
also keeps track of the expiration date and cache-control (if any) provided by the server
for the cached representation of the resource.

Example 7-10. A concrete CacheResponse subclass

import java.ilo.*;
import java.net.¥;
import java.util.*;

public class SimpleCacheResponse extends CacheResponse {

private final Map<String, List<String>> headers;
private final SimpleCacheRequest request;
private final Date expires;

private final CacheControl control;

public SimpleCacheResponse(
SimpleCacheRequest request, URLConnection uc, CacheControl control)
throws IOException {

this.request = request;

this.control = control;

this.expires = new Date(uc.getExpiration());

this.headers = Collections.unmodifiableMap(uc.getHeaderFields());

public InputStream getBody() {
return new ByteArrayInputStream(request.getData());
}

public Map<String, List<String>> getHeaders()
throws IOException {
return headers;

}

public CacheControl getControl() {
return control;

}

public boolean isExpired() {
Date now = new Date();
if (control.getMaxAge().before(now)) return true;
else if (expires != null && control.getMaxAge() != null) {

Caches | 205

return expires.before(now);
} else {
return false;
}
}
}

Finally, you need a simple ResponseCache subclass that stores and retrieves the cached
values as requested while paying attention to the original Cache-control header.
Example 7-11 demonstrates such a simple class that stores a finite number of responses
in memory in one big thread-safe HashMap. This class is suitable for a single-user, private
cache (because it ignores the private and public attributes of Cache-control).

Example 7-11. An in-memory ResponseCache

import java.ilo.*;

import java.net.¥;

import java.util.*;

import java.util.concurrent.*;

public class MemoryCache extends ResponseCache {

private final Map<URI, SimpleCacheResponse> responses
= new ConcurrentHashMap<URI, SimpleCacheResponse>();
private final int maxEntries;

public MemoryCache() {
this(100);
}

public MemoryCache(int maxEntries) {
this.maxEntries = maxEntries;

3

public CacheRequest put(URI uri, URLConnection conn)
throws IOException {

if (responses.size() >= maxEntries) return null;

CacheControl control = n

if (control.noStore()) {
return null;

} else if (!conn.getHeaderField(0).startsWith("GET ")) {
// only cache GET
return null;

3

ew CacheControl(conn.getHeaderField("Cache-Control"));

SimpleCacheRequest request = new SimpleCacheRequest();
SimpleCacheResponse response = new SimpleCacheResponse(request, conn, control);

responses.put(uri, response);

206 | Chapter7: URLConnections

return request;

public CacheResponse get(URI uri, String requestMethod,
Map<String, List<String>> requestHeaders)
throws IOException {

if ("GET".equals(requestMethod)) {
SimpleCacheResponse response = responses.get(uri);
// check expiration date
if (response != null && response.isExpired()) {
responses.remove(response);
response = null;

}

return response;
} else {
return null;

}
3
}

Java only allows one URL cache at a time. To install or change the cache, use the static
ResponseCache.setDefault() and ResponseCache.getDefault() methods:

public static ResponseCache getDefault()

public static void setDefault(ResponseCache responseCache)
These set the single cache used by all programs running within the same Java virtual
machine. For example, this one line of code installs Example 7-11 in an application:

ResponseCache.setDefault(new MemoryCache());

Once a ResponseCache like Example 7-11 is installed, HTTP URLConnections always
use it.

Each retrieved resource stays in the HashMap until it expires. This example waits for an
expired document to be requested again before it deletes it from the cache. A more
sophisticated implementation could use a low-priority thread to scan for expired docu-
ments and remove them to make way for others. Instead of or in addition to this, an
implementation might cache the representations in a queue and remove the oldest
documents or those closest to their expiration date as necessary to make room for new
ones. An even more sophisticated implementation could track how often each docu-
ment in the store was accessed and expunge only the oldest and least-used documents.

I've already mentioned that you could implement a cache on top of the filesystem instead
of on top of the Java Collections API. You could also store the cache in a database, and
you could do a lot of less-common things as well. For instance, you could redirect
requests for certain URLs to a local server rather than a remote server halfway around
the world, in essence using a local web server as the cache. Or a ResponseCache could

Caches | 207

load a fixed set of files at launch time and then only serve those out of memory. This
might be useful for a server that processes many different SOAP requests, all of which
adhere to a few common schemas that can be stored in the cache. The abstract
ResponseCache class is flexible enough to support all of these and other usage patterns.

Configuring the Connection

The URLConnection class has seven protected instance fields that define exactly how the
client makes the request to the server. These are:

protected URL url;

protected boolean dolInput = true;

protected boolean doOutput = false;

protected boolean allowUserInteraction = defaultAllowUserInteraction;
protected boolean useCaches = defaultUseCaches;

protected long ifModifiedSince = 0;

protected boolean connected = false;

For instance, if doOutput is true, you'll be able to write data to the server over this
URLConnection as well as read data from it. If useCaches is false, the connection by-
passes any local caching and downloads the file from the server afresh.

Because these fields are all protected, their values are accessed and modified via obvi-
ously named setter and getter methods:

public URL getURL()

public void setDoInput(boolean doInput)
public boolean getDoInput()

public void setDoOutput(boolean doOutput)
public boolean getDoOutput()

public void setAllowUserInteraction(boolean allowUserInteraction)
public boolean getAllowUserInteraction()
public void setUseCaches(boolean useCaches)

public boolean getUseCaches()
public void setIfModifiedSince(long ifModifiedSince)
public long getIfModifiedSince()

You can modify these fields only before the URLConnection is connected (before you
try to read content or headers from the connection). Most of the methods that set fields
throw an IllegalStateException if they are called while the connection is open. In

general, you can set the properties of a URLConnection object only before the connection
is opened.

There are also some getter and setter methods that define the default behavior for all
instances of URLConnection. These are:

public boolean getDefaultUseCaches()
public void setDefaultUseCaches(boolean defaultUseCaches)
public static void setDefaultAllowUserInteraction(

boolean defaultAllowUserInteraction)

208 | Chapter7: URLConnections

public static boolean getDefaultAllowUserInteraction()

public static FileNameMap getFileNameMap()

public static void setFileNameMap(FileNameMap map)
Unlike the instance methods, these methods can be invoked at any time. The new de-
faults will apply only to URLConnection objects constructed after the new default values
are set.

protected URL url

The url field specifies the URL that this URLConnection connects to. The constructor
sets it when the URLConnection is created and it should not change thereafter. You can
retrieve the value by calling the getURL() method. Example 7-12 opens a URLConnec
tion to http://www.oreilly.com/, gets the URL of that connection, and prints it.

Example 7-12. Print the URL of a URLConnection to http://www.oreilly.com/

import java.io.*;
import java.net.*;

public class URLPrinter {

public static void main(String[] args) {
try {
URL u = new URL("http://www.oreilly.com/");
URLConnection uc = u.openConnection();
System.out.println(uc.getURL());
} catch (IOException ex) {
System.err.println(ex);
}
}
}

Here’s the result, which should be no great surprise. The URL that is printed is the one
used to create the URLConnection.

% java URLPrinter
http://www.oreilly.com/

protected boolean connected

The boolean field connected is true if the connection is open and false if it’s closed.
Because the connection has not yet been opened when a new URLConnection object is
created, its initial value is false. This variable can be accessed only by instances of
java.net.URLConnection and its subclasses.

There are no methods that directly read or change the value of connected. However,
any method that causes the URLConnection to connect should set this variable to true,
including connect(), getInputStream(), and getOutputStream(). Any method that

Configuring the Connection | 209

causes the URLConnection to disconnect should set this field to false. There are no such
methods in java.net.URLConnection, but some of its subclasses, such as
java.net.HttpURLConnection, have disconnect() methods.

If you subclass URLConnection to write a protocol handler, you are responsible for set-
ting connected to true when you are connected and resetting it to false when the
connection closes. Many methods in java.net.URLConnection read this variable to
determine what they can do. If it’s set incorrectly, your program will have severe bugs
that are not easy to diagnose.

protected boolean allowUserInteraction

Some URLConnections need to interact with a user. For example, a web browser may
need to ask for a username and password. However, many applications cannot assume
that a user is present to interact with it. For instance, a search engine robot is probably
running in the background without any user to provide a username and password. As
its name suggests, the allowUserInteraction field specifies whether user interaction
is allowed. It is false by default.

This variable is protected, but the public getAllowUserInteraction() method canread
its value and the public setAllowUserInteraction() method can change it:

public void setAllowUserInteraction(boolean allowUserInteraction)
public boolean getAllowUserInteraction()

The value true indicates that user interaction is allowed; false indicates that there is
no user interaction. The value may be read at any time but may be set only before the
URLConnection is connected. Calling setAllowUserInteraction() when the
URLConnection is connected throws an I1legalStateException.

For example, this code fragment opens a connection that could ask the user for au-
thentication if it’s required:

URL u = new URL("http://www.example.com/passwordProtectedPage.html");
URLConnection uc = u.openConnection();
uc.setAllowUserInteraction(true);

InputStream in = uc.getInputStream();

Java does not include a default GUI for asking the user for a username and password.
If the request is made from an applet, the browser’s usual authentication dialog can be

relied on. In a standalone application, you first need to install an Authenticator, as
discussed in “Accessing Password-Protected Sites” on page 161.

Figure 7-1 shows the dialog box that pops up when you try to access a password-
protected page. If you cancel this dialog, you’ll get a 401 Authorization Required error
and whatever text the server sends to unauthorized users. However, if you refuse to send
authorization at all—which you can do by clicking OK, then answering No when asked

210 | Chapter7: URLConnections

if you want to retry authorization—then getInputStream() will throw a ProtocolEx
ception.

0 Authorization required for W3C-Member
at www.wi.org:

Figure 7-1. An authentication dialog

The static methods getDefaultAllowUserInteraction() and setDefaultAllowUser
Interaction() determine the default behavior for URLConnection objects that have not
set allowUserInteraction explicitly. Because the allowUserInteraction field is
static (i.e.,aclass variable instead of an instance variable), setting it changes the default
behavior for all instances of the URLConnection class that are created after setDefaul
tAllowUserInteraction() is called.

For instance, the following code fragment checks to see whether user interaction is
allowed by default with getDefaultAllowUserInteraction().If user interaction is not
allowed by default, the code uses setDefaultAllowUserInteraction() to make allow-
ing user interaction the default behavior:

if (!URLConnection.getDefaultAllowUserInteraction()) {
URLConnection.setDefaultAllowUserInteraction(true);

}

protected boolean dolnput

A URLConnection can be used for reading from a server, writing to a server, or both.
The protected boolean field doInput is true if the URLConnection can be used for read-
ing, false if it cannot be. The default is true. To access this protected variable, use the
public getDoInput() and setDoInput() methods:

public void setDoInput(boolean doInput)
public boolean getDoInput()

For example:

try {
URL u = new URL("http://www.oreilly.com");
URLConnection uc = u.openConnection();
if (luc.getDoInput()) {
uc.setDoInput(true);

}

Configuring the Connection | 211

// read from the connection...
} catch (IOException ex) {
System.err.println(ex);

}

protected boolean doOutput

Programs can use a URLConnection to send output back to the server. For example, a
program that needs to send data to the server using the POST method could do so by
getting an output stream from a URLConnection. The protected boolean field doOutput
is true if the URLConnection can be used for writing, false if it cannot be; it is false
by default. To access this protected variable, use the getDoOutput() and setDoOut
put() methods:

public void setDoOutput(boolean dooutput)
public boolean getDoOutput()

For example:

try {
URL u = new URL("http://www.oreilly.com");
URLConnection uc = u.openConnection();
if (!uc.getDoOutput()) {
uc.setDoOutput(true);

}

// write to the connection...
} catch (IOException ex) {
System.err.println(ex);

}

When you set doOutput to true for an http URL, the request method is changed from
GET to POST. We'll explore this in more detail later in “Writing Data to a Server” on
page 218.

protected boolean ifModifiedSince

Many clients, especially web browsers and proxies, keep caches of previously retrieved
documents. If the user asks for the same document again, it can be retrieved from the
cache. However, it may have changed on the server since it was last retrieved. The only
way to tell is to ask the server. Clients can include an If-Modified-Since in the client
request HTTP header. This header includes a date and time. If the document has
changed since that time, the server should send it. Otherwise, it should not. Typically,
this time is the last time the client fetched the document. For example, this client request
says the document should be returned only if it has changed since 7:22:07 A.M., October
31, 2014, Greenwich Mean Time:

GET / HTTP/1.1
Host: login.ibiblio.org:56452
Accept: text/html, image/gif, image/jpeg, *; g=.2, */*; g=.2

212 | Chapter7: URLConnections

Connection: close
If-Modified-Since: Fri, 31 Oct 2014 19:22:07 GMT

If the document has changed since that time, the server will send it as usual. Otherwise,
it replies with a 304 Not Modified message, like this:

HTTP/1.0 304 Not Modified

Server: WN/1.15.1

Date: Sun, 02 Nov 2014 16:26:16 GMT
Last-modified: Fri, 29 Oct 2004 23:40:06 GMT

The client then loads the document from its cache. Not all web servers respect the If-
Modified-Since field. Some will send the document whether it's changed or not.

The ifModifiedSince field in the URLConnection class specifies the date (in millisec-
onds since midnight, Greenwich Mean Time, January 1, 1970), which will be placed in
the If-Modified-Since header field. Because 1fModifiedSince is protected, programs
should call the getIfModifiedSince() and setIfModifiedSince() methods to read
or modify it:

public long getIfModifiedSince()
public void setIfModifiedSince(long ifModifiedSince)

Example 7-13 prints the default value of 1fModifiedSince, sets its value to 24 hours
ago, and prints the new value. It then downloads and displays the document—but only
if it’s been modified in the last 24 hours.

Example 7-13. Set ifModifiedSince to 24 hours prior to now

import java.ilo.*;
import java.net.¥;
import java.util.*;

public class Last24 {
public static void main (String[] args) {

// Initialize a Date object with the current date and time
Date today = new Date();
long millisecondsPerDay = 24 * 60 * 60 * 1000;

for (int 1 = 0; 1 < args.length; i++) {
try {

URL u = new URL(args[i]);

URLConnection uc = u.openConnection();

System.out.println("Original if modified since:
+ new Date(uc.getIfModifiedSince()));

uc.setIfModifiedSince((new Date(today.getTime()
- millisecondsPerDay)).getTime());

System.out.println("Will retrieve file if it's modified since "
+ new Date(uc.getIfModifiedSince()));

try (InputStream in = new BufferedInputStream(uc.getInputStream())) {

Configuring the Connection | 213

Reader r = new InputStreamReader(in);

int c;

while ((c = r.read()) != -1) {
System.out.print((char) c);

}
System.out.println();

}
} catch (IOException ex) {
System.err.println(ex);
}
}
}
}

Here’s the result. First, you see the default value: midnight, January 1, 1970, GMT, con-
verted to Pacific Standard Time. Next, you see the new time, which you set to 24 hours
prior to the current time:

% java Last24 http://www.elharo.com
Original if modified since: Wed Dec 31 19:00:00 EST 1969
Will retrieve file if it's modified since Sat Jun 01 11:11:27 EDT 2013

Because this document hasn’t changed in the last 24 hours, it is not reprinted.

protected boolean useCaches

Some clients, notably web browsers, can retrieve a document from a local cache, rather
than retrieving it from a server. Applets may have access to the browser’s cache. Stand-
alone applications can use the java.net.ResponseCache class. The useCaches variable
determines whether a cache will be used if it’s available. The default value is true,
meaning that the cache will be used; false means the cache won't be used.Because
useCaches is protected, programs access it using the getUseCaches() and
setUseCaches() methods:

public void setUseCaches(boolean useCaches)
public boolean getUseCaches()

This code fragment disables caching to ensure that the most recent version of the docu-
ment is retrieved by setting useCaches to false:

try {
URL u = new URL("http://www.sourcebot.com/");
URLConnection uc = u.openConnection();
uc.setUseCaches(false);
// read the document..

} catch (IOException ex) {
System.err.println(ex);

}

Two methods define the initial value of the useCaches field, getDefaultUseCaches()
and setDefaultUseCaches():

214 | Chapter7: URLConnections

public void setDefaultUseCaches(boolean useCaches)
public boolean getDefaultUseCaches()

Although nonstatic, these methods do set and get a static field that determines the default
behavior for all instances of the URLConnection class created after the change. The next
code fragment disables caching by default; after this code runs, URLConnections that
want caching must enable it explicitly using setUseCaches(true):

if (uc.getDefaultUseCaches()) {
uc.setDefaultUseCaches(false);

}

Timeouts

Four methods query and modify the timeout values for connections; that is, how long
the underlying socket will wait for a response from the remote end before throwing a
SocketTimeoutException. These are:

public void setConnectTimeout(int timeout)
public int getConnectTimeout()

public void setReadTimeout(int timeout)
public int getReadTimeout()

The setConnectTimeout()/getConnectTimeout() methods controlhowlong the sock-
et waits for the initial connection. The setReadTimeout()/getReadTimeout() methods
control how long the input stream waits for data to arrive. All four methods measure
timeouts in milliseconds. All four interpret zero as meaning never time out. Both setter
methods throw an I1legalArgumentException if the timeout is negative.

For example, this code fragment requests a 30-second connect timeout and a 45-second
read timeout:

URL u = new URL("http://www.example.org");
URLConnuction uc = u.openConnection();
uc.setConnectTimeout(30000);
uc.setReadTimeout(45000);

Configuring the Client Request HTTP Header

An HTTP client (e.g., a browser) sends the server a request line and a header. For
example, here’s an HT'TP header that Chrome sends:

Accept:text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Charset:150-8859-1,utf-8;9=0.7,%*;q=0.3
Accept-Encoding:gzip,deflate,sdch

Accept-Language:en-US,en;q=0.8

Cache-Control:max-age=0

Connection:keep-alive
Cookie:reddit_first=%7B%22firsttime%22%3A%20%22f1rst%22%7D

DNT:1

Configuring the Client Request HTTP Header | 215

Host:lesswrong.com
User-Agent:Mozilla/5.0 (Macintosh; Intel Mac 0S X 10_8_3) AppleWebKit/537.31
(KHTML, like Gecko) Chrome/26.0.1410.65 Safari/537.31

A web server can use this information to serve different pages to different clients, to get
and set cookies, to authenticate users through passwords, and more. Placing different
fields in the header that the client sends and the server responds with does all of this.

A

‘ It's important to understand that this is not the HTTP header that the

. server sends to the client that is read by the various getHeader

063" Field() and getHeaderFieldKey() methods discussed previously.
This is the HTTP header that the client sends to the server.

aqs
[0

Each URLConnection sets a number of different name-value pairs in the header by de-
fault. Here’s the HTTP header that a connection from the SourceViewer2 program of
Example 7-1 sends:

User-Agent: Java/1.7.0_17

Host: httpbin.org

Accept: text/html, image/gif, image/jpeg, *; g=.2, */*; g=.2

Connection: close
Asyou can see, it’s a little simpler than the one Chrome sends, and it has a different user
agent and accepts different kinds of files. However, you can modify these and add new
fields before connecting.

You add headers to the HTTP header using the setRequestProperty() method before
you open the connection:

public void setRequestProperty(String name, String value)

The setRequestProperty() method adds a field to the header of this URLConnection
with a specified name and value. This method can be used only before the connection
is opened. It throws an I1legalStateException if the connection is already open. The
getRequestProperty() method returns the value of the named field of the HTTP
header used by this URLConnection.

HTTP allows a single named request property to have multiple values. In this case, the
separate values will be separated by commas. For example, the Accept header sent by
Java 7 in the previous code snippet has the four values text/html, image/gif, image/jpeg,
and *.

216 | Chapter7: URLConnections

These methods only really have meaning when the URL being con-
. nected to is an HTTP URL, because only the HTTP protocol makes
' use of headers like this. Though they could possibly have other mean-
ings in other protocols, such as NNTP, this is really just an example of
poor API design. These methods should be part of the more specific
HttpURLConnection class, not the generic URLConnection class.

aqs
[N
N

For instance, web servers and clients store some limited persistent information with
cookies. A cookie is a collection of name-value pairs. The server sends a cookie to a
client using the response HTTP header. From that point forward, whenever the client
requests a URL from that server, it includes a Cookie field in the HTTP request header
that looks like this:

Cookie: username=elharo; password=ACDOX9F2331In6G; session=100678945

This particular Cookie field sends three name-value pairs to the server. There’s no limit
to the number of name-value pairs that can be included in any one cookie. Given a
URLConnection object uc, you could add this cookie to the connection, like this:
uc.setRequestProperty("Cookie",
"username=elharo; password=ACDOX9F2333In6G; session=100678945");
You can set the same property to a new value, but this changes the existing property

value. To add an additional property value, use the addRequestProperty() method
instead:

public void addRequestProperty(String name, String value)

There’s no fixed list of legal headers. Servers usually ignore any headers they don’t rec-
ognize. HTTP does put a few restrictions on the content of the names and values of
header fields. For instance, the names can’t contain whitespace and the values can’t
contain any line breaks. Java enforces the restrictions on fields containing line breaks,
but not much else. If a field contains a line break, setRequestProperty() and addRe
questProperty() throw an IllegalArgumentException. Otherwise, it’s quite easy to
make a URLConnection send malformed headers to the server, so be careful. Some
servers will handle the malformed headers gracefully. Some will ignore the bad header
and return the requested document anyway, but some will reply with an HT TP 400, Bad
Request error.

If, for some reason, you need to inspect the headers in a URLConnection, there’s a stan-
dard getter method:

public String getRequestProperty(String name)
Java also includes a method to get all the request properties for a connection as a Map:

public Map<String,List<String>> getRequestProperties()

Configuring the Client Request HTTP Header | 217

The keys are the header field names. The values are lists of property values. Both names
and values are stored as strings.

Writing Data to a Server

Sometimes you need to write data to a URLConnection, for example, when you submit
a form to a web server using POST or upload a file using PUT. The getOutputStream()
method returns an OutputStream on which you can write data for transmission to a
server:

public OutputStream getOutputStream()

A URLConnection doesnt allow output by default, so you have to call setDoOut
put(true) before asking for an output stream. When you set doOutput to true for an
http URL, the request method is changed from GET to POST. In Chapter 5, you saw how
to send data to server-side programs with GET. However, GET should be limited to safe
operations, such as search requests or page navigation, and not used for unsafe opera-
tions that create or modify a resource, such as posting a comment on a web page or
ordering a pizza. Safe operations can be bookmarked, cached, spidered, prefetched, and
so on. Unsafe operations should not be.

Once you have an OutputStream, buffer it by chaining it to a BufferedOutputStream
or aBufferedwriter. You may also chain it to a DataOutputStream, an OutputStream
Writer, or some other class that’s more convenient to use than a raw OutputStream. For
example:

try {
URL u = new URL("http://www.somehost.com/cgi-bin/acgi");
// open the connection and prepare it to POST
URLConnection uc = u.openConnection();
uc.setDoOutput(true);

OutputStream raw = uc.getOutputStream();
OutputStream buffered = new BufferedOutputStream(raw);
OutputStreamWriter out = new OutputStreamWriter(buffered, "8859_1");
out.write("first=Julie&middle=&last=Harting&work=String+Quartet\r\n");
out.flush();
out.close();

} catch (IOException ex) {
System.err.println(ex);

}
Sending data with POST is almost as easy as with GET. Invoke setDoOutput(true) and
use the URLConnection’s getOutputStream() method to write the query string rather

than attaching it to the URL. Java buffers all the data written onto the output stream
until the stream is closed. This enables it to calculate the value for the Content-length

218 | Chapter7: URLConnections

header. The complete transaction, including client request and server response, looks
something like this:

% telnet www.cafeaulait.org 80

Trying 152.19.134.41...

Connected to www.cafeaulait.org.

Escape character is '~]'.

POST /books/jnp3/postquery.phtml HTTP/1.0
Accept: text/plain

Content-type: application/x-www-form-urlencoded
Content-length: 63

Connection: close

Host: www.cafeaulait.org

username=Elliotte+Rusty+Harold&email=elharo%40ibiblio%2eorg
HTTP/1.1 200 OK

Date: Sat, 04 May 2013 13:27:24 GMT

Server: Apache

Content-Style-Type: text/css

Content-Length: 864

Connection: close

Content-Type: text/html; charset=utf-8

<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>Query Results</title>
</head>
<body>

<h1>Query Results</h1>
<p>You submitted the following name/value pairs:</p>

username = Elliotte Rusty Harold</1li>
email = elharo@ibiblio.org

<hr />
Last Modified July 25, 2012

</body>

</html>

Connection closed by foreign host.
For that matter, as long as you control both the client and the server, you can use any
other sort of data encoding you like. For instance, SOAP and XML-RPC both POST data
to web servers as XML rather than an x-www-form-url-encoded query string.

Example 7-14 is a program called FormPoster that uses the URLConnection class and
the QueryString class from Chapter 5 to post form data. The constructor sets the URL.

Writing DatatoaServer | 219

The query string is built using the add() method. The post() method actually sends
the data to the server by opening a URLConnection to the specified URL, setting its
doOutput field to true, and writing the query string on the output stream. It then returns
the input stream containing the server’s response.

The main() method is a simple test for this program that sends the name “Elliotte Rusty
Harold” and the email address elharo@biblio.org to the resource at http://www.cafeau-
lait.org/books/jnp4/postquery.phtml. This resource is a simple form tester that accepts
any input using either the POST or GET method and returns an HTML page showing the
names and values that were submitted. The data returned is HTML; this example simply
displays the HTML rather than attempting to parse it. It would be easy to extend this
program by adding a user interface that lets you enter the name and email address to
be posted—but because doing that triples the size of the program while showing nothing
more of network programming, it is left as an exercise for the reader. Once you under-
stand this example, it should be easy to write Java programs that communicate with
other server-side scripts.

Example 7-14. Posting a form

import java.ilo.*;
import java.net.¥;

public class FormPoster {

private URL url;
// from Chapter 5, Example 5-8
private QueryString query = new QueryString();

public FormPoster (URL url) {
if (lurl.getProtocol().toLowerCase().startsWith("http")) {
throw new IllegalArgumentException(
"Posting only works for http URLs");
}

this.url = url;

3

public void add(String name, String value) {
query.add(name, value);

3

public URL getURL() {
return this.url;

}
public InputStream post() throws IOException {
// open the connection and prepare it to POST

URLConnection uc = url.openConnection();
uc.setDoOutput(true);

220 | Chapter7: URLConnections

try (OutputStreamWriter out
= new OutputStreamWriter(uc.getOutputStream(), "UTF-8")) {

// The POST line, the Content-type header,
// and the Content-length headers are sent by the URLConnection.
// We just need to send the data
out.write(query.toString());
out.write("\r\n");
out.flush();
}

// Return the response
return uc.getInputStream();

}
public static void main(String[] args) {
URL url;
if (args.length > 0) {
try {

url = new URL(args[0]);

} catch (MalformedURLException ex) {
System.err.println("Usage: java FormPoster url");
return;

}

} else {

try {

url = new URL(
"http://www.cafeaulait.org/books/jnp4/postquery.phtml");

} catch (MalformedURLException ex) { // shouldn't happen
System.err.println(ex);
return;

}

}

FormPoster poster = new FormPoster(url);
poster.add("name", "Elliotte Rusty Harold");
poster.add("email", "elharo@ibiblio.org");

try (InputStream in = poster.post()) {
// Read the response
Reader r = new InputStreamReader(in);
int c;
while((c = r.read()) != -1) {

System.out.print((char) c);

}
System.out.println();

} catch (IOException ex) {
System.err.println(ex);

Writing DatatoaServer | 221

Here’s the response from the server:

% java -classpath .:jnp4e.jar FormPoster
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>

<title>Query Results</title>
</head>
<body>

<h1>Query Results</h1>
<p>You submitted the following name/value pairs:</p>

name = Elliotte Rusty Harold
email = elharo@ibiblio.org

</1i>

<hr />
Last Modified May 10, 2013

</body>

</html>
The main() method tries to read the first command-line argument from args[0]. The
argument is optional; if there is an argument, it is assumed to be a URL that can be
POSTed to. If there are no arguments, main() initializes url with a default URL, http://
www.cafeaulait.org/books/jnp4/postquery.phtml. main() then constructs a FormPost
er object. Two name-value pairs are added to this FormPoster object. Next, the post()
method is invoked and its response read and printed on System.out.

The post() method is the heart of the class. It first opens a connection to the URL stored
in the url field. It sets the doOutput field of this connection to true because this URL
Connection needsto send outputand chains the OutputStreamfor this URL to an ASCII
OutputStreamWriter that sends the data, then flushes and closes the stream. Do not
forget to close the stream! If the stream isn’t closed, no data will be sent. Finally, the
URLConnection’s InputStream is returned.

To summarize, posting data to a form requires these steps:

1. Decide what name-value pairs you’ll send to the server-side program.

2. Write the server-side program that will accept and process the request. If it doesn’t
use any custom data encoding, you can test this program using a regular HTML
form and a web browser.

3. Create a query string in your Java program. The string should look like this:

namel=valuel&name2=value2&name3=value3

222 | Chapter7: URLConnections

Pass each name and value in the query string to URLEncoder.encode() before
adding it to the query string.

Open a URLConnection to the URL of the program that will accept the data.
Set doOutput to true by invoking setDoOutput(true).

Write the query string onto the URLConnection’s OutputStream.

Close the URLConnection’s QutputStream.

® N o

Read the server response from the URLConnection’s InputStreanm.

GET should only be used for safe operations that can be bookmarked and linked to. POST
should be used for unsafe operations that should not be bookmarked or linked to.

The getOutputStream() method is also used for the PUT request method, a means of
storing files on a web server. The data to be stored is written onto the OutputStream
that getOutputStream() returns. However, this can be done only from within the
HttpURLConnection subclass of URLConnection, so discussion of PUT will have to wait
a little while.

Security Considerations for URLConnections

URLConnection objects are subject to all the usual security restrictions about making
network connections, reading or writing files, and so forth. For instance, a URLConnec
tion can be created by an untrusted applet only if the URLConnection is pointing to the
host that the applet came from. However, the details can be a little tricky because dif-
ferent URL schemes and their corresponding connections can have different security
implications. For example, a jar URL that points into the applet’s own jar file should be
fine. However, a file URL that points to a local hard drive should not be.

Before attempting to connect a URL, you may want to know whether the connection
will be allowed. For this purpose, the URLConnection class has a getPermission()
method:

public Permission getPermission() throws IOException

This returns a java.security.Permission object that specifies what permission is
needed to connect to the URL. It returns null if no permission is needed (e.g., there’s
no security manager in place). Subclasses of URLConnection return different subclasses
of java.security.Permission. For instance, if the underlying URL points to
www.gwbush.com, getPermission() returns a java.net.SocketPermission for the
host www.gwbush.com with the connect and resolve actions.

Security Considerations for URLConnections | 223

Guessing MIME Media Types

If this were the best of all possible worlds, every protocol and every server would use
standard MIME types to correctly specify the type of file being transferred. Unfortu-
nately, that’s not the case. Not only do we have to deal with older protocols such as FTP
that predate MIME, but many HTTP servers that should use MIME don’t provide MIME
headers at all or lie and provide headers that are incorrect (usually because the server
has been misconfigured). The URLConnection class provides two static methods to help
programs figure out the MIME type of some data; you can use these if the content type
just isn’t available or if you have reason to believe that the content type you're given isn’t
correct. The first of these is URLConnection.guessContentTypeFromName():

public static String guessContentTypeFromName(String name)

This method tries to guess the content type of an object based upon the extension in
the filename portion of the object’s URL. It returns its best guess about the content type
as a String. This guess is likely to be correct; people follow some fairly regular con-
ventions when thinking up filenames.

The guesses are determined by the content-types.properties file, normally located in the
jre/lib directory. On Unix, Java may also look at the mailcap file to help it guess.

This method is not infallible by any means. For instance, it omits various XML appli-
cations such as RDF (.rdf), XSL (.xsl), and so on that should have the MIME type
application/xml. It also doesn’t provide a MIME type for CSS stylesheets (.css). How-
ever, it's a good start.

The second MIME type guesser method is URLConnection.guessContentTypeFrom
Stream():

public static String guessContentTypeFromStream(InputStream in)

This method tries to guess the content type by looking at the first few bytes of data in
the stream. For this method to work, the InputStream must support marking so that
you can return to the beginning of the stream after the first bytes have been read. Java
inspects the first 16 bytes of the InputStream, although sometimes fewer bytes are
needed to make an identification. These guesses are often not as reliable as the guesses
made by guessContentTypeFromName(). For example, an XML document that begins
with a comment rather than an XML declaration would be mislabeled as an HTML file.
This method should be used only as a last resort.

HttpURLConnection

The java.net.HttpURLConnection class is an abstract subclass of URLConnection; it
provides some additional methods that are helpful when working specifically with http
URLs. In particular, it contains methods to get and set the request method, decide

224 | Chapter7: URLConnections

whether to follow redirects, get the response code and message, and figure out whether
a proxy server is being used. It also includes several dozen mnemonic constants match-
ing the various HTTP response codes. Finally, it overrides the getPermission() method
from the URLConnection superclass, although it doesn’t change the semantics of this
method at all.

Because this class is abstract and its only constructor is protected, you can’t directly
create instances of HttpURLConnection. However, if you construct a URL object using
an http URL and invoke its openConnection() method, the URLConnection object re-
turned will be an instance of HttpURLConnection. Cast that URLConnection to HttpURL
Connection like this:

URL u = new URL("http://lesswrong.com/");

URLConnection uc = u.openConnection();
HttpURLConnection http = (HttpURLConnection) uc;

Or, skipping a step, like this:

URL u = new URL("http://lesswrong.com/");
HttpURLConnection http = (HttpURLConnection) u.openConnection();

The Request Method

When a web client contacts a web server, the first thing it sends is a request line. Typically,
this line begins with GET and is followed by the path of the resource that the client wants
to retrieve and the version of the HTTP protocol that the client understands. For ex-
ample:

GET /catalog/jfcnut/index.html HTTP/1.0

However, web clients can do more than simply GET files from web servers. They can
POST responses to forms. They can PUT a file on a web server or DELETE a file from a
server. And they can ask for just the HEAD of a document. They can ask the web server
for a list of the OPTIONS supported at a given URL. They can even TRACE the request
itself. All of these are accomplished by changing the request method from GET to a
different keyword. For example, here’s how a browser asks for just the header of a docu-
ment using HEAD:

HEAD /catalog/jfcnut/index.html HTTP/1.1

Host: www.oreilly.com

Accept: text/html, image/gif, image/jpeg, *; g=.2, */*; g=.2

Connection: close
By default, HttpURLConnection uses the GET method. However, you can change this
with the setRequestMethod() method:

public void setRequestMethod(String method) throws ProtocolException

The method argument should be one of these seven case-sensitive strings:

HttpURLConnection | 225

o GET

o POST

« HEAD

o PUT

o DELETE
e OPTIONS
o TRACE

If it's some other method, then a java.net.ProtocolException, a subclass of
I0Exception, is thrown. However, it’s generally not enough to simply set the request
method. Depending on what youre trying to do, you may need to adjust the HTTP
header and provide a message body as well. For instance, POSTing a form requires you
to provide a Content-length header. We've already explored the GET and POST methods.
Let’s look at the other five possibilities.

Some web servers support additional, nonstandard request methods.
. For instance, WebDAV requires servers to support PROPFIND, PROP
"_ol%' PATCH, MKCOL, COPY, MOVE, LOCK, and UNLOCK. However, Java doesn’t
support any of these.

HEAD

The HEAD function is possibly the simplest of all the request methods. It behaves much
like GET. However, it tells the server only to return the HTTP header, not to actually
send the file. The most common use of this method is to check whether a file has been
modified since the last time it was cached. Example 7-15 is a simple program that uses
the HEAD request method and prints the last time a file on a server was modified.

Example 7-15. Get the time when a URL was last changed

import java.io.*;
import java.net.¥*;
import java.util.*;

public class LastModified {

public static void main(String[] args) {
for (int 1 = 0; 1 < args.length; i++) {
try {
URL u = new URL(args[i]);
HttpURLConnection http = (HttpURLConnection) u.openConnection();
http.setRequestMethod("HEAD");
System.out.println(u + " was last modified at

226 | Chapter7: URLConnections

+ new Date(http.getLastModified()));

} catch (MalformedURLException ex) {
System.err.println(args[i] + " is not a URL I understand");

} catch (IOException ex) {
System.err.println(ex);

}

System.out.println();

}
}
}

Here’s the output from one run:

$ java LastModified http://www.ibiblio.org/xml/
http://www.ibiblio.org/xml/ was last modified at Tue Apr 06 07:45:29 EDT 2010

It wasn't absolutely necessary to use the HEAD method here. You'd have gotten the same
results with GET. But if you used GET, the entire file at http://www.ibiblio.org/xml/ would
have been sent across the network, whereas all you cared about was one line in the
header. When you can use HEAD, it's much more efficient to do so.

DELETE

The DELETE method removes a file at a specified URL from a web server. Because this
request is an obvious security risk, not all servers will be configured to support it, and
those that are will generally demand some sort of authentication. A typical DELETE
request looks like this:

DELETE /javafaq/2008march.html HTTP/1.1

Host: www.ibiblio.org

Accept: text/html, image/gif, image/jpeg, *; g=.2, */*; g=.2
Connection: close

The server is free to refuse this request or ask for authorization. For example:

HTTP/1.1 405 Method Not Allowed

Date: Sat, 04 May 2013 13:22:12 GMT

Server: Apache

Allow: GET,HEAD,POST,OPTIONS,TRACE
Content-Length: 334

Connection: close

Content-Type: text/html; charset=1s0-8859-1

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.6//EN">

<html><head>

<title>405 Method Not Allowed</title>

</head><body>

<h1>Method Not Allowed</h1>

<p>The requested method DELETE is not allowed for the URL
/javafaq/2008march.html.</p>

<hr>

<address>Apache Server at www.ibiblio.org Port 80</address>

</body></html>

HttpURLConnection | 227

Even if the server accepts this request, its response is implementation dependent. Some
servers may delete the file; others simply move it to a trash directory. Others simply
mark it as not readable. Details are left up to the server vendor.

PUT

Many HTML editors and other programs that want to store files on a web server use
the PUT method. It allows clients to place documents in the abstract hierarchy of the site
without necessarily knowing how the site maps to the actual local filesystem. This con-
trasts with FTP, where the user has to know the actual directory structure as opposed
to the server’s virtual directory structure. Here’s a how an editor might PUT a file on a
web server:

PUT /blog/wp-app.php/service/pomdoros.html HTTP/1.1
Host: www.elharo.com

Authorization: Basic ZGFmZnk6c2VjZXJ1ldA==
Content-Type: application/atom+xml;type=entry
Content-Length: 329

If-Match: "el80ee84f0671b1"

<?xml version="1.0" ?>
<entry xmlns="http://www.w3.0rg/2005/Atom">
<title>The Power of Pomodoros</title>
<id>urn:uuid:1225c695-cfb8-4ebb-aaaa-80da344efaba</id>
<updated>2013-02-23T19:22:11Z</updated>
<author><name>Elliotte Harold</name></author>
<content>Until recently, I hadn't paid much attention to...</content>
</entry>
As with deleting files, some sort of authentication is usually required and the server
must be specially configured to support PUT. The details vary from server to server. Most

web servers do not support PUT out of the box.
OPTIONS

The OPTIONS request method asks what options are supported for a particular URL. If
the request URL is an asterisk (*), the request applies to the server as a whole rather
than to one particular URL on the server. For example:

OPTIONS /xml/ HTTP/1.1

Host: www.ibiblio.org

Accept: text/html, image/gif, image/jpeg, *; q=.2, */*; q=.2
Connection: close

The server responds to an OPTIONS request by sending an HTTP header with a list of

the commands allowed on that URL. For example, when the previous command was
sent, here’s what Apache responded with:

HTTP/1.1 200 OK
Date: Sat, 04 May 2013 13:52:53 GMT
Server: Apache

228 | Chapter7: URLConnections

Allow: GET,HEAD,POST,OPTIONS,TRACE
Content-Style-Type: text/css
Content-Length: 0

Connection: close

Content-Type: text/html; charset=utf-8

The list of legal commands is found in the Allow field. However, in practice these are
just the commands the server understands, not necessarily the ones it will actually per-
form on that URL.

TRACE

The TRACE request method sends the HTTP header that the server received from the
client. The main reason for this information is to see what any proxy servers between
the server and client might be changing. For example, suppose this TRACE request is sent:

TRACE /xml/ HTTP/1.1

Hello: Push me

Host: www.ibiblio.org

Accept: text/html, image/gif, image/jpeg, *; q=.2, */*; q=.2
Connection: close

The server should respond like this:

HTTP/1.1 200 OK

Date: Sat, 04 May 2013 14:41:40 GMT
Server: Apache

Connection: close

Content-Type: message/http

TRACE /xml/ HTTP/1.1

Hello: Push me

Host: www.ibiblio.org

Accept: text/html, image/gif, image/jpeg, *; q=.2, */*; q=.2

Connection: close
The first five lines are the server’s normal response HTTP header. The lines from
TRACE /xml/ HTTP/1.1 on are the echo of the original client request. In this case, the
echo is faithful. However, if there were a proxy server between the client and server, it
might not be.

Disconnecting from the Server

HTTP 1.1 supports persistent connections that allow multiple requests and responses
to be sent over a single TCP socket. However, when Keep-Alive is used, the server won't
immediately close a connection simply because it has sent the last byte of data to the
client. The client may;, after all, send another request. Servers will time out and close the
connection in as little as 5 seconds of inactivity. However, it’s still preferred for the client
to close the connection as soon as it knows it’s done.

HttpURLConnection | 229

The HttpURLConnection class transparently supports HT TP Keep-Alive unless you ex-
plicitly turn it off. That is, it will reuse sockets if you connect to the same server again
before the server has closed the connection. Once you know you're done talking to a
particular host, the disconnect() method enables a client to break the connection:

public abstract void disconnect()

If any streams are still open on this connection, disconnect() closes them. However,
the reverse is not true. Closing a stream on a persistent connection does not close the
socket and disconnect.

Handling Server Responses

The first line of an HTTP server’s response includes a numeric code and a message
indicating what sort of response is made. For instance, the most common response is
200 OK, indicating that the requested document was found. For example:

HTTP/1.1 200 OK

Cache-Control:max-age=3, must-revalidate
Connection:Keep-Alive

Content-Type:text/html; charset=UTF-8
Date:Sat, 04 May 2013 14:01:16 GMT
Keep-Alive:timeout=5, max=200

Server:Apache

Transfer-Encoding:chunked
Vary:Accept-Encoding,Cookie
WP-Super-Cache:Served supercache file from PHP

<HTML>
<HEAD>
rest of document follows...

Another response that youre undoubtedly all too familiar with is 404 Not Found, in-
dicating that the URL you requested no longer points to a document. For example:

HTTP/1.1 404 Not Found

Date: Sat, 04 May 2013 14:05:43 GMT

Server: Apache

Last-Modified: Sat, 12 Jan 2013 00:19:15 GMT
ETag: "375933-2b9%e-4d30c5cb0c6cO;4d02eaff53b80"
Accept-Ranges: bytes

Content-Length: 11166

Connection: close

Content-Type: text/html; charset=IS0-8859-1

<html>

<head>

<title>Lost ... and lost</title>

<meta http-equiv="Content-Type" content="text/html; charset=i1s0-8859-1">
</head>

230 | Chapter7: URLConnections

<body bgcolor="#FFFFFF">
<h1>404 FILE NOT FOUND</h1>
Rest of error message follows...

There are many other, less common responses. For instance, code 301 indicates that the
resource has permanently moved to a new location and the browser should redirect
itself to the new location and update any bookmarks that point to the old location. For
example:

HTTP/1.1 301 Moved Permanently

Connection: Keep-Alive

Content-Length: 299

Content-Type: text/html; charset=1s0-8859-1
Date: Sat, 04 May 2013 14:20:58 GMT
Keep-Alive: timeout=5, max=200

Location: http://www.cafeaulait.org/
Server: Apache

Often all you need from the response message is the numeric response code. HttpURL
Connection also has a getResponseCode() method to return this as an int:

public int getResponseCode() throws IOException

The text string that follows the response code is called the response message and is
returned by the aptly named getResponseMessage() method:

public String getResponseMessage() throws IOException

HTTP 1.0 defined 16 response codes. HTTP 1.1 expanded this to 40 different codes.
Although some numbers, notably 404, have become slang almost synonymous with
their semantic meaning, most of them are less familiar. The HttpURLConnection class
includes 36 named constants such as HttpURLConnection.OK and HttpURLConnec
tion.NOT_FOUND representing the most common response codes. These are summar-
ized in Table 6-1. Example 7-16 is a revised source viewer program that now includes
the response message.

Example 7-16. A SourceViewer that includes the response code and message

import java.io.*;
import java.net.¥;

public class SourceViewer3 {

public static void main (String[] args) {
for (int 1 = 0; 1 < args.length; i++) {
try {

// Open the URLConnection for reading
URL u = new URL(args[i]);
HttpURLConnection uc = (HttpURLConnection) u.openConnection();
int code = uc.getResponseCode();
String response = uc.getResponseMessage();

System.out.println("HTTP/1.x " + code + " " + response);

HttpURLConnection | 231

for (int j = 1; ; j++) {
String header = uc.getHeaderField(j);
String key = uc.getHeaderFieldKey(j);
if (header == null || key == null) break;
System.out.println(uc.getHeaderFieldKey(j) +
}
System.out.println();

+ header);

try (InputStream in = new BufferedInputStream(uc.getInputStream())) {
// chain the InputStream to a Reader
Reader r = new InputStreamReader(in);
int c;
while ((c = r.read()) != -1) {
System.out.print((char) c);
}

}

} catch (MalformedURLException ex) {
System.err.println(args[0] + " 1s not a parseable URL");

} catch (IOException ex) {
System.err.println(ex);

}

}
}
}

The only thing this program doesn’t read that the server sends is the version of HTTP
the server is using. There’s currently no method to specifically return that. In this ex-
ample, you just fake it as “HTTP/1.x,” like this:

% java SourceViewer3 http://www.oreilly.com
HTTP/1.x 200 OK

Date: Sat, 04 May 2013 11:59:52 GMT

Server: Apache

Last-Modified: Sat, 04 May 2013 11:41:06 GMT
Accept-Ranges: bytes

Content-Length: 80165

Content-Type: text/html; charset=utf-8
Cache-Control: max-age=14400

Expires: Sat, 04 May 2013 15:59:52 GMT
Vary: Accept-Encoding

Keep-Alive: timeout=3, max=100

Connection: Keep-Alive

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0rg/TR/html4/loose.dtd">
<html>

However, uc.getHeaderField(0) does return the entire first HTTP request line, ver-
sion included:

HTTP/1.1 200 OK

232 | Chapter7: URLConnections

Error conditions

On occasion, the server encounters an error but returns useful information in the mes-
sage body nonetheless. For example, when a client requests a nonexistent page from the
www.ibiblio.org website, rather than simply returning a 404 error code, the server sends
the search page shown in Figure 7-2 to help the user figure out where the missing page
might have gone.

© 0O /Erage not found - ibiblio x __\ 3
=) o R |
Gdz| O By dy

€« C f [J www.ibiblio.org/gonewalkabout

ibiblio
BROWSE SHARE SOFTWARE PROJECTS DONATE ABOUT HELP

Sorry, the page you requested is missing or no langer on ibiblio.
Welcome to ibiblio!

Try searching... | Search | Home to one of the largest free
information databases online,
ibiblio.org has something for

1337/Max0r J00 1001, 71-147 pdg3 dON'7 eXI571y0U SUXOrZ. everyone. Visitors can browse through

Afrikaans Die webblad is nie beskikbaar nie. O oy eatalou nd

B confributors can host and share their

American South Ah cain'tfind th' page yer lookin' fer.

unique collections with millions

Amiga User Software Failure. Guru Meditation #22000000.48454C50 worldwide.

Arabic Unwan Al URL Aladiina Tabhatuuna Anhu Ghayru mawjuud.

Armenian Aittegheh vor uzumek tesnek chi teharvaom. Get started: BROWSE | SHARE
Armenian Tents e] mer mot el chika, yerevi chi el yekhel!

Assamese (Indian) Kyama kariba. Apuni bichara tathyakhini vartaman majoot nai.

ZXigb24gaWJpYmxpbySvemoab3loaGFziGIZWagbWe2ZWQuC ==

Asturiano Lafueya nonta. What's new? terasaur
Australian Strewth mate yer bloody page has shot through ibiblio has a new project, ferasaur, for
Aymara Pagina haniw utjiti! distributing huge files using BitTorrent.
Bajan ‘Wuhloss, man, de page yuh lookin for ent here!! For those who know BitTorrent, it's not
Bangla Ohho! page ta to ekhon ar shekhane nal. Just & tracker. terasaur.org has over 2
— VGhIHBhZ2UgeWa1 IGFyZSBsb29raWsnIGZvoiBpoyBubyBsb25n terabytes of files seeded from ibiblio's

SeIvers.

Basque-Euskara Aizu! Ibiblio.org-en bilatzen duzun web-orririk ez dago.

Figure 7-2. IBiblio’s 404 page
The getErrorStream() method returns an InputStream containing this page or null
if no error was encountered or no data returned:

public InputStream getErrorStream()

Generally, you'll invoke getErrorStream() inside a catch block after getInput
Stream() has failed. Example 7-17 demonstrates with a program that reads form the
input stream if possible. However, if that fails for any reason, it then reads from the error
stream instead.

Example 7-17. Download a web page with a URLConnection

import java.io.*;
import java.net.*;

public class SourceViewer4 {

HttpURLConnection | 233

public static void main (String[] args) {
try {
URL u = new URL(args[0]);
HttpURLConnection uc = (HttpURLConnection) u.openConnection();
try (InputStream raw = uc.getInputStream()) {
printFromStream(raw);
} catch (IOException ex) {
printFromStream(uc.getErrorStream());
}
} catch (MalformedURLException ex) {
System.err.println(args[0] + " is not a parseable URL");
} catch (IOException ex) {
System.err.println(ex);
}
}

private static void printFromStream(InputStream raw) throws IOException {
try (InputStream buffer = new BufferedInputStream(raw)) {
Reader reader = new InputStreamReader(buffer);
int c;
while ((c = reader.read()) !'= -1) {
System.out.print((char) c);
}
}
}
}

Redirects

The 300-level response codes all indicate some sort of redirect; that is, the requested
resource is no longer available at the expected location but it may be found at some
other location. When encountering such a response, most browsers automatically load
the document from its new location. However, this can be a security risk, because it has
the potential to move the user from a trusted site to an untrusted one, perhaps without
the user even noticing.

By default, an HttpURLConnection follows redirects. However, the HttpURLConnec
tion class has two static methods that let you decide whether to follow redirects:
public static boolean getFollowRedirects()
public static void setFollowRedirects(boolean follow)
The getFollowRedirects() method returns true if redirects are being followed, false
if they aren’t. With an argument of true, the setFollowRedirects() method makes
HttpURLConnection objects follow redirects. With an argument of false, it prevents
them from following redirects. Because these are static methods, they change the be-
havior of all HttpURLConnection objects constructed after the method is invoked. The

setFollowRedirects() method may throw a SecurityException if the security man-
ager disallows the change. Applets especially are not allowed to change this value.

234 | Chapter7: URLConnections

Java has two methods to configure redirection on an instance-by-instance basis. These
are:

public boolean getInstanceFollowRedirects()
public void setInstanceFollowRedirects(boolean followRedirects)

If setInstanceFollowRedirects() is notinvoked on a given HttpURLConnection, that
HttpURLConnection simply follows the default behavior as set by the class method
HttpURLConnection.setFollowRedirects().

Proxies

Many users behind firewalls or using AOL or other high-volume ISPs access the Web
through proxy servers. The usingProxy() method tells you whether the particular
HttpURLConnection is going through a proxy server:

public abstract boolean usingProxy()

It returns true if a proxy is being used, false if not. In some contexts, the use of a proxy
server may have security implications.

Streaming Mode

Every request sent to an HTTP server has an HTTP header. One field in this header is
the Content-length (i.e., the number of bytes in the body of the request). The header
comes before the body. However, to write the header you need to know the length of
the body, which you may not have yet. Normally, the way Java solves this catch-22 is by
caching everything you write onto the OutputStreanm retrieved from the HttpURLCon
nection until the stream is closed. At that point, it knows how many bytes are in the
body so it has enough information to write the Content-length header.

This scheme is fine for small requests sent in response to typical web forms. However,
it's burdensome for responses to very long forms or some SOAP messages. It's very
wasteful and slow for medium or large documents sent with HTTP PUT. It's much more
efficient if Java doesn’t have to wait for the last byte of data to be written before sending
the first byte of data over the network. Java offers two solutions to this problem. If you
know the size of your data—for instance, youre uploading a file of known size using
HTTP PUT—you can tell the Ht tpURLConnection object the size of that data. If you don’t
know the size of the data in advance, you can use chunked transfer encoding instead.
In chunked transfer encoding, the body of the request is sent in multiple pieces, each
with its own separate content length. To turn on chunked transfer encoding, just pass
the size of the chunks you want to the setChunkedStreamingMode () method before you
connect the URL:

public void setChunkedStreamingMode(int chunkLength)

HttpURLConnection | 235

Java will then use a slightly different form of HTTP than the examples in this book.
However, to the Java programmer, the difference is irrelevant. As long as youre using
the URLConnection class instead of raw sockets and as long as the server supports
chunked transfer encoding, it should all just work without any further changes to your
code. However, chunked transfer encoding does get in the way of authentication and
redirection. Ifyou're trying to send chunked files to aredirected URL or one that requires
password authentication, an HttpRetryException will be thrown. You’ll then need to
retry the request at the new URL or at the old URL with the appropriate credentials;
and this all needs to be done manually without the full support of the HT'TP protocol
handler you normally have. Therefore, don’t use chunked transfer encoding unless you
really need it. As with most performance advice, this means you shouldn’t implement
this optimization until measurements prove the nonstreaming default is a bottleneck.

If you do happen to know the size of the request data in advance, you can optimize the
connection by providing this information to the HttpURLConnection object. If you do
this, Java can start streaming the data over the network immediately. Otherwise, it has
to cache everything you write in order to determine the content length, and only send
it over the network after you've closed the stream. If you know exactly how big your
data is, pass that number to the setFixedLengthStreamingMode() method:

public void setFixedLengthStreamingMode(int contentLength)

public void setFixedLengthStreamingMode(long contentLength) // Java 7
Because this number can actually be larger than the maximum size of an int, in Java 7
and later you can use a long instead.

Java will use this number in the Content-length HT'TP header field. However, if you
then try to write more or less than the number of bytes given here, Java will throw an
I0Exception. Of course, that happens later, when youre writing data, not when you
first call this method. The setFixedLengthStreamingMode() method itself will throw
an IllegalArgumentException if you pass in a negative number, or an IllegalSta
teException if the connection is connected or has already been set to chunked transfer
encoding. (You can’'t use both chunked transfer encoding and fixed-length streaming
mode on the same request.)”

Fixed-length streaming mode is transparent on the server side. Servers neither know
nor care how the Content-length was set, as long as it’s correct. However, like chunked
transfer encoding, streaming mode does interfere with authentication and redirection.
If either of these is required for a given URL, an HttpRetryException will be thrown;
you have to manually retry. Therefore, don't use this mode unless you really need it.

236 | Chapter7: URLConnections

CHAPTER 8
Sockets for Clients

Data is transmitted across the Internet in packets of finite size called datagrams. Each
datagram contains a header and a payload. The header contains the address and port to
which the packet is going, the address and port from which the packet came, a checksum
to detect data corruption, and various other housekeeping information used to ensure
reliable transmission. The payload contains the data itself. However, because datagrams
have a finite length, it’s often necessary to split the data across multiple packets and
reassemble it at the destination. It’s also possible that one or more packets may be lost
or corrupted in transit and need to be retransmitted or that packets arrive out of order
and need to be reordered. Keeping track of this—splitting the data into packets, gen-
erating headers, parsing the headers of incoming packets, keeping track of what packets
have and haven't been received, and so on—is a lot of work and requires a lot of intricate
code.

Fortunately, you don't have to do the work yourself. Sockets allow the programmer to
treat a network connection as just another stream onto which bytes can be written and
from which bytes can be read. Sockets shield the programmer from low-level details of
the network, such as error detection, packet sizes, packet splitting, packet retransmis-
sion, network addresses, and more.

Using Sockets

A socket is a connection between two hosts. It can perform seven basic operations:

« Connect to a remote machine
 Send data

o Receive data

o Close a connection

« Bind to a port

237

o Listen for incoming data

o Accept connections from remote machines on the bound port

Java’s Socket class, which is used by both clients and servers, has methods that corre-
spond to the first four of these operations. The last three operations are needed only by
servers, which wait for clients to connect to them. They are implemented by the
ServerSocket class, which is discussed in the next chapter. Java programs normally use
client sockets in the following fashion:

o The program creates a new socket with a constructor.

o The socket attempts to connect to the remote host.

Once the connection is established, the local and remote hosts get input and output
streams from the socket and use those streams to send data to each other. This con-
nection is full-duplex. Both hosts can send and receive data simultaneously. What the
data means depends on the protocol; different commands are sent to an FTP server than
to an HTTP server. There will normally be some agreed-upon handshaking followed
by the transmission of data from one to the other.

When the transmission of data is complete, one or both sides close the connection. Some
protocols, such as HTTP 1.0, require the connection to be closed after each request is
serviced. Others, such as FTP and HTTP 1.1, allow multiple requests to be processed
in a single connection.

Investigating Protocols with Telnet

In this chapter, you’ll see clients that use sockets to communicate with a number of well-
known Internet services such as time, dict, and more. The sockets themselves are simple
enough; however, the protocols to communicate with different servers make life com-
plex.

To get a feel for how a protocol operates, you can use Telnet to connect to a server, type
different commands to it, and watch its responses. By default, Telnet attempts to connect
to port 23. To connect to servers on different ports, specify the port you want to connect
to like this:

$ telnet localhost 25

This requests a connection to port 25, the SMTP port, on the local machine; SMTP is
the protocol used to transfer email between servers or between a mail client and a server.
If you know the commands to interact with an SMTP server, you can send email without
going through a mail program. This trick can be used to forge email. For example, some
years ago, the summer students at the National Solar Observatory in Sunspot, New
Mexico, made it appear that the party one of the scientists was throwing after the annual
volleyball match between the staff and the students was in fact a victory party for the

238 | Chapter8: Sockets for Clients

students. (Of course, the author of this book had absolutely nothing to do with such
despicable behavior. ;-)) The interaction with the SMTP server went something like
this; input the user types is shown in bold (the names have been changed to protect the

gullible):

flare% telnet localhost 25

Trying 127.0.0.1 ...

Connected to localhost.sunspot.noao.edu.

Escape character is '~]'.

220 flare.sunspot.noao.edu Sendmail 4.1/SMI-4.1 ready at
Fri, 5 Jul 93 13:13:01 MDT

HELO sunspot.noao.edu

250 flare.sunspot.noao.edu Hello localhost [127.0.0.1], pleased to meet you
MAIL FROM: bart

250 bart... Sender ok

RCPT TO: local@sunspot.noao.edu

250 local@sunspot.noao.edu... Recipient ok
DATA
354 Enter mail, end with "." on a line by itself

In a pitiful attempt to reingratiate myself with the students
after their inevitable defeat of the staff on the volleyball
court at 4:00 P.M., July 24, I will be throwing a victory
party for the students at my house that evening at 7:00.
Everyone is invited.

Beer and Ben-Gay will be provided so the staff may drown
their sorrows and assuage their aching muscles after their
public humiliation.

Sincerely,
Bart

250 Mail accepted

QUIT

221 flare.sunspot.noao.edu delivering mail
Connection closed by foreign host.

Several members of the staff asked Bart why he, a staff member, was throwing a victory

party for the students. The moral of this story is that you should never trust email,
especially patently ridiculous email like this, without independent verification.

In the 20 years since this happened, most SMTP servers have added alittle more security
than shown here. They tend to require usernames and passwords, and only accept con-
nections from clients in the local networks and other trusted mail servers. However, it’s
still the case that you can use Telnet to simulate a client, see how the client and the server
interact, and thus learn what your Java program needs to do. Although this session
doesn't demonstrate all the features of the SMTP protocol, its sufficient to enable you
to deduce how a simple email client talks to a server.

Using Sockets | 239

Reading from Servers with Sockets

Let’s begin with a simple example. You're going to connect to the daytime server at the
National Institute for Standards and Technology (NIST) and ask it for the current time.
This protocol is defined in RFC 867. Reading that, you see that the daytime server listens
on port 13, and that the server sends the time in a human-readable format and closes
the connection. You can test the daytime server with Telnet like this:

$ telnet time.nist.gov 13
Trying 129.6.15.28...
Connected to time.nist.gov.
Escape character is '~]'.

56375 13-03-24 13:37:50 50 0 0 888.8 UTC(NIST) *
Connection closed by foreign host.

The line “56375 13-03-24 13:37:50 50 0 0 888.8 UTC(NIST)” is sent by the daytime
server. When you read the Socket’s InputStreanm, this is what you will get. The other
lines are produced either by the Unix shell or by the Telnet program.

RFC 867 does not specify any particular format for the output other than that it be
human readable. In this case, you can see this connection was made on March 24, 2013,
at 1:37: 50 PM., Greenwich Meantime. More specifically, the format is defined as JJJJJ
YY-MM-DD HH:MM:SS TT L H msADV UTC(NIST) OTM where:

o JJJJ]is the “Modified Julian Date” (i.e., it is the number of whole days since midnight

on November 17, 1858).

YY-MM-DD is the last two digits of the year, the month, and the current day of
month.

HH:MM:SS is the time in hours, minutes, and seconds in Coordinated Universal
Time (UTC, essentially Greenwich Mean Time).

TT indicates whether the United States is currently observing on Standard Time or
Daylight Savings Time: 00 means standard time; 50 means daylight savings time.
Other values count down the number of days until the switchover.

Lisaone-digit code that indicates whether a leap second will be added or subtracted
at midnight on the last day of the current month: 0 for no leap second, 1 to add a
leap second, and 2 to subtract a leap second.

H represents the health of the server: 0 means healthy, 1 means up to 5 seconds off,
2 means more than 5 seconds off, 3 means an unknown amount of inaccuracy, and
4 is maintenance mode.

msADYV is a number of milliseconds that NIST adds to the time it sends to roughly
compensate for network delays. In the preceding code, you can see that it added
888.8 milliseconds to this result, because that's how long it estimates it’s going to
take for the response to return.

240

| Chapter 8: Sockets for Clients

https://tools.ietf.org/html/rfc867
http://bit.ly/nist-format

o The string UTC(NIST) is a constant, and the OTM is almost a constant (an asterisk
unless something really weird has happened).

These details are all NIST specific. They are not part of the daytime standard. Although
they do offer a lot of data, if you have a real programmatic need to sync with a network
time server, you're better off using the NTP protocol defined in RFC 5905 instead.

I'm not sure how long this example is going to work as shown here.
These servers are overloaded, and I did have intermittent problems
%' connecting while writing this chapter. In early 2013, NIST an-
nounced, “Users of the NIST DAYTIME protocol on tcp port 13 are
also strongly encouraged to upgrade to the network time protocol,
which provides greater accuracy and requires less network band-
width. The NIST time client (nistime-32bit.exe) supports both proto-
cols. We expect to replace the tcp version of this protocol with a udp-
based version near the end of 2013.” I'll show you how to access this
service over UDP in Chapter 11.

Now let’s see how to retrieve this same data programmatically using sockets. First, open
a socket to time.nist.gov on port 13:

Socket socket = new Socket("time.nist.gov", 13);

This doesn’t just create the object. It actually makes the connection across the network.
If the connection times out or fails because the server isn't listening on port 13, then the
constructor throws an I0Exception, so you'll usually wrap this in a try block. In Java
7, Socket implements Autocloseable so you can use try-with-resources:

try (Socket socket = new Socket("time.nist.gov", 13)) {
// read from the socket...
} catch (IOException ex) {
System.err.println("Could not connect to time.nist.gov");

}

In Java 6 and earlier, you’ll want to explicitly close the socket in a finally block to
release resources the socket holds:

Socket socket = null;
try {
socket = new Socket(hostname, 13);
// read from the socket..
} catch (IOException ex) {
System.err.println(ex);
} finally {
if (socket !'= null) {
try {
socket.close();
} catch (IOException ex) {

Using Sockets | 241

http://www.ntp.org/
https://tools.ietf.org/html/rfc5905
http://tf.nist.gov/tf-cgi/servers.cgi
http://tf.nist.gov/tf-cgi/servers.cgi

// ignore
}
}
}

The next step is optional but highly recommended. Set a timeout on the connection

using the setSoTimeout() method. Timeouts are measured in milliseconds, so this
statement sets the socket to time out after 15 seconds of nonresponsiveness:

socket.setSoTimeout(15000);

Although a socket should throw a ConnectException pretty quickly if the server rejects
the connection, or a NoRouteToHostException if the routers can’t figure out how to
send your packets to the server, neither of these help you with the case where a misbe-
having server accepts the connection and then stops talking to you without actively
closing the connection. Setting a timeout on the socket means that each read from or
write to the socket will take at most a certain number of milliseconds. If a server hangs
while you’re connected to it, you will be notified with a SocketTimeoutException. Ex-
actly how long a timeout to set depends on the needs of your application and how
responsive you expect the server to be. Fifteen seconds is a long time for a local intranet
server to respond, but it’s rather short for an overloaded public server like time.nist.gov.

Once you've opened the socket and set its timeout, call getInputStream() to return an
InputStream you can use to read bytes from the socket. In general, a server can send
any bytes at all; but in this specific case, the protocol specifies that those bytes must be
ASCIL:

InputStream in = socket.getInputStream();

StringBuilder time = new StringBuilder();

InputStreamReader reader = new InputStreamReader(in, "ASCII");

for (int c = reader.read(); c != -1; c = reader.read()) {
time.append((char) c);

}
System.out.println(time);

Here I've stored the bytes in a StringBuilder. You can, of course, use any data structure
that fits your problem to hold the data that comes off the network.

Example 8-1 puts this all together in a program that also allows you to choose a different
daytime server.

Example 8-1. A daytime protocol client

import java.net.*;
import java.io.*;

public class DaytimeClient {

public static void main(String[] args) {

242 | Chapter8: Sockets for Clients

String hostname = args.length > 0 ? args[0] : "time.nist.gov";

Socket socket = null;

try {
socket = new Socket(hostname, 13);
socket.setSoTimeout(15000);
InputStream in = socket.getInputStream();
StringBuilder time = new StringBuilder();

InputStreamReader reader = new InputStreamReader(in, "ASCII");
for (int c = reader.read(); c != -1; c = reader.read()) {

time.append((char) c);
}
System.out.println(time);
} catch (IOException ex) {
System.err.println(ex);
} finally {
if (socket != null) {
try {
socket.close();
} catch (IOException ex) {

// ignore

Typical output is much the same as if you connected with Telnet:

$ java DaytimeClient
56375 13-03-24 15:05:42 50 0 0 843.6 UTC(NIST) *

As far as network-specific code goes, that’s pretty much it. In most network programs
like this, the real effort is in speaking the protocol and comprehending the data formats.
For instance, rather than simply printing out the text the server sends you, you might
want to parse it into a java.util.Date object instead. Example 8-2 shows you how to
do this. For variety, I also wrote this example taking advantage of Java 7’s AutoCloseable

and try-with-resources.

Example 8-2. Construct a Date by talking to time.nist.gov

import java.net.¥;
import java.text.*;
import java.util.Date;
import java.ilo.*;

public class Daytime {

public Date getDateFromNetwork() throws IOException, ParseException {

try (Socket socket = new Socket("time.nist.gov", 13)) {
socket.setSoTimeout(15000);
InputStream in = socket.getInputStream();
StringBuilder time = new StringBuilder();

Using Sockets

243

InputStreamReader reader = new InputStreamReader(in, "ASCII");

for (int c = reader.read(); c != -1; c = reader.read()) {
time.append((char) c);

}

return parseDate(time.toString());
}
}

static Date parseDate(String s) throws ParseException {
String[] pieces = s.split(" ");
String dateTime = pieces[1] + " " + pleces[2] + " UTC";
DateFormat format = new SimpleDateFormat("yy-MM-dd hh:mm:ss z");
return format.parse(dateTime);
}
}

Notice, however, this class doesn't actually do anything with the network that
Example 8-1 didn't do. It just added a bunch of code to turn strings into dates.

When reading data from the network, it's important to keep in mind that not all pro-
tocols use ASCII or even text. For example, the time protocol specified in RFC 868
specifies that the time be sent as the number of seconds since midnight, January 1, 1900,
Greenwich Mean Time. However, this is not sent as an ASCII string like 2,524,521,600
or —1297728000. Rather, it is sent as a 32-bit, unsigned, big-endian binary number.

The RFC never actually comes out and says that this is the format used.
It specifies 32 bits and assumes you know that all network protocols
% use big-endian numbers. The fact that the number is unsigned can be
determined only by calculating the wraparound date for signed and
unsigned integers and comparing it to the date given in the specifica-
tion (2036). To make matters worse, the specification gives an exam-
ple of a negative time that can’t actually be sent by time servers that
follow the protocol. Time is a relatively old protocol, standardized in
the early 1980s before the IETF was as careful about such issues as it
is today. Nonetheless, if you find yourself implementing a not partic-
ularly well-specified protocol, you may have to do a significant amount
of testing against existing implementations to figure out what you need
to do. In the worst case, different implementations may behave differ-
ently.

Because the time protocol doesn’'t send back text, you can’t easily use Telnet to test such
a service, and your program can'’t read the server response with a Reader or any sort of
readLine() method. A Java program that connects to time servers must read the raw
bytes and interpret them appropriately. In this example, that job is complicated by Java’s
lack of a 32-bit unsigned integer type. Consequently, you have to read the bytes one at
a time and manually convert them into a long using the bitwise operators << and |.

244 | Chapter 8: Sockets for Clients

http://tools.ietf.org/html/rfc868

Example 8-3 demonstrates. When speaking other protocols, you may encounter data
formats even more alien to Java. For instance, a few network protocols use 64-bit fixed-
point numbers. There’s no shortcut to handle all possible cases. You simply have to grit
your teeth and code the math you need to handle the data in whatever format the server
sends.

Example 8-3. A time protocol client

import java.net.*;
import java.text.*;
import java.util.Date;
import java.io.*;

public class Time {
private static final String HOSTNAME = "time.nist.gov";

public static void main(String[] args) throws IOException, ParseException {
Date d = Time.getDateFromNetwork();
System.out.println("It is " + d);

}

public static Date getDateFromNetwork() throws IOException, ParseException {
// The time protocol sets the epoch at 1900,
// the Java Date class at 1970. This number
// converts between them.

long differenceBetweenEpochs = 22089888001 ;

// If you'd rather not use the magic number, uncomment
// the following section which calculates it directly.
/*

TimeZone gmt = TimeZone.getTimeZone("GMT");

Calendar epoch1900 = Calendar.getInstance(gnmt);
epoch1900.set(1900, 01, 01, 00, 00, 00);

long epoch1900ms = epoch1900.getTime().getTime();
Calendar epoch1970 = Calendar.getInstance(gnmt);
epoch1970.set(1970, 01, 01, 00, 00, 00);

long epoch1970ms = epoch1970.getTime().getTime();

long differenceInMS = epoch1970ms - epoch1900ms;
long differenceBetweenEpochs = differenceInMS/1000;
*/
Socket socket = null;
try {
socket = new Socket(HOSTNAME, 37);
socket.setSoTimeout(15000);

InputStream raw = socket.getInputStream();

long secondsSince1900 = 0;

Using Sockets | 245

for (int 1 = 0; 1 < 4; 1++) {
secondsSince1900 = (secondsSince1900 << 8) | raw.read();

}

long secondsSince1970

= secondsSince1900 - differenceBetweenEpochs;
long msSince1970 = secondsSincel970 * 1000;
Date time = new Date(msSincel970);

return time;

} finally {
try {
if (socket != null) socket.close();
}
catch (IOException ex) {}
}

3
}

Here’s the output of this program from a sample run:

$ java Time
It 1s Sun Mar 24 12:22:17 EDT 2013

The time protocol actually specifies Greenwich Mean Time, but the toString() method
in Javas Date class, implicitly invoked by System.out.println(), converts this into
the time zone of the local host, Eastern Daylight Time in this case.

Writing to Servers with Sockets

Writing to a server is not noticeably harder than reading from one. You simply ask the
socket for an output stream as well as an input stream. Although it’s possible to send
data over the socket using the output stream at the same time you're reading data over
the input stream, most protocols are designed so that the client is either reading or
writing over a socket, not both at the same time. In the most common pattern, the client
sends a request. Then the server responds. The client may send another request, and
the server responds again. This continues until one side or the other is done, and closes
the connection.

One simple bidirectional TCP protocol is dict, defined in RFC 2229. In this protocol,
the client opens a socket to port 2628 on the dict server and sends commands such as
“DEFINE eng-lat gold” This tells the server to send a definition of the word gold using
its English-to-Latin dictionary. (Different servers have different dictionaries installed.)
After the first definition is received, the client can ask for another. When it’s done it
sends the command “quit” You can explore dict with Telnet like this:

$ telnet dict.org 2628
Trying 216.18.20.172...
Connected to dict.org.

246 | Chapter 8: Sockets for Clients

https://tools.ietf.org/html/rfc2229

Escape character is '~]'.
220 pan.alephnull.com dictd 1.12.0/rf on Linux 3.0.0-14-server
<auth.mime> <499772.29595.1364340382@pan.alephnull.com>
DEFINE eng-lat gold
150 1 definitions retrieved
151 "gold" eng-lat "English-Latin Freedict dictionary"
gold [gould]
aurarius; aureus; chryseus
aurum; chrysos

250 ok [d/m/c = 1/0/10; 0.000r 0.000u 0.000s]
DEFINE eng-lat computer

552 no match [d/m/c = 0/0/9; 0.000r 0.000u 0.000s]
quit

221 bye [d/m/c = 0/0/0; 42.000r 0.000u 0.000s]

You can see that control response lines begin with a three-digit code. The actual defi-
nition is plain text, terminated with a period on a line by itself. If the dictionary doesn’t
contain the word you asked for, it returns 552 no match. Of course, you could also find
this out, and a lot more, by reading the RFC.

It’s not hard to implement this protocol in Java. First, open a socket to a dict server—
_dict.org__is a good one—on port 2628:

Socket socket = new Socket('"dict.org", 2628);

Once again you’ll want to set a timeout in case the server hangs while you're connected
to it:

socket.setSoTimeout(15000);

In the dict protocol, the client speaks first, so ask for the output stream using getOut
putStream():

OutputStream out = socket.getOutputStream();

The getOutputStream() method returns a raw OutputStream for writing data from
your application to the other end of the socket. You usually chain this stream to a more
convenient class like DataOutputStream or OutputStreamWriter before using it. For
performance reasons, it’s a good idea to buffer it as well. Because the dict protocol is
text based, more specifically UTF-8 based, it’s convenient to wrap this in a Writer:

Writer writer = new OutputStreamWriter(out, "UTF-8");
Now write the command over the socket:
writer.write("DEFINE eng-lat gold\r\n");
Finally, flush the output so you’ll be sure the command is sent over the network:

writer.flush();

Using Sockets | 247

The server should now respond with a definition. You can read that using the socket’s
input stream:

InputStream in = socket.getInputStream();

BufferedReader reader = new BufferedReader(
new InputStreamReader(in, "UTF-8"));

for (String line = reader.readLine();
Iline.equals(".");
line = reader.readLine()) {

System.out.println(line);
}

When you see a period on a line by itself, you know the definition is complete. You can
then send the quit over the output stream:

writer.write("quit\r\n");
writer.flush();

Example 8-4 shows a complete dict client. It connects to dict.org, and translates any
words the user enters on the command line into Latin. It filters out all the metadata lines
that begin with response codes such as 150 or 220. However, it does specifically check
for a line that begins “552 no match” in case the server doesn’t recognize the word.

Example 8-4. A network-based English-to-Latin translator

import java.io.*;
import java.net.*;

public class DictClient {

public static final String SERVER = "dict.org";
public static final int PORT = 2628;
public static final int TIMEOUT = 15000;

public static void main(String[] args) {

Socket socket = null;
try {
socket = new Socket(SERVER, PORT);
socket.setSoTimeout(TIMEOUT);
OutputStream out = socket.getOutputStream();
Writer writer = new OutputStreamWriter(out, "UTF-8");
writer = new BufferedWriter(writer);
InputStream in = socket.getInputStream();
BufferedReader reader = new BufferedReader(
new InputStreamReader(in, "UTF-8"));

for (String word : args) {
define(word, writer, reader);

}

writer.write("quit\r\n");
writer.flush();

248 | Chapter 8: Sockets for Clients

} catch (IOException ex) {
System.err.println(ex);
} finally { // dispose
if (socket !'= null) {
try {
socket.close();
} catch (IOException ex) {
// 1ignore
}
}
}
}

static void define(String word, Writer writer, BufferedReader reader)
throws IOException, UnsupportedEncodingException {
writer.write("DEFINE eng-lat " + word + "\r\n");
writer.flush();

for (String line = reader.readlLine(); line != null; line = reader.readlLine()) {

if (line.startsWith("250 ")) { // 0K
return;

} else if (line.startsWith("552 ")) { // no match
System.out.println("No definition found for " + word);
return;

}

else if (line.matches("\\d\\d\\d .*")) continue;

else if (line.trim().equals(".")) continue;

else System.out.println(line);

}
}
}

Here’s a sample run:

$ java DictClient gold uranium silver copper lead
gold [gould]

aurarius; aureus; chryseus

aurum; chrysos

No definition found for uranium
silver [silvor]

argenteus

argentum

copper [kopor]
@neus; aheneus; ararius; chalceus
as

lead [led]
ducere
molybdus; plumbum

Using Sockets

249

Example 8-4 is line oriented. It reads a line of input from the console, sends it to the
server, and waits to read a line of output it gets back.

Half-closed sockets

The close() method shuts down both input and output from the socket. On occasion,
you may want to shut down only half of the connection, either input or output. The
shutdownInput() and shutdownOutput() methods close only half the connection:

public void shutdownInput() throws IOException
public void shutdownOutput() throws IOException

Neither actually closes the socket. Instead, they adjust the stream connected to the socket
so that it thinks it’s at the end of the stream. Further reads from the input stream after
shutting down input return -1. Further writes to the socket after shutting down output
throw an IOException.

Many protocols, such as finger, whois, and HT TP, begin with the client sending a request
to the server, then reading the response. It would be possible to shut down the output
after the client has sent the request. For example, this code fragment sends a request to
an HTTP server and then shuts down the output, because it won’t need to write anything
else over this socket:

try (Socket connection = new Socket("www.oreilly.com", 80)) {

Writer out = new OutputStreamWriter(
connection.getOutputStream(), "8859_1");

out.write("GET / HTTP 1.0\r\n\r\n");
out.flush();
connection.shutdownOutput();
// read the response...

} catch (IOException ex) {
ex.printStackTrace();

}

Notice that even though you shut down half or even both halves of a connection, you
still need to close the socket when you're through with it. The shutdown methods simply
affect the socket’s streams. They don't release the resources associated with the socket,
such as the port it occupies.

The isInputShutdown() and isOutputShutdown() methods tell you whether the input
and output streams are open or closed, respectively. You can use these (rather than
isConnected() and isClosed()) to more specifically ascertain whether you can read
from or write to a socket:

public boolean isInputShutdown()
public boolean isOutputShutdown()

250 | Chapter8: Sockets for Clients

Constructing and Connecting Sockets

The java.net.Socket class is Java’s fundamental class for performing client-side TCP
operations. Other client-oriented classes that make TCP network connections such as
URL, URLConnection, Applet, and JEditorPane all ultimately end up invoking the
methods of this class. This class itself uses native code to communicate with the local
TCP stack of the host operating system.

Basic Constructors

Each Socket constructor specifies the host and the port to connect to. Hosts may be
specified as an InetAddress ora String. Remote ports are specified as int values from
1 to 65535:

public Socket(String host, int port) throws UnknownHostException, IOException
public Socket(InetAddress host, int port) throws IOException

These constructors connect the socket (i.e., before the constructor returns, an active
network connection is established to the remote host). If the connection can’t be opened
for some reason, the constructor throws an IOException or an UnknownHostExcep
tion. For example:

try {
Socket toOReilly = new Socket("www.oreilly.com", 80);

// send and receive data...

} catch (UnknownHostException ex) {
System.err.println(ex);

} catch (IOException ex) {
System.err.println(ex);

}

In this constructor, the host argument is just a hostname expressed as a String. If the
domain name server cannot resolve the hostname or is not functioning, the constructor
throws an UnknownHostException. If the socket cannot be opened for some other rea-
son, the constructor throws an I0OException. There are many reasons a connection
attempt might fail: the host you're trying to reach may not accept connections on that
port, the hotel WiFi service may be blocking you until you log in to its website and pay
$14.95, or routing problems may be preventing your packets from reaching their des-
tination.

Because this constructor doesn’t just create a Socket object but also tries to connect the
socket to the remote host, you can use the object to determine whether connections to
a particular port are allowed, as in Example 8-5.

Constructing and Connecting Sockets | 251

Example 8-5. Find out which of the first 1024 ports seem to be hosting TCP servers on a
specified host

import java.net.¥*;
import java.io.*;

public class LowPortScanner {
public static void main(String[] args) {
String host = args.length > 0 ? args[0] : "localhost";

for (int 1 = 1; 1 < 1024; 1++) {
try {
Socket s = new Socket(host, 1);
System.out.println("There is a server on port
+ host);
s.close();
} catch (UnknownHostException ex) {
System.err.println(ex);
break;
} catch (IOException ex) {
// must not be a server on this port
}
}
}
}

+i+ " of "

Here’s the output this program produces on my local host (your results will vary, de-
pending on which ports are occupied):

$ java LowPortScanner
There is a server on port 21 of localhost

There is a server on port 22 of localhost
There is a server on port 23 of localhost
There is a server on port 25 of localhost
There is a server on port 37 of localhost
There is a server on port 111 of localhost
There is a server on port 139 of localhost
There is a server on port 210 of localhost
There is a server on port 515 of localhost
There is a server on port 873 of localhost

If youre curious about what servers are running on these ports, try experimenting with
Telnet. On a Unix system, you may be able to find out which services reside on which
ports by looking in the file /etc/services. If LowPortScanner finds any ports that are
running servers but are not listed in /etc/services, then that’s interesting.

Although this program looks simple, it’s not without its uses. The first step to securing
a system is understanding it. This program helps you understand what your system is
doing so you can find (and close) possible entrance points for attackers. You may also

252 | Chapter8: Sockets for Clients

find rogue servers: for example, LowPortScanner might tell you that there’s a server on
port 800, which, on further investigation, turns out to be an HT TP server somebody is
running to serve MP3 files, and which is saturating your T1.

Three constructors create unconnected sockets. These provide more control over ex-
actly how the underlying socket behaves, for instance by choosing a different proxy
server or an encryption scheme:

public Socket()
public Socket(Proxy proxy)
protected Socket(SocketImpl impl)

Picking a Local Interface to Connect From

Two constructors specify both the host and port to connect to and the interface and
port to connect from:

public Socket(String host, int port, InetAddress interface, int localPort)
throws IOException, UnknownHostException

public Socket(InetAddress host, int port, InetAddress interface, int localPort)
throws IOException

This socket connects to the host and port specified in the first two arguments. It connects

from the local network interface and port specified by the last two arguments. The
network interface may be either physical (e.g., an Ethernet card) or virtual (a multi-
homed host with more than one IP address). If 0 is passed for the localPort argument,
Java chooses a random available port between 1024 and 65535.

Selecting a particular network interface from which to send data is uncommon, but a
need does come up occasionally. One situation where you might want to explicitly
choose the local address would be on a router/firewall that uses dual Ethernet ports.
Incoming connections would be accepted on one interface, processed, and forwarded
to the local network from the other interface. Suppose you were writing a program to
periodically dump error logs to a printer or send them over an internal mail server.
You'd want to make sure you used the inward-facing network interface instead of the
outward-facing network interface. For example:

try {
InetAddress inward = InetAddress.getByName('"router");
Socket socket = new Socket("mail", 25, inward, 0);
// work with the sockets...

} catch (IOException ex) {
System.err.println(ex);

}

By passing 0 for the local port number, I say that I don’t care which port is used but I
do want to use the network interface bound to the local hostname router.

Constructing and Connecting Sockets | 253

This constructor can throw an I0Exception or an UnknownHostException for the same
reasons as the previous constructors. In addition, it throws an I0Exception (probably
a BindException, although again that’s just a subclass of I0Exception and not specifi-
cally declared in the throws clause of this method) if the socket is unable to bind to the
requested local network interface. For instance, a program running on a.example.com
can’t connect from b.example.org. You could take deliberate advantage of this to restrict
a compiled program to run on only a predetermined host. It would require customizing
distributions for each computer and is certainly overkill for cheap products. Further-
more, Java programs are so easy to disassemble, decompile, and reverse engineer that
this scheme is far from foolproof. Nonetheless, it might be part of a scheme to enforce
a software license.

Constructing Without Connecting

All the constructors we've talked about so far both create the socket object and open a
network connection to a remote host. Sometimes you want to split those operations. If
you give no arguments to the Socket constructor, it has nowhere to connect to:

public Socket()

You can connect later by passing a SocketAddress to one of the connect() methods.
For example:

try {
Socket socket = new Socket();
// fill in socket options
SocketAddress address = new InetSocketAddress("time.nist.gov", 13);
socket.connect(address);
// work with the sockets...
} catch (IOException ex) {
System.err.println(ex);

}

You can pass an int as the second argument to specify the number of milliseconds to
wait before the connection times out:

public void connect(SocketAddress endpoint, int timeout) throws IOException

The default, 0, means wait forever.

The raison d'étre for this constructor is to enable different kinds of sockets. You also
need to use it to set a socket option that can only be changed before the socket connects.
I'll discuss thisin “Setting Socket Options” on page 259. However, the prime benefitI find
is that it enables me to clean up the code in try-catch-finally blocks, especially prior
to Java 7. The noargs constructor throws no exceptions so it enables you to avoid the
annoying null check when closing a socket in a finally block. With the original con-
structor, most code looks like this:

254 | Chapter8: Sockets for Clients

Socket socket = null;
try {
socket = new Socket(SERVER, PORT);
// work with the socket..
} catch (IOException ex) {
System.err.println(ex);
} finally {
if (socket !'= null) {
try {
socket.close();
} catch (IOException ex) {
// 1ignore
}
}
}

With the noargs constructor, it looks like this:

Socket socket = new Socket();
SocketAddress address = new InetSocketAddress(SERVER, PORT);
try {
socket.connect(address);
// work with the socket..
} catch (IOException ex) {
System.err.println(ex);
} finally {
try {
socket.close();
} catch (IOException ex) {
// 1ignore
}
}

That’s not quite as nice as the autoclosing version in Java 7, but it is an improvement.

Socket Addresses

The SocketAddress class represents a connection endpoint. It is an empty abstract class
with no methods aside from a default constructor. At least theoretically, the
SocketAddress class can be used for both TCP and non-TCP sockets. In practice, only
TCP/IP sockets are currently supported and the socket addresses you actually use are
all instances of InetSocketAddress.

The primary purpose of the SocketAddress class is to provide a convenient store for
transient socket connection information such as the IP address and port that can be
reused to create new sockets, even after the original socket is disconnected and garbage
collected. To this end, the Socket class offers two methods that return SocketAddress
objects (getRemoteSocketAddress() returns the address of the system being connected
to and getLocalSocketAddress() returns the address from which the connection is
made):

Constructing and Connecting Sockets | 255

public SocketAddress getRemoteSocketAddress()
public SocketAddress getlocalSocketAddress()

Both of these methods return null if the socket is not yet connected. For example, first
you might connect to Yahoo! then store its address:

Socket socket = new Socket('"www.yahoo.com", 80);
SocketAddress yahoo = socket.getRemoteSocketAddress();
socket.close();

Later, you could reconnect to Yahoo! using this address:

Socket socket2 = new Socket();
socket2.connect(yahoo);

The InetSocketAddress class (which is the only subclass of SocketAddress in the JDK,
and the only subclass I've ever encountered) is usually created with a host and a port
(for clients) or just a port (for servers):

public InetSocketAddress(InetAddress address, int port)
public InetSocketAddress(String host, int port)
public InetSocketAddress(int port)

You can also use the static factory method InetSocketAddress.createUnresolved()
to skip looking up the host in DNS:

public static InetSocketAddress createUnresolved(String host, int port)
InetSocketAddress has a few getter methods you can use to inspect the object:

public final InetAddress getAddress()

public final int getPort()
public final String getHostName()
Proxy Servers

The last constructor creates an unconnected socket that connects through a specified
proxy server:

public Socket(Proxy proxy)

Normally, the proxy server a socket uses is controlled by the socksProxyHost and
socksProxyPort system properties, and these properties apply to all sockets in the sys-
tem. However, a socket created by this constructor will use the specified proxy server
instead. Most notably, you can pass Proxy.NO_PROXY for the argument to bypass all
proxy servers completely and connect directly to the remote host. Of course, if a firewall
prevents direct connections, there’s nothing Java can do about it; and the connection
will fail.

To use a particular proxy server, specify it by address. For example, this code fragment
uses the SOCKS proxy server at myproxy.example.com to connect to the host login.ibi-
blio.org:

256 | Chapter8: Sockets for Clients

SocketAddress proxyAddress = new InetSocketAddress("myproxy.example.com", 1080);
Proxy proxy = new Proxy(Proxy.Type.SOCKS, proxyAddress)
Socket s = new Socket(proxy);
SocketAddress remote = new InetSocketAddress("login.ibiblio.org", 25);
s.connect(remote);
SOCKS is the only low-level proxy type Java understands. There’s also a high-level
Proxy.Type.HTTP that works in the application layer rather than the transport layer and

a Proxy.Type.DIRECT that represents proxyless connections.

Getting Information About a Socket

Socket objects have several properties that are accessible through getter methods:

o Remote address
» Remote port
o Local address

o Local port

Here are the getter methods for accessing these properties:

public InetAddress getInetAddress()

public int getPort()

public InetAddress getlLocalAddress()

public int getLocalPort()
There are no setter methods. These properties are set as soon as the socket connects,
and are fixed from there on.

The getInetAddress() and getPort() methods tell you the remote host and port the
Socket is connected to; or, if the connection is now closed, which host and port the
Socket was connected to when it was connected. The getLocalAddress() and getlLo
calPort() methods tell you the network interface and port the Socket is connected
from.

Unlike the remote port, which (for a client socket) is usually a “well-known port” that
has been preassigned by a standards committee, the local port is usually chosen by the
system at runtime from the available unused ports. This way, many different clients on
a system can access the same service at the same time. The local port is embedded in
outbound IP packets along with the local host’s IP address, so the server can send data
back to the right port on the client.

Example 8-6 reads alist of hostnames from the command line, attempts to open a socket
to each one, and then uses these four methods to print the remote host, the remote port,
the local address, and the local port.

Getting Information Abouta Socket | 257

Example 8-6. Get a socket’s information

import java.net.*;
import java.io.*;

public class SocketInfo {
public static void main(String[] args) {

for (String host : args) {
try {
Socket theSocket = new Socket(host, 80);
System.out.println("Connected to " + theSocket.getInetAddress()
+ " on port + theSocket.getPort() + " from port "
+ theSocket.getLocalPort() + " of "
+ theSocket.getLocalAddress());
} catch (UnknownHostException ex) {
System.err.println("I can't find " + host);
} catch (SocketException ex) {
System.err.println("Could not connect to " + host);
} catch (IOException ex) {
System.err.println(ex);

}
3
}

Here’s the result of a sample run. I included www.oreilly.com on the command line twice
in order to demonstrate that each connection was assigned a different local port, re-
gardless of the remote host; the local port assigned to any connection is unpredictable
and depends mostly on what other ports are in use. The connection to login.ibi-
blio.org failed because that machine does not run any servers on port 80:

$ java SocketInfo www.oreilly.com www.oreilly.com www.elharo.com
login.ibiblio.org

Connected to www.oreilly.com/208.201.239.37 on port 80 from port 49156 of

/192.168.254.25

Connected to www.oreilly.com/208.201.239.37 on port 80 from port 49157 of

/192.168.254.25

Connected to www.elharo.com/216.254.106.198 on port 80 from port 49158 of

/192.168.254.25

Could not connect to login.ibiblio.org

Closed or Connected?

The isClosed() method returns true if the socket is closed, false if it isn’t. If youre
uncertain about a socket’s state, you can check it with this method rather than risking
an I0Exception. For example:

if (socket.isClosed()) {
// do something...

258 | Chapter8: Sockets for Clients

} else {
// do something else...
}
However, this is not a perfect test. If the socket has never been connected in the first
place, isClosed() returns false, even though the socket isn't exactly open.

The Socket class also has an isConnected() method. The name is a little misleading.
It does not tell you if the socket is currently connected to a remote host (like if it is
unclosed). Instead, it tells you whether the socket has ever been connected to a remote
host. If the socket was able to connect to the remote host at all, this method returns true,
even after that socket has been closed. To tell if a socket is currently open, you need to
check that isConnected() returns true and isClosed() returns false. For example:

boolean connected = socket.isConnected() && ! socket.isClosed();

Finally, the isBound() method tells you whether the socket successfully bound to the
outgoing port on the local system. Whereas isConnected() refers to the remote end of
the socket, isBound() refers to the local end. This isn’t very important yet. Binding will
become more important when we discuss server sockets in Chapter 9.

toString()

The Socket class overrides only one of the standard methods from java.lang.Ob
ject: toString(). The toString() method produces a string that looks like this:

Socket[addr=www.oreilly.com/198.112.208.11,port=80,localport=50055]

This is useful primarily for debugging. Don't rely on this format; it may change in the
future. All parts of this string are accessible directly through other methods (specifically
getInetAddress(), getPort(), and getLocalPort()).

Because sockets are transitory objects that typically last only as long as
. the connection they represent, there’s not much reason to store them
0% in hash tables or compare them to each other. Therefore, Socket does
not override equals() or hashCode(), and the semantics for these
methods are those of the Object class. Two Socket objects are equal
to each other if and only if they are the same object.

Setting Socket Options

Socket options specify how the native sockets on which the Java Socket class relies send
and receive data. Java supports nine options for client-side sockets:

o« TCP_NODELAY

Setting Socket Options | 259

o SO_BINDADDR
o SO_TIMEOUT
o SO_LINGER

o SO_SNDBUF

« SO_RCVBUF

o SO_KEEPALIVE
o OOBINLINE

o IP_TOS

The funny-looking names for these options are taken from the named constants in the
C header files used in Berkeley Unix where sockets were invented. Thus, they follow
classic Unix C naming conventions rather than the more legible Java naming conven-
tions. For instance, SO_SNDBUF really means “Socket Option Send Buffer Size

TCP_NODELAY

public void setTcpNoDelay(boolean on) throws SocketException
public boolean getTcpNoDelay() throws SocketException

Setting TCP_NODELAY to true ensures that packets are sent as quickly as possible
regardless of their size. Normally, small (one-byte) packets are combined into larger
packets before being sent. Before sending another packet, the local host waits to receive
acknowledgment of the previous packet from the remote system. This is known as
Nagle’s algorithm. The problem with Nagle’s algorithm is that if the remote system
doesn’t send acknowledgments back to the local system fast enough, applications that
depend on the steady transfer of small parcels of information may slow down. This issue
is especially problematic for GUI programs such as games or network computer appli-
cations where the server needs to track client-side mouse movement in real time. On a
really slow network, even simple typing can be too slow because of the constant buffer-
ing. Setting TCP_NODELAY to true defeats this buffering scheme, so that all packets
are sent as soon as they’re ready.

setTcpNoDelay(true) turns off buffering for the socket. setTcpNoDelay(false) turns
it back on. getTcpNoDelay() returns true if buffering is off and false if buffering is
on. For example, the following fragment turns off buffering (that is, it turns on
TCP_NODELAY) for the socket s if it isn’t already oft:

if (!s.getTcpNoDelay()) s.setTcpNoDelay(true);

These two methods are each declared to throw a SocketException, which will happen
if the underlying socket implementation doesn’t support the TCP_ NODELAY option.

260 | Chapter8: Sockets for Clients

SO_LINGER

public void setSolLinger(boolean on, int seconds) throws SocketException

public int getSolLinger() throws SocketException
The SO_LINGER option specifies what to do with datagrams that have not yet been
sent when a socket is closed. By default, the close() method returns immediately; but
the system still tries to send any remaining data. If the linger time is set to zero, any
unsent packets are thrown away when the socket is closed. If SO_LINGER is turned on
and the linger time is any positive value, the close() method blocks while waiting the
specified number of seconds for the data to be sent and the acknowledgments to be
received. When that number of seconds has passed, the socket is closed and any re-
maining data is not sent, acknowledgment or no.

These two methods each throw a SocketException if the underlying socket imple-
mentation does not support the SO_LINGER option. The setSoLinger() method can
also throw an IllegalArgumentException if you try to set the linger time to a negative
value. However, the getSoLinger () method may return -1 to indicate that this option
is disabled, and as much time as is needed is taken to deliver the remaining data; for
example, to set the linger timeout for the Socket s to four minutes, if it's not already
set to some other value:

if (s.getTcpSoLinger() == -1) s.setSolLinger(true, 240);

The maximum linger time is 65,535 seconds, and may be smaller on some platforms.
Times larger than that will be reduced to the maximum linger time. Frankly, 65,535
seconds (more than 18 hours) is much longer than you actually want to wait. Generally,
the platform default value is more appropriate.

SO_TIMEOUT

public void setSoTimeout(int milliseconds) throws SocketException
public int getSoTimeout() throws SocketException

Normally when you try to read data from a socket, the read() call blocks as long as
necessary to get enough bytes. By setting SO_TIMEOUT, you ensure that the call will
not block for more than a fixed number of milliseconds. When the timeout expires, an
InterruptedIOException is thrown, and you should be prepared to catch it. However,
the socket is still connected. Although this read() call failed, you can try to read from
the socket again. The next call may succeed.

Timeouts are given in milliseconds. Zero is interpreted as an infinite timeout; it is the
default value. For example, to set the timeout value of the Socket object s to 3 minutes
if it isn’t already set, specify 180,000 milliseconds:

if (s.getSoTimeout() == 0) s.setSoTimeout(180000);

Setting Socket Options | 261

These two methods each throw a SocketException if the underlying socket imple-
mentation does not support the SO_TIMEOUT option. The setSoTimeout() method
also throws an I'llegalArgumentException if the specified timeout value is negative.

SO_RCVBUF and SO_SNDBUF

TCP uses buffers to improve network performance. Larger buffers tend to improve
performance for reasonably fast (say, 10Mbps and up) connections whereas slower, dial-
up connections do better with smaller buffers. Generally, transfers of large, continuous
blocks of data, which are common in file transfer protocols such as FTP and HTTP,
benefit from large buffers, whereas the smaller transfers of interactive sessions, such as
Telnet and many games, do not. Relatively old operating systems designed in the age of
small files and slow networks, such as BSD 4.2, use two-kilobyte buffers. Windows XP
used 17,520 byte buffers. These days, 128 kilobytes is a common default.

Maximum achievable bandwidth equals buffer size divided by latency. For example, on
Windows XP suppose the latency between two hosts is half a second (500 ms). Then
the bandwidth is 17520 bytes / 0.5 seconds = 35040 bytes / second = 273.75 kilobits /
second. That’s the maximum speed of any socket, regardless of how fast the network is.
That’s plenty fast for a dial-up connection, and not bad for ISDN, but not really adequate
for a DSL line or FIOS.

You can increase speed by decreasing latency. However, latency is a function of the
network hardware and other factors outside the control of your application. On the
other hand, you do control the buffer size. For example, if you increase the buffer size
from 17,520 bytes to 128 kilobytes, the maximum bandwidth increases to 2 megabits
per second. Double the buffer size again to 256 kilobytes, and the maximum bandwidth
doubles to 4 megabits per second. Of course, the network itself has limits on maximum
bandwidth. Set the buffer too high and your program will try to send and receive data
faster than the network can handle, leading to congestion, dropped packets, and slower
performance. Thus, when you want maximum bandwidth, you need to match the buffer
size to the latency of the connection so it’s a little less than the bandwidth of the network.

W N
You can use ping to check the latency to a particular host manually, or
.‘s . you can time a call to InetAddress.isReachable() from inside your
"4k program.

The SO_RCVBUF option controls the suggested send buffer size used for network input.
The SO_SNDBUF option controls the suggested send buffer size used for network out-
put:

public void setReceiveBufferSize(int size)
throws SocketException, IllegalArgumentException

262 | Chapter8: Sockets for Clients

public int getReceiveBufferSize() throws SocketException
public void setSendBufferSize(int size)

throws SocketException, IllegalArgumentException
public int getSendBufferSize() throws SocketException

Although it looks like you should be able to set the send and receive buffers independ-
ently, the buffer is usually set to the smaller of these two. For instance, if you set the send
buffer to 64K and the receive buffer to 128K, you’ll have 64K as both the send and receive
buffer size. Java will report that the receive buffer is 128K, but the underlying TCP stack
will really be using 64K.

The setReceiveBufferSize()/setSendBufferSize methodssuggestanumber of bytes
to use for buffering output on this socket. However, the underlying implementation is
free to ignore or adjust this suggestion. In particular, Unix and Linux systems often
specify a maximum buffer size, typically 64K or 256K, and do not allow any socket to
have alarger one. If you attempt to set a larger value, Java will just pin it to the maximum
possible buffer size. On Linux, it's not unheard of for the underlying implementation to
double the requested size. For example, if you ask for a 64K buffer, you may get a 128K
buffer instead.

These methods throw an IllegalArgumentException if the argument is less than or
equal to zero. Although they're also declared to throw SocketException, they probably
won't in practice, because a SocketException is thrown for the same reason as Ille
galArgumentException and the check for the IllegalArgumentException is made
first.

In general, if you find your application is not able to fully utilize the available bandwidth
(e.g., you have a 25 Mbps Internet connection, but your data is transferring at a piddling
1.5 Mbps) try increasing the buffer sizes. By contrast, if youre dropping packets and
experiencing congestion, try decreasing the buffer size. However, most of the time,
unless you're really taxing the network in one direction or the other, the defaults are
fine. In particular, modern operating systems use TCP window scaling (not controllable
from Java) to dynamically adjust buffer sizes to fit the network. As with almost any
performance tuning advice, the rule of thumb is not to do it until you've measured a
problem. And even then you may well get more speed by increasing the maximum
allowed buffer size at the operating system level than by adjusting the buffer sizes of
individual sockets.

SO_KEEPALIVE

If SO_KEEPALIVE is turned on, the client occasionally sends a data packet over an idle
connection (most commonly once every two hours), just to make sure the server hasn’t
crashed. If the server fails to respond to this packet, the client keeps trying for a little
more than 11 minutes until it receives a response. If it doesn’t receive a response within
12 minutes, the client closes the socket. Without SO_KEEPALIVE, an inactive client

Setting Socket Options | 263

could live more or less forever without noticing that the server had crashed. These
methods turn SO_KEEPALIVE on and off and determine its current state:

public void setKeepAlive(boolean on) throws SocketException

public boolean getKeepAlive() throws SocketException
The default for SO_KEEPALIVE is false. This code fragment turns SO_KEEPALIVE
off, if it’s turned on:

if (s.getKeepAlive()) s.setKeepAlive(false);

OOBINLINE

TCP includes a feature that sends a single byte of “urgent” data out of band. This data
is sent immediately. Furthermore, the receiver is notified when the urgent data is re-
ceived and may elect to process the urgent data before it processes any other data that
has already been received. Java supports both sending and receiving such urgent data.
The sending method is named, obviously enough, sendUrgentData():

public void sendUrgentData(int data) throws IOException

This method sends the lowest-order byte of its argument almost immediately. If nec-
essary, any currently cached data is flushed first.

How the receiving end responds to urgent data is a little confused, and varies from one
platform and API to the next. Some systems receive the urgent data separately from the
regular data. However, the more common, more modern approach is to place the urgent
data in the regular received data queue in its proper order, tell the application that urgent
data is available, and let it hunt through the queue to find it.

By default, Java ignores urgent data received from a socket. However, if you want to
receive urgent data inline with regular data, you need to set the OOBINLINE option to
true using these methods:

public void setOOBInline(boolean on) throws SocketException
public boolean getOOBInline() throws SocketException

The default for OOBINLINE is false. This code fragment turns OOBINLINE on, if it’s
turned off:

if (!s.getO0BInline()) s.setOOBInline(true);

Once OOBINLINE is turned on, any urgent data that arrives will be placed on the
socket’s input stream to be read in the usual way. Java does not distinguish it from
nonurgent data. That makes it less than ideally useful, but if you have a particular byte
(e.g., a Ctrl-C) that has special meaning to your program and never shows up in the
regular data stream, then this would enable you to send it more quickly.

264 | Chapter8: Sockets for Clients

SO_REUSEADDR

When a socket is closed, it may not immediately release the local port, especially if a
connection was open when the socket was closed. It can sometimes wait for a small
amount of time to make sure it receives any lingering packets that were addressed to
the port that were still crossing the network when the socket was closed. The system
won't do anything with any of the late packets it receives. It just wants to make sure they
don’t accidentally get fed into a new process that has bound to the same port.

This isn’t a big problem on a random port, but it can be an issue if the socket has bound
to a well-known port because it prevents any other socket from using that port in the
meantime. If the SO_REUSEADDR is turned on (it’s turned off by default), another
socket is allowed to bind to the port even while data may be outstanding for the previous
socket.

In Java this option is controlled by these two methods:

public void setReuseAddress(boolean on) throws SocketException
public boolean getReuseAddress() throws SocketException

For this to work, setReuseAddress() must be called before the new socket binds to the
port. This means the socket must be created in an unconnected state using the noargs
constructor; then setReuseAddress(true) is called, and the socket is connected using
the connect() method. Both the socket that was previously connected and the new
socket reusing the old address must set SO_REUSEADDR to true for it to take effect.

IP_TOS Class of Service

Different types of Internet service have different performance needs. For instance, video
chat needs relatively high bandwidth and low latency for good performance, whereas
email can be passed over low-bandwidth connections and even held up for several hours
without major harm. VOIP needs less bandwidth than video but minimum jitter. It
might be wise to price the different classes of service differentially so that people won’t
ask for the highest class of service automatically. After all, if sending an overnight letter
cost the same as sending a package via media mail, we'd all just use FedEx overnight,
which would quickly become congested and overwhelmed. The Internet is no different.

The class of service is stored in an eight-bit field called IP_TOS in the IP header. Java
lets you inspect and set the value a socket places in this field using these two methods:

public int getTrafficClass() throws SocketException

public void setTrafficClass(int trafficClass) throws SocketException
The traffic class is given as an int between 0 and 255. Because this value is copied to an
eight-bit field in the TCP header, only the low order byte of this int is used; and values
outside this range cause I1legalArgumentExceptions.

Setting Socket Options | 265

In 21st-century TCP stacks, the high-order six bits of this byte contain a Differentiated
Services Code Point (DSCP) value and the low-order two bits contain an Explicit Con-
gestion Notification (ECN) value. The DSCP thus has room for up to 2° different traffic
classes. However, it’s up to individual networks and routers to specify exactly what the
64 different possible DSCP values mean. The four values shown in Table 8-1 are fairly
common.

Table 8-1. Common DSCP values and interpretations

PHB (Per Hop Behavior) Binary value Purpose

Default 00000 Best-effort traffic.

Expedited Forwarding (EF) 101110 Low-loss, low-delay, low-jitter traffic. Often limited to 30% or less of network
capacity.

Assured Forwarding (AF) multiple Assured delivery up to a specified rate.

(lass Selector xxx000 Backward compatibility with the IPv4 TOS header, as stored in the first three bits.

For example, the Expedited Forwarding PHB is a good choice for for VOIP. EF traffic
is often given strict priority queuing above all other traffic classes. This code fragment
sets a socket to use Expedited Forwarding by setting the traffic class to 10111000:

Socket s = new Socket("www.yahoo.com", 80);
s.setTrafficClass(0xB8); // 10111000 in binary

Remember the low-order two bits of this number are Explicit Congestion Notification,
and should be set to zero.

Assured Forwarding is actually 12 different DSCP values divided into four classes as
shown in Table 8-2. The purpose here is to allow a sender to express relative preferences
for which packets to drop when the network is congested. Within a class, packets with
lower priority are dropped before packets with a higher priority. Between classes, pack-
est from a higher-priority class are given preference, though lower-priority classes are
not starved completely.

Table 8-2. Assured forwarding priority classes

Class 1 (lowest priority) Class 2 Class 3 Class 4 (highest priority)
Low Drop Rate AF11(001010) AF21(010010) AF31(011010) AF41(100010)
Medium Drop Rate AF12 (001100) AF22(010100) AF32(011100) AF42 (100100)
High Drop Rate AF13 (001110) AF23(010110) AF33(011110) AF43(100110)

For example, the following code fragment sets up three sockets with different forward-
ing characteristics. If the network gets congested enough, socket 3, in class 4 with a high
drop rate, will send most of its data. Socket 1, in class 1 with a low drop rate, will also
get to send data, though not as quickly as socket 1; and socket 3, with a high drop rate
also in class 1 will be blocked completely until the congestion eases up enough that
socket 2 is no longer dropping packets:

266 | Chapter8: Sockets for Clients

Socket s1 = new Socket('"www.example.com", 80);
sl.setTrafficClass(0x26); // 00100110 in binary
Socket s2 = new Socket('"www.example.com", 80);
s2.setTrafficClass(0x0A); // 00001010 in binary
Socket s3 = new Socket('"www.example.com", 80);
s3.setTrafficClass(0x0E); // 00001110 in binary

DSCP values are not hard and fast guarantees of service. In practice, although DSCP
values are respected on some networks internally, any time a packet crosses ISPs, this
information is almost always ignored.

The JavaDoc for these options is severely out of date, and describes a
quality of service scheme based on bit fields for four traffic classes: low
cost, high reliability, maximum throughput, and minimum delay. This
scheme was never widely implemented and probably hasn’t been used
in this century. The specific TCP header where these values were stor-
ed has been repurposed for the DSCP and EN values described here.
However, in the unlikely event you need it, you can put these values
in the high-order three bits of a class selector PHB, followed by zero
bits.

The underlying socket implementation is not required to respect any of these requests.
They only provide a hint to the TCP stack about the desired policy. Many implemen-
tations ignore these values completely. Android in particular treats the setTraffic
Class() method as a no-op. If the TCP stack is unable to provide the requested class of
service, it may, but is not required to, throw a SocketException.

As an alternative way to express preferences, the setPerformancePreferences()
method assigns relative preferences to connection time, latency, and bandwidth:

public void setPerformancePreferences(int connectionTime,
int latency, int bandwidth)

For instance, if connectionTime is 2, latency is 1, and bandwidth is 3, then maximum
bandwidth is the most important characteristic, minimum latency is the least important,
and connection time is in the middle. If connectionTime is 2, latency is 2, and band
width is 3, then maximum bandwidth is the most important characteristic, while min-
imum latency and connection time are equally important. Exactly how any given VM
implements this is implementation dependent. Indeed, it may be a no-op in some im-
plementations.

Socket Exceptions

Most methods of the Socket class are declared to throw IOException or its subclass,
java.net.SocketException:

Socket Exceptions | 267

public class SocketException extends IOException

However, knowing that a problem occurred is often not sufficient to deal with the
problem. Did the remote host refuse the connection because it was busy? Did the remote
host refuse the connection because no service was listening on the port? Did the con-
nection attempt timeout because of network congestion or because the host was down?
There are several subclasses of SocketException that provide more information about
what went wrong and why:

public class BindException extends SocketException
public class ConnectException extends SocketException
public class NoRouteToHostException extends SocketException

A BindException is thrown if you try to construct a Socket or ServerSocket object on
a local port that is in use or that you do not have sufficient privileges to use. A Connec
tException is thrown when a connection is refused at the remote host, which usually
happens because the host is busy or no process is listening on that port. Finally, a
NoRouteToHostException indicates that the connection has timed out.

The java.net package also includes ProtocolException, which is a direct subclass of
IOException:

public class ProtocolException extends IOException

This is thrown when data is received from the network that somehow violates the TCP/
IP specification.

None of these exception classes have any special methods you wouldn’t find in any other
exception class, but you can take advantage of these subclasses to provide more infor-
mative error messages or to decide whether retrying the offending operation is likely
to be successful.

Sockets in GUI Applications

The HotJava web browser was the first large-scale Java GUI network client. HotJava has
been discontinued, but there are still numerous network-aware client applications writ-
tenin Java, including the Eclipse IDE and the Frostwire BitTorrent client. It is completely
possible to write commercial-quality client applications in Java; and it is especially pos-
sible to write network-aware applications, both clients and servers. This section dem-
onstrates a network client, whois, to illustrate this point; and to discuss the special
considerations that arise when integrating networking code with Swing applications.
The example stops short of what could be done, but only in the user interface. All the
necessary networking code is present. Indeed, once again you find out that network
code is easy; it’s user interfaces that are hard.

268 | Chapter8: Sockets for Clients

Whois

Whois is a simple directory service protocol defined in RFC 954; it was originally de-
signed to keep track of administrators responsible for Internet hosts and domains. A
whois client connects to one of several central servers and requests directory informa-
tion for a person or persons; it can usually give you a phone number, an email address,
and a snail mail address (not necessarily current ones, though). With the explosive
growth of the Internet, flaws have become apparent in the whois protocol, most notably
its centralized nature. A more complex replacement called whois++ is documented in
RFCs 1913 and 1914 but has not been widely implemented.whois directory service
protocol)

Let’s begin with a simple client to connect to a whois server. The basic structure of the
whois protocol is:

1. The client opens a TCP socket to port 43 on the server.

2. The client sends a search string terminated by a carriage return/linefeed pair (\r\n).
The search string can be a name, a list of names, or a special command, as discussed
shortly. You can also search for domain names, like www.oreilly.com or net-
scape.com, which give you information about a network.

3. The server sends an unspecified amount of human-readable information in re-
sponse to the command and closes the connection.

4. The client displays this information to the user.

The search string the client sends has a fairly simple format. At its most basic, it’s just
the name of the person you're searching for. Here’s a simple whois search for “Harold™

$ telnet whois.internic.net 43
Trying 199.7.50.74...

Connected to whois.internic.net.
Escape character is '~]'.

Harold

Whois Server Version 2.0

Domain names in the .com and .net domains can now be registered
with many different competing registrars. Go to http://www.internic.net
for detailed information.

HAROLD . LUCKYLAND.ORG
HAROLD . FRUGAL . COM
HAROLD.NET
HAROLD . COM

To single out one record, look it up with "xxx", where xxx is one of the
of the records displayed above. If the records are the same, look them up
with "=xxx" to receive a full display for each record.

Sockets in GUI Applications | 269

>>> Last update of whois database: Sat, 30 Mar 2013 15:15:05 UTC <<<

Connection closed by foreign host.

Although the previous input has a pretty clear format, that format is regrettably non-
standard. Different whois servers can and do send decidedly different output. For ex-
ample, here are the first couple of results from the same search at the main French whois
server, whois.nic.fr:

% telnet whois.nic.fr 43
telnet whois.nic.fr 43
Trying 192.134.4.18...
Connected to winter.nic.fr.
Escape character is '~]'.
Harold

Tous droits reserves par copyright.

Voilr http://www.nic.fr/outils/dbcopyright.html
Rights restricted by copyright.

See http://www.nic.fr/outils/dbcopyright.html

person: Harold Potier

address: ARESTE

address: 154 Avenue Du Brezet

address: 63000 Clermont-Ferrand
address: France

phone: +33 4 73 42 67 67

fax-no: +33 4 73 42 67 67

nic-hdl: HP4305-FRNIC

mnt-by: OLEANE-NOC

changed: hostmaster@oleane.net 20000510
changed: migration-dbm@nic.fr 20001015
source: FRNIC

person: Harold Israel

address: LE PARADIS LATIN

address: 28 rue du Cardinal Lemoine
address: Paris, France 75005 FR

phone: +33 1 43252828

fax-no: +33 1 43296363

e-mail: info@cie.fr

nic-hdl: HI68-FRNIC

notify: info@cie.fr

changed: registrar@ns.il 19991011
changed: migration-dbm@nic.fr 20001015
source: FRNIC

Here each complete record is returned rather than just a list of sites. Other whois servers
may use still other formats. This protocol is not at all designed for machine processing.
You pretty much have to write new code to handle the output of each different whois
server. However, regardless of the output format, each response likely contains a han-

270 | Chapter8: Sockets for Clients

dle, which in the Internic output is a domain name, and in the nic.fr output is in the
nic-hdl field. Handles are guaranteed to be unique, and are used to get more specific
information about a person or a network. If you search for a handle, you will get at most
one match. If your search only has one match, either because you're lucky or youre
searching for a handle, the server returns a more detailed record. Here’s a search for
oreilly.com. Because there is only one oreilly.com in the database, the server returns all
the information it has on this domain:

% telnet whois.internic.net 43
Trying 198.41.0.6...

Connected to whois.internic.net.
Escape character is '~]'.
oreilly.com

Whois Server Version 1.3

Domain names in the .com and .net domains can now be registered
with many different competing registrars. Go to http://www.internic.net
for detailed information.

Domain Name: OREILLY.COM

Registrar: BULKREGISTER, LLC.

Whois Server: whois.bulkregister.com
Referral URL: http://www.bulkregister.com
Name Server: NS1.SONIC.NET

Name Server: NS.OREILLY.COM

Status: ACTIVE

Updated Date: 17-oct-2002

Creation Date: 27-may-1997

Expiration Date: 26-may-2004

>>> Last update of whois database: Tue, 16 Dec 2003 18:36:16 EST <<<

Connection closed by foreign host.

The whois protocol supports several flags you can use to restrict or expand your search.
For example, if you know you want to search for a person named “Elliott” but you aren’t

sure whether he spells his name “Elliot,” “Elliott,” or perhaps even something as unlikely
as “Elliotte,” you would type:

% whois Person Partial Elliot

This tells the whois server that you want only matches for people (not domains, gate-
ways, groups, or the like) whose names begin with the letters “Elliot” Unfortunately,
youneed to do a separate search if you want to find someone who spells his name “Eliot.”
The rules for modifying a search are summarized in Table 8-3. Each prefix should be
placed before the search string on the command line.

Sockets in GUI Applications | 271

Table 8-3. Whois prefixes

Prefix Meaning

Domain Find only domain records.
Gateway Find only gateway records.
Group Find only group records.
Host Find only host records.
Network Find only network records.

Organization Find only organization records.

Person Find only person records.
ASN Find only autonomous system number records.
Handle or! Search only for matching handles.

Mailbox or @ Search only for matching email addresses.

Name or : Search only for matching names.
Expand or * Search only for group records and show all individuals in that group.
Full or = Show complete record for each match.

Partial or suffix ~ Match records that start with the given string.
Summary or$ Show just the summary, even if there’s only one match.

SUBdisplay or % Show the users of the specified host, the hosts on the specified network, etc.

These keywords are all useful, but they’re way too much trouble to remember. In fact,
most people don’t even know that they exist. They just type “whois Harold” at the com-
mand line and sort through the mess that comes back. A good whois client doesn’t rely
on users remembering arcane keywords; rather, it shows them the options. Supplying
this requires a graphical user interface for end users and a better API for client pro-
grammers.

A Network Client Library

It’s best to think of network protocols like whois in terms of the bits and bytes that move
across the network, whether as packets, datagrams, or streams. No network protocol
neatly fits into a GUI (with the arguable exception of the Remote Framebuffer Protocol
used by VNC and X11). It’s usually best to encapsulate the network code into a separate
library that the GUI code can invoke as needed.

Example 8-7 is a reusable Whots class. Two fields define the state of each Whotis object:
host, an InetAddress object, and port, an int. Together, these define the server that
this particular Whotis object connects to. Five constructors set these fields from various
combinations of arguments. Furthermore, the host can be changed using the se
tHost() method.

272 | Chapter 8: Sockets for Clients

The main functionality of the class is in one method, lookUpNames(). The lookUp
Names() method returns a String containing the whois response to a given query. The
arguments specify the string to search for, what kind of record to search for, which
database to search in, and whether an exact match is required. I could have used strings
or int constants to specify the kind of record to search for and the database to search
in, but because there are only a small number of valid values, LookUpNames() defines
enums with a fixed number of members instead. This solution provides much stricter
compile-time type-checking and guarantees the Whois class won't have to handle an
unexpected value.

Example 8-7. The Whois class

import java.net.*;
import java.io.*;

public class Whois {

public final static int DEFAULT_PORT = 43;
public final static String DEFAULT_HOST = "whoils.internic.net";

private int port = DEFAULT_PORT;
private InetAddress host;

public Whois(InetAddress host, int port) {
this.host = host;
this.port = port;

}

public Whois(InetAddress host) {
this(host, DEFAULT_PORT);
}

public Whois(String hostname, int port)
throws UnknownHostException {

this(InetAddress.getByName(hostname), port);
}

public Whois(String hostname) throws UnknownHostException {
this(InetAddress.getByName(hostname), DEFAULT_PORT);
}

public Whois() throws UnknownHostException {
this(DEFAULT_HOST, DEFAULT_PORT);
}

// Items to search for

public enum SearchFor {
ANY("Any"), NETWORK("Network"), PERSON("Person"), HOST("Host"),
DOMAIN("Domain"), ORGANIZATION("Organization"), GROUP("Group"),
GATEWAY ("Gateway"), ASN("ASN");

Sockets in GUI Applications | 273

private String label;

private SearchFor(String label) {
this.label = label;
}
}

// Categories to search in
public enum SearchIn {
ALL(""), NAME("Name"), MAILBOX("Mailbox"), HANDLE("!");

private String label;

private SearchIn(String label) {
this.label = label;
}
}

public String lookUpNames(String target, SearchFor category,
SearchIn group, boolean exactMatch) throws IOException {

String suffix =
if (!exactMatch) suffix = ".";

wn,
B

String prefix = category.label + + group.label;
String query = prefix + target + suffix;

Socket socket = new Socket();
try {
SocketAddress address = new InetSocketAddress(host, port);
socket.connect(address);
Writer out
= new OutputStreamWriter(socket.getOutputStream(), "ASCII");
BufferedReader in = new BufferedReader(new
InputStreamReader(socket.getInputStream(), "ASCII"));
out.write(query + "\r\n");
out.flush();

StringBuilder response = new StringBuilder();
String thelLine = null;
while ((theLine = in.readLine()) != null) {
response.append(theLine);
response.append("\r\n");
}
return response.toString();
} finally {
socket.close();
}
}

public InetAddress getHost() {

274 | Chapter 8: Sockets for Clients

return this.host;

3

public void setHost(String host)
throws UnknownHostException {
this.host = InetAddress.getByName(host);
}
}

Figure 8-1 shows one possible interface for a graphical whois client that depends on
Example 8-7 for the actual network connections. This interface has a text field to enter
the name to be searched for and a checkbox to determine whether the match should be
exact or partial. A group of radio buttons lets users specify which group of records they
want to search. Another group of radio buttons chooses the fields that should be
searched. By default, this client searches all fields of all records for an exact match.

Whals: [orgilly cam | I Exact Match | Fing
Search for: Search In: Search Av
- Any L metwork AN fwhals imernic, net
- Person . Host © Wame
Domain . Organization ® Mailbox
_ Group T Gateway ' Handle
 ASN

Whais Server Version 1.3

Jomain names 1n The .cow and .net domains can now be registered
with many di fferent cospeting registrars. Co to http:/feew. internic.net
Tor detalled 1nTorsation.

Domain Name: DREILLY.COM

Registrar: BULKREGISTER, LLC.

Whois Server: whois.oulkregister.con
Referral URL: heep://ww.bulkregister. con
Mame Server: N51.SOMIC.NET

Mame Server: N5, OREILLY.COM

Status: ACTIVE

Updated Date: 17-oct-2002

Creation Date: 27-way-1997

Expiration Date: 26-may-2004

»» Last update of whois database: Wed, 17 Dec 2003 05:31:24 EST <<z

[

Figure 8-1. A graphical whois client

When a user enters a string in the Whois: search box and presses Enter or clicks the
Find button, the program makes a connection to the whois server and retrieves records
that match that string. These are placed in the text area in the bottom of the window.
Initially, the server is set to whois.internic.net, but the user is free to change this setting.
Example 8-8 is the program that produces this interface.

Example 8-8. A graphical Whois client interface

import java.awt.*;
import java.awt.event.*;
import java.net.¥;
import javax.swing.*;

Sockets in GUI Applications | 275

public class WhoisGUI extends JFrame {

private JTextField searchString = new JTextField(30);

private JTextArea names = new JTextArea(15, 80);

private JButton findButton = new JButton("Find");;

private ButtonGroup searchIn = new ButtonGroup();

private ButtonGroup searchFor = new ButtonGroup();

private JCheckBox exactMatch = new JCheckBox("Exact Match", true);
private JTextField chosenServer = new JTextField();

private Whois server;

public WhoisGUI(Whois whois) {
super("Whois");
this.server = whois;
Container pane = this.getContentPane();

Font f = new Font("Monospaced", Font.PLAIN, 12);
names.setFont(f);
names.setEditable(false);

JPanel centerPanel = new JPanel();
centerPanel.setlLayout(new GridLayout(1l, 1, 10, 10));
JScrollPane jsp = new JScrollPane(names);
centerPanel.add(jsp);

pane.add("Center", centerPanel);

// You don't want the buttons in the south and north
// to fill the entire sections so add Panels there
// and use FlowLayouts in the Panel

JPanel northPanel = new JPanel();

JPanel northPanelTop = new JPanel();
northPanelTop.setLayout(new FlowLayout(FlowLayout.LEFT));
northPanelTop.add(new JLabel("Whois: "));
northPanelTop.add("North", searchString);
northPanelTop.add(exactMatch);
northPanelTop.add(findButton);
northPanel.setLayout(new BorderLayout(2,1));
northPanel.add("North", northPanelTop);

JPanel northPanelBottom = new JPanel();
northPanelBottom.setLayout(new GridLayout(1,3,5,5));
northPanelBottom.add(initRecordType());
northPanelBottom.add(initSearchFields());
northPanelBottom.add(initServerChoice());
northPanel.add("Center", northPanelBottom);

pane.add("North", northPanel);
ActionListener al = new LookupNames();

findButton.addActionListener(al);
searchString.addActionListener(al);

276 | Chapter8: Sockets for Clients

private JPanel initRecordType() {

}

JPanel p = new JPanel();

p.setLayout(new GridLayout(6, 2, 5, 2));
p.add(new JLabel("Search for:"));
p.add(new JLabel(""));

JRadioButton any = new JRadioButton("Any", true);
any.setActionCommand("Any");

searchFor.add(any);

p.add(any);

.add(this.makeRadioButton("Network"));
.add(this.makeRadioButton("Person"));
.add(this.makeRadioButton("Host"));
.add(this.makeRadioButton("Domain"));
.add(this.makeRadioButton("Organization"));
.add(this.makeRadioButton("Group"));
.add(this.makeRadioButton("Gateway"));
.add(this.makeRadioButton("ASN"));

TV © U U UV OV OO

return p;

private JRadioButton makeRadioButton(String label) {

3

JRadioButton button = new JRadioButton(label, false);
button.setActionCommand(label);
searchFor.add(button);

return button;

private JRadioButton makeSearchInRadioButton(String label) {

}

JRadioButton button = new JRadioButton(label, false);
button.setActionCommand(label);

searchIn.add(button);

return button;

private JPanel initSearchFields() {

JPanel p = new JPanel();
p.setLayout(new GridLayout(6, 1, 5, 2));
p.add(new JLabel("Search In: "));

JRadioButton all = new JRadioButton("All", true);
all.setActionCommand("All");

searchIn.add(all);

p.add(all);

p.add(this.makeSearchInRadioButton("Name"));
p.add(this.makeSearchInRadioButton("Mailbox"));
p.add(this.makeSearchInRadioButton("Handle"));

Sockets in GUI Applications

277

return p;

3

private JPanel initServerChoice() {
final JPanel p = new JPanel();
p.setLayout(new GridLayout(6, 1, 5, 2));
p.add(new JLabel("Search At: "));

chosenServer.setText(server.getHost().getHostName());
p.add(chosenServer);
chosenServer.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent event) {
try {
server = new Whois(chosenServer.getText());
} catch (UnknownHostException ex) {
JOptionPane.showMessageDialog(p,
ex.getMessage(), "Alert", JOptionPane.ERROR_MESSAGE);

1)

return p;

3

private class LookupNames implements ActionListener {

public void actionPerformed(ActionEvent event) {
names.setText("");
SwingWorker<String, Object> worker = new Lookup();
worker.execute();
}
}

private class Lookup extends SwingWorker<String, Object> {

protected String doInBackground() throws Exception {
Whois.SearchIn group = Whois.SearchIn.ALL;
Whois.SearchFor category = Whois.SearchFor.ANY;

String searchForLabel = searchFor.getSelection().getActionCommand();
String searchInLabel = searchIn.getSelection().getActionCommand();

if (searchInLabel.equals("Name")) group = W

else if (searchInLabel.equals("Mailbox")) {
group = Whois.SearchIn.MAILBOX;

} else if (searchInLabel.equals("Handle")) {
group = Whois.SearchIn.HANDLE;

}

hois.SearchIn.NAME;

278 | Chapter 8: Sockets for Clients

if (searchForLabel.equals("Network")) {
category = Whols.SearchFor .NETWORK;

} else if (searchForLabel.equals("Person")) {
category = Whotls.SearchFor.PERSON;

} else if (searchForLabel.equals("Host")) {
category = Whois.SearchFor.HOST;

} else if (searchForLabel.equals("Domain")) {
category = Whotls.SearchFor.DOMAIN;

} else if (searchForLabel.equals("Organization")) {
category = Whois.SearchFor.ORGANIZATION;

} else if (searchForLabel.equals("Group")) {
category = Whotls.SearchFor.GROUP;

} else if (searchForLabel.equals("Gateway")) {
category = Whols.SearchFor.GATEWAY;

} else if (searchForlLabel.equals("ASN")) {
category = Whois.SearchFor.ASN;

}

server.setHost(chosenServer.getText());
return server.lookUpNames(searchString.getText(),
category, group, exactMatch.isSelected());

protected void done() {
try {
names.setText(get());
} catch (Exception ex) {
JOptionPane.showMessageDialog(WhoisGUI. this,
ex.getMessage(), "Lookup Failed", JOptionPane.ERROR_MESSAGE);
}
}
}

public static void main(String[] args) {
try {
Whois server = new Whois();
WhoisGUI a = new WhoisGUI(server);
a.setDefaultCloseOperation(WindowConstants.EXIT_ON_CLOSE);
a.pack();
EventQueue.invokelLater(new FrameShower(a));
} catch (UnknownHostException ex) {
JOptionPane.showMessageDialog(null, "Could not locate default host "
+ Whois.DEFAULT_HOST, "Error", JOptionPane.ERROR_MESSAGE);
}
}

private static class FrameShower implements Runnable {
private final Frame frame;

FrameShower (Frame frame) {

Sockets in GUI Applications | 279

this.frame = frame;

}

public void run() {
frame.setVisible(true);
}
}
}

The main() method is the usual block of code to start up a standalone application. It
constructs a Whois object and then uses that to construct a WhoisGUI object. Then the
WhoisGUI() constructor sets up the Swing interface. There’s a lot of redundant code
here, so it’s broken out into the private methods initSearchFields(), initServer
Choice(),makeSearchInRadioButton(),and makeSearchForRadioButton(). Asusual
with LayoutManager-based interfaces, the setup is fairly involved. Because you'd prob-
ably use a visual designer to build such an application, I won't describe it in detail here.

When the constructor returns, the main() method attaches an anonymous inner class
to the window that will close the application when the window is closed. (This isn’t in
the constructor because other programs that use this class may not want to exit the
program when the window closes.) main() then packs and shows the window. To avoid
an obscure race condition that can lead to deadlock this needs to be done in the event
dispatch thread; hence the FrameShower inner class that implements Runnable and the
call to EventQueue.invokeLater (). From that point on, all activity takes place in the
event dispatch thread.

The first event this program must respond to is the user typing a name in the Whois:
search box and either clicking the Find button or hitting Enter. In this case, the Lookup
Names inner class sets the main text to the empty string and executes a SwingWorker to
make the network connection. SwingWorker (introduced in Java 6) is a really important
class to learn if youre going to write GUI applications that access the network, or for
that matter perform any I/O at all.

The problem SwingWorker solves is this. In any Java GUI application there are two rules
you must follow in order to avoid deadlock and slowness:

o All updates to Swing components happen on the event dispatch thread.

 No slow blocking operations, especially I/O, happen on the event dispatch thread.
Otherwise a slow-to-respond server can hang the entire application.

These two rules are at loggerheads for network- and I/O-heavy code because the part
of the code that performs the I/O can’t update the GUI and vice versa. These have to
happen in two different threads.

280 | Chapter8: Sockets for Clients

There are several ways to sidestep this paradox, but prior to Java 6 they’re all quite
complex. In Java 6 and later, however, the solution is easy. Define a subclass of Swing
Worker and override two methods:

1. The doInBackground() method performs the long-running, I/O-heavy operation.
It does not interact with the GUI. It can return any convenient type and throw any
exception.

2. The done() method is automatically invoked on the event dispatch thread after the
doInBackground() method returns, so it can update the GUL This method can call
the get() method to retrieve the return value calculated by doInBackground().

Example 8-8 uses an inner class named Lookup as its SwingWorker. The doInBack
ground() method talks to the whois server, and returns the server’s response as a
String. The done() method updates the names text area with the server’s response.

The second event this program must respond to is the user typing a new host in the
server text field. In this case, an anonymous inner class tries to construct a new Whotis
object and stores it in the server field. If it fails (e.g., because the user mistyped the
hostname), the old server is restored. An alert box informs the user of this event.

This is not a perfect client by any means. The most glaring omission is that it doesn’t
provide a way to save the data and quit the program. However, it does demonstrate how
to safely make network connections from a GUI program without blocking the event
dispatch thread.

Sockets in GUI Applications | 281

CHAPTER 9
Sockets for Servers

The previous chapter discussed sockets from the standpoint of clients: programs that
open a socket to a server that’s listening for connections. However, client sockets them-
selves aren't enough; clients aren’t much use unless they can talk to a server, and the
Socket class discussed in the previous chapter is not sufficient for writing servers. To
create a Socket, you need to know the Internet host to which you want to connect.
When you're writing a server, you don’t know in advance who will contact you; and even
if you did, you wouldn’t know when that host wanted to contact you. In other words,
servers are like receptionists who sit by the phone and wait for incoming calls. They
don’t know who will call or when, only that when the phone rings, they have to pick it
up and talk to whoever is there. You can’t program that behavior with the Socket class
alone.

For servers that accept connections, Java provides a ServerSocket class that represents
server sockets. In essence, a server socket’s job is to sit by the phone and wait for in-
coming calls. More technically, a server socket runs on the server and listens for in-
coming TCP connections. Each server socket listens on a particular port on the server
machine. When a client on a remote host attempts to connect to that port, the server
wakes up, negotiates the connection between the client and the server, and returns a
regular Socket object representing the socket between the two hosts. In other words,
server sockets wait for connections while client sockets initiate connections. Once a
ServerSocket has set up the connection, the server uses a regular Socket object to send
data to the client. Data always travels over the regular socket.

Using ServerSockets

The ServerSocket class contains everything needed to write servers in Java. It has con-
structors that create new ServerSocket objects, methods that listen for connections on

283

a specified port, methods that configure the various server socket options, and the usual
miscellaneous methods such as toString().

In Java, the basic life cycle of a server program is this:

1.

5.
6.

A new ServerSocket is created on a particular port using a ServerSocket() con-
structor.

The ServerSocket listens for incoming connection attempts on that port using its
accept() method. accept() blocks until a client attempts to make a connection,
at which point accept() returns a Socket object connecting the client and the
server.

Depending on the type of server, either the Socket’s getInputStream() method,
getOutputStream() method, or both are called to get input and output streams
that communicate with the client.

The server and the client interact according to an agreed-upon protocol until it is
time to close the connection.

The server, the client, or both close the connection.

The server returns to step 2 and waits for the next connection.

Let’s demonstrate with one of the simpler protocols, daytime. Recall from the Chap-
ter 8 that a daytime server listens on port 13. When a client connects, the server sends
the time in a human-readable format and closes the connection. For example, here’s a
connection to the daytime server at time-a.nist.gov:

$ telnet time-a.nist.gov 13
Trying 129.6.15.28...
Connected to time-a.nist.gov.
Escape character is '~]'.

56375 13-03-24 13:37:50 50 0 0 888.8 UTC(NIST) *
Connection closed by foreign host.

Implementing your own daytime server is easy. First, create a server socket that listens
on port 13:

ServerSocket server = new ServerSocket(13);

Next, accept a connection:

Socket connection = server.accept();

The accept() call blocks. That is, the program stops here and waits, possibly for hours
or days, until a client connects on port 13. When a client does connect, the accept()
method returns a Socket object.

284

| Chapter9: Sockets for Servers

Note that the connection is returned a java.net.Socket object, the same as you used
for clients in the previous chapter. The daytime protocol requires the server (and only
the server) to talk, so getan OutputStream from the socket. Because the daytime protocol
requires text, chain this to an OutputStreamiriter:

OutputStream out = connection.getOutputStream();

Writer writer = new OutputStreamWriter(writer, "ASCII");
Now get the current time and write it onto the stream. The daytime protocol doesn’t
require any particular format other than that it be human readable, so let Java pick for
you:

Date now = new Date();

out.write(now.toString() +"\r\n");
Do note, however, the use of a carriage return/linefeed pair to terminate the line. This
is almost always what you want in a network server. You should explicitly choose this
rather than using the system line separator, whether explicitly with System.getProper
ty("line.separator") or implicitly via a method such as println().

Finally, flush the connection and close it:

out.flush();
connection.close();

You won't always have to close the connection after just one write. Many protocols, dict
and HTTP 1.1 for instance, allow clients to send multiple requests over a single socket
and expect the server to send multiple responses. Some protocols such as FTP can even
hold a socket open indefinitely. However, the daytime protocol only allows a single
response.

If the client closes the connection while the server is still operating, the input and/or
output streams that connect the server to the client throw an InterruptedIOExcep
tion on the next read or write. In either case, the server should then get ready to process
the next incoming connection.

Of course, you'll want to do all this repeatedly, so you’ll put this all inside a loop. Each
pass through the loop invokes the accept () method once. This returns a Socket object
representing the connection between the remote client and the local server. Interaction
with the client takes place through this Socket object. For example:

ServerSocket server = new ServerSocket(port);
while (true) {
try (Socket connection = server.accept()) {
Writer out = new OutputStreamWriter(connection.getOutputStream());
Date now = new Date();
out.write(now.toString() +"\r\n");
out.flush();
} catch (IOException ex) {
// problem with one client; don't shut down the server

Using ServerSockets | 285

System.err.println(ex.getMessage());
}
}

This is called an iterative server. There’s one big loop, and in each pass through the loop
a single connection is completely processed. This works well for a very simple protocol
with very small requests and responses like daytime, though even with this simple a
protocol it’s possible for one slow client to delay other faster clients. Upcoming examples
will address this with multiple threads or asynchronous I/O.

When exception handling is added, the code becomes somewhat more convoluted. It’s
important to distinguish between exceptions that should probably shut down the server
and log an error message, and exceptions that should just close that active connection.
Exceptions within the scope of a particular connection should close that connection,
but not affect other connections or shut down the server. Exceptions outside the scope
of an individual request probably should shut down the server. To organize this, nest
the try blocks:

ServerSocket server = null;
try {
server = new ServerSocket(port);
while (true) {
Socket connection = null;
try {
connection = server.accept();
Writer out = new OutputStreamWriter(connection.getOutputStream());
Date now = new Date();
out.write(now.toString() +"\r\n");
out.flush();
connection.close();
} catch (IOException ex) {
// this request only; ignore

} finally {
try {
if (connection != null) connection.close();
} catch (IOException ex) {}
}
}

} catch (IOException ex) {
ex.printStackTrace();

} finally {
try {
if (server != null) server.close();
} catch (IOException ex) {}
}

Always close a socket when you're finished with it. In Chapter 8, I said that a client
shouldn’t rely on the other side of a connection to close the socket; that goes triple for
servers. Clients time out or crash; users cancel transactions; networks go down in high-
traffic periods; hackers launch denial-of-service attacks. For any of these or a hundred

286 | Chapter9: Sockets for Servers

more reasons, you cannot rely on clients to close sockets, even when the protocol re-
quires them to, which this one doesn’t.

Example 9-1 puts this all together. It uses Java 7’s try-with-resources to autoclose the
sockets.

Example 9-1. A daytime server

import java.net.¥*;
import java.ilo.*;
import java.util.Date;

public class DaytimeServer {
public final static int PORT = 13;

public static void main(String[] args) {
try (ServerSocket server = new ServerSocket(PORT)) {
while (true) {
try (Socket connection = server.accept()) {
Writer out = new OutputStreamWriter(connection.getOutputStream());
Date now = new Date();
out.write(now.toString() +"\r\n");
out.flush();
connection.close();
} catch (IOException ex) {}
}
} catch (IOException ex) {
System.err.println(ex);
}
}
}

The class has a single method, main(), which does all the work. The outer try block
traps any IOExceptions that may arise while the ServerSocket object server is con-
structed on the daytime port. The inner try block watches for exceptions thrown while
the connections are accepted and processed. The accept() method is called within an
infinite loop to watch for new connections; like many servers, this program never ter-
minates but continues listening until an exception is thrown or you stop it manually.

R
oy

The command for stopping a program manually depends on your
system; under Unix, Windows, and many other systems, Ctrl-C will
%' do the job. If you are running the server in the background on a Unix
system, stop it by finding the server’s process ID and killing it with the
kill command (kill pid).

Sy

Using ServerSockets | 287

When a client connects, accept() returns a Socket, which is stored in the local variable
connection, and the program continues. It calls getOutputStream() to get the output
stream associated with that Socket and then chains that output stream to a new Out
putStreamhriter, out. A new Date object provides the current time. The content is
sent to the client by writing its string representation on out with write().

Connecting from Telnet, you should see something like this:

$ telnet localhost 13

Trying 127.0.0.1...

Connected to localhost.

Escape character is '~]'.

Sat Mar 30 16:15:10 EDT 2013
Connection closed by foreign host

A
N If you run this program on Unix (including Linux and Mac OS X), you
WS 4. need torun itas root in order to connect to port 13. If you don’t want

"ok to or can’t run it as root, change the port number to something above

1024—say, 1313.

Serving Binary Data

Sending binary, nontext data is not significantly harder. You just use an Output
Stream that writes a byte array rather than a Writer that writes a String. Example 9-2
demonstrates with an iterative time server that follows the time protocol outlined in
RFC868. When a client connects, the server sends a 4-byte, big-endian, unsigned integer
specifying the number of seconds that have passed since 12:00 A.M., January 1, 1900,
GMT (the epoch). Once again, the current time is found by creating a new Date object.
However, because Java’s Date class counts milliseconds since 12:00 A.M., January 1,
1970, GMT rather than seconds since 12:00 A.M., January 1, 1900, GMT, some con-
version is necessary.

Example 9-2. A time server
import java.io.*;
import java.net.*;
import java.util.Date;
public class TimeServer {
public final static int PORT = 37;
public static void main(String[] args) {
// The time protocol sets the epoch at 1900,

// the Date class at 1970. This number
// converts between them.

288 | Chapter9: Sockets for Servers

long differenceBetweenEpochs = 2208988800L;

try (ServerSocket server = new ServerSocket(PORT)) {
while (true) {
try (Socket connection = server.accept()) {
OutputStream out = connection.getOutputStream();
Date now = new Date();
long msSince1970 = now.getTime();
long secondsSincel1970 = msSince1970/1000;
long secondsSince1900 = secondsSince1970
+ differenceBetweenEpochs;
byte[] time = new byte[4];
time[0]
= (byte) ((secondsSincel900 & 0x00000OOOFFOOOOOOL) >> 24);
time[1]
= (byte) ((secondsSincel900 & 0x00000O0OOOOFFOOOOL) >> 16);
time[2]
= (byte) ((secondsSincel900 & 0x00000000O0OOOFFOOL) >> 8);
time[3] = (byte) (secondsSince1900 & 0x00000000000000FFL);
out.write(time);
out.flush();
} catch (IOException ex) {
System.err.println(ex.getMessage());
}
}
} catch (IOException ex) {
System.err.println(ex);
}
}
}

Aswith the TimeClient of the previous chapter, most of the effort here goes into working
with a data format (32-bit unsigned integers) that Java doesn’t natively support.

Multithreaded Servers

Daytime and time are both very quick protocols. The server sends a few dozen bytes at
most and then closes the connection. It’s plausible here to process each connection fully
before moving on to the next one. Even in that case, though, it is possible that a slow or
crashed client might hang the server for a few seconds until it notices the socket is
broken. If the sending of data can take a significant amount of time even when client
and server are behaving, you really don't want each connection to wait for the next.

Old-fashioned Unix servers such as wu-ftpd create a new process to handle each con-
nection so that multiple clients can be serviced at the same time. Java programs should
spawn a thread to interact with the client so that the server can be ready to process the
next connection sooner. A thread places a far smaller load on the server than a complete
child process. In fact, the overhead of forking too many processes is why the typical
Unix FTP server can't handle more than roughly 400 connections without slowing to a

Using ServerSockets | 289

crawl. On the other hand, if the protocol is simple and quick and allows the server to
close the connection when it’s through, it will be more efficient for the server to process
the client request immediately without spawning a thread.

The operating system stores incoming connection requests addressed to a particular
port in a first-in, first-out queue. By default, Java sets the length of this queue to 50,
although it can vary from operating system to operating system. Some operating systems
(not Solaris) have a maximum queue length. For instance, on FreeBSD, the default
maximum queue length is 128. On these systems, the queue length for a Java server
socket will be the largest operating-system allowed value less than or equal to 50. After
the queue fills to capacity with unprocessed connections, the host refuses additional
connections on that port until slots in the queue open up. Many (though not all) clients
will try to make a connection multiple times if their initial attempt is refused. Several
ServerSocket constructors allow you to change the length of the queue if its default
length isn’t large enough. However, you won't be able to increase the queue beyond the
maximum size that the operating system supports. Whatever the queue size, though,
you want to be able to empty it faster than new connections are coming in, even if it
takes a while to process each connection.

The solution here is to give each connection its own thread, separate from the thread
that accepts incoming connections into the queue. For instance, Example 9-3 is a day-
time server that spawns a new thread to handle each incoming connection. This prevents
one slow client from blocking all the other clients. This is a thread per connection design.

Example 9-3. A multithreaded daytime server

import java.net.*;
import java.ilo.*;
import java.util.Date;

public class MultithreadedDaytimeServer {
public final static int PORT = 13;

public static void main(String[] args) {
try (ServerSocket server = new ServerSocket(PORT)) {
while (true) {
try {
Socket connection = server.accept();
Thread task = new DaytimeThread(connection);
task.start();
} catch (IOException ex) {}
}
} catch (IOException ex) {
System.err.println("Couldn't start server");
}
}

private static class DaytimeThread extends Thread {

290 | Chapter9: Sockets for Servers

private Socket connection;

DaytimeThread(Socket connection) {
this.connection = connection;

}

public void run() {
try {
Writer out = new OutputStreamWriter(connection.getOutputStream());
Date now = new Date();
out.write(now.toString() +"\r\n");
out.flush();
} catch (IOException ex) {
System.err.println(ex);
} finally {
try {
connection.close();
} catch (IOException e) {
// ignore;

Example 9-3 uses try-with-resources to autoclose the server socket. However, it delib-
erately does not use try-with-resources for the client sockets accepted by the server
socket. Thisis because the client socket escapes from the try block into a separate thread.
If you used try-with-resources, the main thread would close the socket as soon as it got
to the end of the while loop, likely before the spawned thread had finished using it.

There’s actually a denial-of-service attack on this server though. Because Example 9-3
spawns a new thread for each connection, numerous roughly simultaneous incoming
connections can cause it to spawn an indefinite number of threads. Eventually, the Java
virtual machine will run out of memory and crash. A better approach is to use a fixed
thread pool as described in Chapter 3 to limit the potential resource usage. Fifty threads
should be plenty. Example 9-4 shouldn't crash no matter what load it’s under. It may
start refusing connections, but it won't crash.

Example 9-4. A daytime server using a thread pool

import java.io.*;

import java.net.*;

import java.util.*;

import java.util.concurrent.*;

public class PooledDaytimeServer {

Using ServerSockets | 291

public final static int PORT = 13;
public static void main(String[] args) {
ExecutorService pool = Executors.newFixedThreadPool(50);

try (ServerSocket server = new ServerSocket(PORT)) {
while (true) {
try {
Socket connection = server.accept();
Callable<Void> task = new DaytimeTask(connection);
pool.submit(task);
} catch (IOException ex) {}
}
} catch (IOException ex) {
System.err.println("Couldn't start server");
}
}

private static class DaytimeTask implements Callable<Void> {
private Socket connection;

DaytimeTask(Socket connection) {
this.connection = connection;

}

public Void call() {
try {
Writer out = new OutputStreamWriter(connection.getOutputStream());
Date now = new Date();
out.write(now.toString() +"\r\n");
out.flush();
} catch (IOException ex) {
System.err.println(ex);
} finally {
try {
connection.close();
} catch (IOException e) {
// ignore;
}
}
return null;
}
}
}

Example 9-4 is structured much like Example 9-3. The single difference is that it uses a
Callablerather thana Thread subclass, and rather than starting threads it submits these
callables to an executor service preconfigured with 50 threads.

292 | (Chapter9: Sockets for Servers

Writing to Servers with Sockets

In the examples so far, the server has only written to client sockets. It hasn't read from
them. Most protocols, however, require the server to do both. This isn’t hard. You'll
accept a connection as before, but this time ask for both an InputStream and an Out
putStream. Read from the client using the InputStream and write to it using the Out
putStream. The main trick is understanding the protocol: when to write and when to
read.

The echo protocol, defined in RFC 862, is one of the simplest interactive TCP services.
The client opens a socket to port 7 on the echo server and sends data. The server sends
the data back. This continues until the client closes the connection. The echo protocol
is useful for testing the network to make sure that data is not mangled by a misbehaving
router or firewall. You can test echo with Telnet like this:

$ telnet rama.poly.edu 7
Trying 128.238.10.212...
Connected to rama.poly.edu.
Escape character is '~]'.
This is a test

This 1s a test

This 1s another test
This is another test
9876543210

9876543210

]

telnet> close

Connection closed.

This sample is line oriented because that’s how Telnet works. It reads a line of input from
the console, sends it to the server, then waits to read a line of output it gets back. However,
the echo protocol doesn’t require this. It echoes each byte as it receives it. It doesn’t really
care whether those bytes represent characters in some encoding or are divided into lines.
Unlike many protocols, echo does not specify lockstep behavior where the client sends
a request but then waits for the full server response before sending any more data.

Unlike daytime and time, in the echo protocol the client is responsible for closing the
connection. This makes it even more important to support asynchronous operation
with many threads because a single client can remain connected indefinitely. In
Example 9-5, the server spawns up to 500 threads.

Example 9-5. An echo server

import java.nio.¥*;
import java.nio.channels.*;
import java.net.¥*;
import java.util.*;
import java.io.IOException;

Using ServerSockets | 293

public class EchoServer {

public static int DEFAULT_PORT = 7;

public static void main(String[] args) {

int port;
try {
port = Integer.parselnt(args[0]);
} catch (RuntimeException ex) {
port = DEFAULT_PORT;
}

System.out.println("Listening for connections on port

+ port);

ServerSocketChannel serverChannel;
Selector selector;
try {
serverChannel = ServerSocketChannel.open();
ServerSocket ss = serverChannel.socket();
InetSocketAddress address = new InetSocketAddress(port);
ss.bind(address);
serverChannel.configureBlocking(false);
selector = Selector.open();
serverChannel.register(selector, SelectionKey.OP_ACCEPT);
} catch (IOException ex) {
ex.printStackTrace();
return;

}

while (true) {
try {
selector.select();
} catch (IOException ex) {
ex.printStackTrace();
break;

}

Set<SelectionKey> readyKeys = selector.selectedKeys();
Iterator<SelectionKey> iterator = readyKeys.iterator();
while (iterator.hasNext()) {
SelectionKey key = iterator.next();
iterator.remove();
try {
if (key.isAcceptable()) {
ServerSocketChannel server = (ServerSocketChannel) key.channel();
SocketChannel client = server.accept();
System.out.println("Accepted connection from
client.configureBlocking(false);
SelectionKey clientKey = client.register(
selector, SelectionKey.OP_WRITE | SelectionKey.OP_READ);
ByteBuffer buffer = ByteBuffer.allocate(100);
clientKey.attach(buffer);

+ client);

294

| Chapter 9: Sockets for Servers

}

if (key.isReadable()) {
SocketChannel client = (SocketChannel) key.channel();
ByteBuffer output = (ByteBuffer) key.attachment();
client.read(output);

}

if (key.isWritable()) {
SocketChannel client = (SocketChannel) key.channel();
ByteBuffer output = (ByteBuffer) key.attachment();
output.flip();
client.write(output);
output.compact();

}
} catch (IOException ex) {
key.cancel();

try {
key.channel().close();
} catch (IOException cex) {}

Closing Server Sockets

If you're finished with a server socket, you should close it, especially if the program is
going to continue to run for some time. This frees up the port for other programs that
may wish to use it. Closing a ServerSocket should not be confused with closing a
Socket. Closing a ServerSocket frees a port on the local host, allowing another server
to bind to the port; it also breaks all currently open sockets that the ServerSocket has
accepted.

Server sockets are closed automatically when a program dies, so it’s not absolutely nec-
essary to close them in programs that terminate shortly after the ServerSocket is no
longer needed. Nonetheless, it doesn’t hurt. Programmers often follow the same close-
if-not-null patternina try-finally block that you're already familiar with from streams
and client-side sockets:

ServerSocket server = null;
try {
server = new ServerSocket(port);
// ... work with the server socket
} finally {
if (server !'= null) {
try {
server.close();
} catch (IOException ex) {
// ignore
}

Using ServerSockets | 295

}
}

You can improve this slightly by using the noargs ServerSocket() constructor, which

does not throw any exceptions and does not bind to a port. Instead, you call the bind()
method to bind to a socket address after the ServerSocket () object has been construc-

ted:

ServerSocket server = new ServerSocket();

try {
SocketAddress address = new InetSocketAddress(port);
server.bind(address);

// ... work with the server socket
} finally {
try {

server.close();
} catch (IOException ex) {
// ignore
}
}
In Java 7, ServerSocket implements AutoCloseable so you can take advantage of try-
with-resources instead:
try (ServerSocket server = new ServerSocket(port)) {
// ... work with the server socket

}

After a server socket has been closed, it cannot be reconnected, even to the same port.

The isClosed() method returns true if the ServerSocket has been closed, false if it
hasn’t:

public boolean isClosed()

ServerSocket objects that were created with the noargs ServerSocket() constructor
and not yet bound to a port are not considered to be closed. Invoking isClosed() on
these objects returns false. The isBound() method tells you whether the ServerSock
et has been bound to a port:

public boolean isBound()

As with the isBound() method of the Socket class discussed in the Chapter 8, the name
is a little misleading. {sBound() returns true if the ServerSocket has ever been bound
toaport, even ifit’s currently closed. If you need to test whether a ServerSocket is open,
you must check both that isBound() returns true and that isClosed() returns false.
For example:

public static boolean isOpen(ServerSocket ss) {
return ss.isBound() && !ss.isClosed();

}

296 | Chapter9: Sockets for Servers

Logging

Servers run unattended for long periods of time. It’s often important to debug what
happened when in a server long after the fact. For this reason, it’s advisable to store
server logs for at least some period of time.

What to Log

There are two primary things you want to store in your logs:

o Requests

o Server errors

Indeed, servers often keep two different logfiles for these two different items. The audit
log usually contains one entry for each connection made to the server. Servers that
perform multiple operations per connection may have one entry per operation instead.
For instance, a dict server might log one entry for each word a client looks up.

The error log contains mostly unexpected exceptions that occurred while the server was
running. For instance, any NullPointerException that happens should be logged here
because it indicates a bug in the server you’ll need to fix. The error log does not contain
client errors, such as a client that unexpectedly disconnects or sends a malformed re-
quest. These go into the request log. The error log is exclusively for unexpected excep-
tions.

The general rule of thumb for error logs is that every line in the error log should be
looked at and resolved. The ideal number of entries in an error log is zero. Every entry
in this log represents a bug to be investigated and resolved. If investigation of an error
log entry ends with the decision that that exception is not really a problem, and the code
is working as intended, remove the log statement. Error logs that fill up with too many
false alarms rapidly become ignored and useless.

For the same reason, do not keep debug logs in production. Do not log every time you
enter a method, every time a condition is met, and so on. No one ever looks at these
logs. They just waste space and hide real problems. If you need method-level logging
for debugging, put it in a separate file, and turn it off in the global properties file when
running in production.

More advanced logging systems provide log analysis tools that enable you to do things
like show only messages with priority INFO or higher, or only show messages that
originated from a certain part of the code. These tools make it more feasible to keep a
single logfile or database, perhaps even share one log among many different binaries or
programs. Nonetheless, the principle still applies that a log record no one will ever look
at is worthless at best and more often than not distracting or confusing.

Logging | 297

Do not follow the common antipattern of logging everything you can think of just in
case someone might need it someday. In practice, programmers are terrible at guessing
in advance which log messages they might need for debugging production problems.
Once a problem occurs, it is sometimes obvious what messages you need; but it is rare
to be able to anticipate this in advance. Adding “just in case” messages to logfiles usually
means that when a problem does occur, you're frantically hunting for the relevant mes-
sages in an even bigger sea of irrelevant data.

How to Log

Many legacy programs dating back to Java 1.3 and earlier still use third-party logging
libraries such as log4j or Apache Commons Logging, but the java.util.logging
package available since Java 1.4 suffices for most needs. Choosing it avoids a lot of
complex third-party dependencies.

Although you can load a logger on demand, it’s usually easiest to just create one per
class like so:

private final static Logger auditlLogger = Logger.getlLogger('"requests");

Loggers are thread safe, so there’s no problem storing them in a shared static field.
Indeed, they almost have to be because even if the Logger object were not shared between
threads, the logfile or database would be. This is important in highly multithreaded
servers.

This example outputs to a log named “requests.” Multiple Logger objects can output to
the same log, but each logger always logs to exactly one log. What and where the log is
depends on external configuration. Most commonly it’s a file, which may or may not be
named “requests”; but it can be a database, a SOAP service running on a different server,
another Java program on the same host, or something else.

Once you have alogger, you can write to it using any of several methods. The most basic
is Tog(). For example, this catch block logs an unexpected runtime exception at the
highest level:

catch (RuntimeException ex) {
logger.log(Level.SEVERE, "unexpected error
}
Including the exception instead of just a message is optional but customary when log-
ging from a catch block.

+ ex.getMessage(), ex);

There are seven levels defined as named constants in java.util.logging.Level in
descending order of seriousness:

o Level.SEVERE (highest value)
o Level.WARNING

298 | Chapter9: Sockets for Servers

o Level.INFO

o Level.CONFIG

e Level.FINE

e Level.FINER

o Level.FINEST (lowest value)

I use info for audit logs and warning or severe for error logs. Lower levels are for de-
bugging only and should not be used in production systems. Info, severe, and warning
all have convenience helper methods that log at that level. For example, this statement
logs a hit including the date and the remote address:

logger.info(new Date() + + connection.getRemoteSocketAddress());

You can use any format that’s convenient for the individual log records. Generally, each
record should contain a timestamp, the client address, and any information specific to
the request that was being processed. If the log message represents an error, include the
specific exception that was thrown. Java fills in the location in the code where the mes-
sage was logged automatically, so you don’t need to worry about that.

Example 9-6 demonstrates by adding logging to the daytime server.

Example 9-6. A daytime server that logs requests and errors

import java.io.*;

import java.net.*;

import java.util.Date;

import java.util.concurrent.*;
import java.util.logging.*;

public class LoggingDaytimeServer {
public final static int PORT = 13;

private final static Logger auditLogger
private final static Logger errorlLogger

Logger.getlLogger("requests");
Logger.getLogger("errors");

public static void main(String[] args) {
ExecutorService pool = Executors.newFixedThreadPool(50);

try (ServerSocket server = new ServerSocket(PORT)) {
while (true) {

try {
Socket connection = server.accept();
Callable<Void> task = new DaytimeTask(connection);
pool.submit(task);

} catch (IOException ex) {
errorLogger.log(Level.SEVERE, "accept error", ex);

} catch (RuntimeException ex) {
errorLogger.log(Level.SEVERE, "unexpected error

+ ex.getMessage(), ex);

Logging | 299

}
}

} catch (IOException ex) {

errorLogger.log(Level.SEVERE, "Couldn't start server", ex);
} catch (RuntimeException ex) {

errorLogger.log(Level.SEVERE, "Couldn't start server:
}

}

+ ex.getMessage(), ex);

private static class DaytimeTask implements Callable<Void> {
private Socket connection;

DaytimeTask(Socket connection) {
this.connection = connection;

}

public Void call() {
try {
Date now = new Date();
// write the log entry first in case the client disconnects
auditLogger.info(now + " " + connection.getRemoteSocketAddress());
Writer out = new OutputStreamWriter(connection.getOutputStream());
out.write(now.toString() +"\r\n");
out.flush();
} catch (IOException ex) {
// client disconnected; ignore;
} finally {
try {
connection.close();
} catch (IOException ex) {
// ignore;
}
}

return null;

}
3
}

Aswell aslogging, Example 9-6 has also added catch blocks for RuntimeException that
cover most of the code and all of the network connections. This is strongly advisable in
network servers. Thelast thing you want is for your entire server to fall down just because
one request went down an unplanned code path and threw an I1legalArgumentExcep
tion. Usually when this happens that request is going to fail, but you can continue
processing other requests. If you're even more careful, you can send the client the ap-
propriate error response. In HT'TP, this would be a 500 internal server error.

Not every exception automatically turns into an error log entry. For example, if a client
disconnects while youre writing the time, that's an I0Exception. However, it's nota bug

300 | Chapter9: Sockets for Servers

Or a server error, so it isn’t written to the error log. In some situations, you might want
to log it in the audit log, or a third location. However, remember the golden rule of
logging: if no one’s going to look at it, don’t log it. Unless you really plan to investigate
and do something about client disconnects, don’t bother to record them.

By default, the logs are just output to the console. For example, here’s the output from
the preceding server when I connected to it a few times in quick succession:

Apr 13, 2013 8:54:50 AM LoggingDaytimeServerSDaytimeTask call
INFO: Sat Apr 13 08:54:50 EDT 2013 /0:0:0:0:0:0:0:1:56665
Apr 13, 2013 8:55:08 AM LoggingDaytimeServerSDaytimeTask call
INFO: Sat Apr 13 08:55:08 EDT 2013 /0:0:0:0:0:0:0:1:56666
Apr 13, 2013 8:55:16 AM LoggingDaytimeServerSDaytimeTask call
INFO: Sat Apr 13 08:55:16 EDT 2013 /0:0:0:0:0:0:0:1:56667

You’ll want to configure the runtime environment such that logs go to a more permanent

destination. Although you can specify this in code, it’s usually advisable to set this up
in a configuration file so log locations can be changed without recompiling.

The java.util.logging.config.file system property points to a file in the normal
properties format that controls the logging. You set this property by passing the
-Djava.util.logging.config.file=_filename_ argument when launching the vir-
tual machine. For instance, in Mac OS X, it might be set in the VMOptions in the In-

fo.plist file:

<key>Java</key>
<dict>
<key>VMOptions</key>
<array>
<string>-Djava.util.logging.config.file=/opt/daytime/logging.properties
</string>
</array>
</dict>

Example 9-7 is a sample logging properties file that specifies:

o Logs should be written to a file.

o The requests log should be in /var/logs/daytime/requests.log at level Info.
« The errors log should be in /var/logs/daytime/requests.log at level Severe.
o Limit the log size to about 10 megabytes, then rotate.

o Keep two logs: the current one and the previous one.

o Use the basic text formatter (not XML).

o Each line of the logfile should be in the form level message timestamp.

Logging | 301

Example 9-7. A logging properties file

handlers=java.util.logging.FileHandler
java.util.logging.FileHandler.pattern = /var/logs/daytime/requests.log
java.util.logging.FileHandler.limit = 10000000
java.util.logging.FileHandler.count = 2
java.util.logging.FileHandler.formatter = java.util.logging.SimpleFormatter
java.util.logging.FileHandler.append = true
java.util.logging.SimpleFormatter.format=%4$s: %5$s [%1$tc]%n

requests.level = INFO
audit.level = SEVERE

Here’s some typical log output (note that it looks like the timestamp is doubled in request
messages because the log message also includes the current time; this would not typically
be the case for a server whose purpose was anything other than serving the current
time):
Couldn't start server [Sat Apr 13 10:07:01 EDT 2013]
Sat Apr 13 10:08:05 EDT 2013 /0:0:0:0:0:0:0:1:57275
[Sat Apr 13 10:08:05 EDT 2013]

Sat Apr 13 10:08:06 EDT 2013 /0:0:0:0:0:0:0:1:57276
[Sat Apr 13 10:08:06 EDT 2013]

\

The one thing I don’t like about the Java Logging API is that it doesn’t
. give you an easy way to specify by configuration alone that different
%' messages belong in different logs. For instance, you can't easily sepa-
rate your error and your audit log. It can be done, but it requires you
to define a new subclass of FileHandler for each separate log so you
can assign it a new file.

Finally, once you've configured your servers with logging, don’t forget to look in them,
especially the error logs. There’s no point to a logfile no one ever looks at. You’ll also
want to plan for and implement log rotation and retention policies. Hard drives get
bigger every year, but it’s still possible for a high-volume server to fill up a filesystem
with log data if you aren’t paying attention. Murphy’s law says this is most likely to
happen at 4:00 A.M. on New Year’s Day when you’re on vacation halfway around the
world.

Constructing Server Sockets

There are four public ServerSocket constructors:

public ServerSocket(int port) throws BindException, IOException
public ServerSocket(int port, int queuelLength)
throws BindException, IOException
public ServerSocket(int port, int queuelLength, InetAddress bindAddress)

302 | Chapter9: Sockets for Servers

throws IOException
public ServerSocket() throws IOException

These constructors specify the port, the length of the queue used to hold incoming
connection requests, and the local network interface to bind to. They pretty much all
do the same thing, though some use default values for the queue length and the address
to bind to.

For example, to create a server socket that would be used by an HTTP server on port
80, you would write:

ServerSocket httpd = new ServerSocket(80);

To create a server socket that would be used by an HTTP server on port 80 and queues
up to 50 unaccepted connections at a time:

ServerSocket httpd = new ServerSocket(80, 50);

If you try to expand the queue past the operating system’s maximum queue length, the
maximum queue length is used instead.

By default, if a host has multiple network interfaces or IP addresses, the server socket
listens on the specified port on all the interfaces and IP addresses. However, you can
add a third argument to bind only to one particular local IP address. That is, the server
socket only listens for incoming connections on the specified address; it won't listen for
connections that come in through the host’s other addresses.

For example, login.ibiblio.org s a particular Linux box in North Carolina. It’s connected
to the Internet with the IP address 152.2.210.122. The same box has a second Ethernet
card with thelocal IP address 192.168.210.122 that is not visible from the public Internet,
only from the local network. If, for some reason, you wanted to run a server on this host
that only responded to local connections from within the same network, you could
create a server socket that listens on port 5776 of 192.168.210.122 but not on port 5776
of 152.2.210.122, like so:

InetAddress local = InetAddress.getByName("192.168.210.122");
ServerSocket httpd = new ServerSocket(5776, 10, local);

In all three constructors, you can pass 0 for the port number so the system will select
an available port for you. A port chosen by the system like this is sometimes called an
anonymous port because you don’t know its number in advance (though you can find
out after the port has been chosen). This is often useful in multisocket protocols such
as FTP. In passive FTP the client first connects to a server on the well-known port 21,
so the server has to specify that port. However, when a file needs to be transferred, the
server starts listening on any available port. The server then tells the client what other
port it should connect to for data using the command connection already open on port
21. Thus, the data port can change from one session to the next and does not need to
be known in advance. (Active FTP is similar except the client listens on an ephemeral
port for the server to connect to it, rather than the other way around.)

Constructing Server Sockets | 303

All these constructors throw an IOException, specifically, a BindException, if the
socket cannot be created and bound to the requested port. An I0OException when cre-
ating a ServerSocket almost always means one of two things. Either another server
socket, possibly from a completely different program, is already using the requested
port, or you're trying to connect to a port from 1 to 1023 on Unix (including Linux and
Mac OS X) without root (superuser) privileges.

You can take advantage of this to write a variation on the LowPortScanner program of
the previous chapter. Rather than attempting to connect to a server running on a given
port, you instead attempt to open a server on that port. If it's occupied, the attempt will
fail. Example 9-8 checks for ports on the local machine by attempting to create Server
Socket objects on them and seeing on which ports that fails. If you're using Unix and
are not running as root, this program works only for ports 1024 and above.

Example 9-8. Look for local ports

import java.ilo.*;
import java.net.¥;

public class LocalPortScanner {
public static void main(String[] args) {

for (int port = 1; port <= 65535; port++) {
try {
// the next line will fail and drop into the catch block if
// there is already a server running on the port
ServerSocket server = new ServerSocket(port);
} catch (IOException ex) {
System.out.println("There is a server on port " + port + ".");
}
}
}
}

Here’s the output I got when running LocalPortScanner on my Windows workstation:

\JAVA\INP4\examples\9>java LocalPortScanner
There is a server on port 135.

There is a server on port 1025.
There is a server on port 1026.
There is a server on port 1027.
There is a server on port 1028.

Constructing Without Binding

The noargs constructor creates a ServerSocket object but does not actually bind it to
a port, so it cannot initially accept any connections. It can be bound later using the
bind() methods:

304 | Chapter9: Sockets for Servers

public void bind(SocketAddress endpoint) throws IOException

public void bind(SocketAddress endpoint, int queuelLength) throws IOException
The primary use for this feature is to allow programs to set server socket options before
binding to a port. Some options are fixed after the server socket has been bound. The
general pattern looks like this:

ServerSocket ss = new ServerSocket();

// set socket options...

SocketAddress http = new InetSocketAddress(80);
ss.bind(http);

You can also pass null for the SocketAddress to select an arbitrary port. This is like
passing 0 for the port number in the other constructors.

Getting Information About a Server Socket

The ServerSocket class provides two getter methods that tell you the local address and
port occupied by the server socket. These are useful if you've opened a server socket on
an anonymous port and/or an unspecified network interface. This would be the case,
for one example, in the data connection of an FTP session:

public InetAddress getInetAddress()

This method returns the address being used by the server (the local host). If the local
host has a single IP address (as most do), this is the address returned by InetAd
dress.getLocalHost(). If the local host has more than one IP address, the specific
address returned is one of the host’s IP addresses. You can't predict which address you
will get. For example:

ServerSocket httpd = new ServerSocket(80);
InetAddress ia = httpd.getInetAddress();

If the ServerSocket has not yet bound to a network interface, this method returns null:
public int getLocalPort()

The ServerSocket constructors allow you to listen on an unspecified port by passing
0 for the port number. This method lets you find out what port you're listening on. You
might use this in a peer-to-peer multisocket program where you already have a means
to inform other peers of your location. Or a server might spawn several smaller servers
to perform particular operations. The well-known server could inform clients on what
ports they can find the smaller servers. Of course, you can also use getLocalPort() to
find a nonanonymous port, but why would you need to? Example 9-9 demonstrates.

Example 9-9. A random port

import java.io.*;
import java.net.*;

Getting Information About a Server Socket | 305

public class RandomPort {

public static void main(String[] args) {
try {
ServerSocket server = new ServerSocket(0);
System.out.println("This server runs on port
+ server.getLocalPort());
} catch (IOException ex) {
System.err.println(ex);
}
}
}

Here’s the output of several runs:

$ java RandomPort
This server runs on port 1154

\JAVA\ INP4\examples\9>java RandomPort
This server runs on port 1155

\JAVA\ INP4\examples\9>java RandomPort
This server runs on port 1156

At least on this system, the ports aren’t truly random, but they are indeterminate until
runtime.

If the ServerSocket has not yet bound to a port, getLocalPort() returns -1.

As with most Java objects, you can also just print out a ServerSocket using its to
String() method. A String returned by a ServerSocket’s toString() method looks
like this:

ServerSocket[addr=0.0.0.0,port=0,localport=5776]

addr is the address of the local network interface to which the server socket is bound.
This will be 0.0.0.0 if it’s bound to all interfaces, as is commonly the case. port is always
0. The localport is the local port on which the server is listening for connections. This
method is sometimes useful for debugging, but not much more. Don’t rely on it.

Socket Options

Socket options specify how the native sockets on which the ServerSocket class relies
send and receive data. For server sockets, Java supports three options:

o SO_TIMEOUT
o SO_REUSEADDR
o SO_RCVBUF

It also allows you to set performance preferences for the socket’s packets.

306 | Chapter9: Sockets for Servers

SO_TIMEOUT

SO_TIMEOQOUT is the amount of time, in milliseconds, that accept() waits for an in-
coming connection before throwing a java.io.InterruptedIOException. If
SO_TIMEOUT is 0, accept() will never time out. The default is to never time out.

Setting SO_TIMEOUT is uncommon. You might need it if you were implementing a
complicated and secure protocol that required multiple connections between the client
and the server where responses needed to occur within a fixed amount of time. However,
most servers are designed to run for indefinite periods of time and therefore just use
the default timeout value, 0 (never time out). If you want to change this, the setSoTi
meout() method sets the SO_TIMEOUT field for this server socket object:

public void setSoTimeout(int timeout) throws SocketException
public int getSoTimeout() throws IOException

The countdown starts when accept() is invoked. When the timeout expires, ac
cept() throws a SocketTimeoutException, a subclass of I0Exception. You need to set
this option before calling accept(); you cannot change the timeout value while ac
cept() is waiting for a connection. The timeout argument must be greater than or equal
to zero; if it isn’t, the method throws an I1legalArgumentException. For example:

try (ServerSocket server = new ServerSocket(port)) {
server.setSoTimeout(30000); // block for no more than 30 seconds
try {
Socket s = server.accept();
// handle the connection
/) ...
} catch (SocketTimeoutException ex) {
System.err.println("No connection within 30 seconds");
}
} catch (IOException ex) {
System.err.println("Unexpected IOException:

}

The getSoTimeout() method returns this server socket’s current SO_TIMEOUT value.
For example:

+e);

public void printSoTimeout(ServerSocket server) {
int timeout = server.getSoTimeOut();
if (timeout > 0) {
System.out.println(server + " will time out after
+ timeout + "milliseconds.");
} else if (timeout == 0) {
System.out.println(server +
} else {
System.out.println("Impossible condition occurred in " + server);
System.out.println("Timeout cannot be less than zero.");
}
}

will never time out.");

Socket Options | 307

SO_REUSEADDR

The SO_REUSEADDR option for server sockets is very similar to the same option for
client sockets, discussed in the previous chapter. It determines whether a new socket
will be allowed to bind to a previously used port while there might still be data traversing
the network addressed to the old socket. As you probably expect, there are two methods
to get and set this option:

public boolean getReuseAddress() throws SocketException

public void setReuseAddress(boolean on) throws SocketException
The default value is platform dependent. This code fragment determines the default
value by creating a new ServerSocket and then calling getReuseAddress():

ServerSocket ss = new ServerSocket(10240);
System.out.println("Reusable: " + ss.getReuseAddress());

On the Linux and Mac OS X boxes where I tested this code, server sockets were reusable
by default.

SO_RCVBUF

The SO_RCVBUF option sets the default receive buffer size for client sockets accepted
by the server socket. It’s read and written by these two methods:

public int getReceiveBufferSize() throws SocketException
public void setReceiveBufferSize(int size) throws SocketException

Setting SO_RCVBUF on a server socket is like calling setReceiveBufferSize() on
each individual socket returned by accept() (except that you can’t change the receive
buffer size after the socket has been accepted). Recall from the previous chapter that
this option suggests a value for the size of the individual IP packets in the stream. Faster
connections will want to use larger buffers, although most of the time the default value
is fine.

You can set this option before or after the server socket is bound, unless you want to set
areceive buffer size larger than 64K. In that case, you must set the option on an unbound
ServerSocket before binding it. For example:

ServerSocket ss = new ServerSocket();

int receiveBufferSize = ss.getReceilveBufferSize();

if (receiveBufferSize < 131072) {
ss.setReceiveBufferSize(131072);

}

ss.bind(new InetSocketAddress(8000));

/.

308 | Chapter9: Sockets for Servers

Class of Service

Asyoulearned in the previous chapter, different types of Internet services have different
performance needs. For instance, live streaming video of sports needs relatively high
bandwidth. On the other hand, a movie might still need high bandwidth but be able to
tolerate more delay and latency. Email can be passed over low-bandwidth connections
and even held up for several hours without major harm.

Four general traffic classes are defined for TCP:

o Low cost
o High reliability
o Maximum throughput

o Minimum delay

These traffic classes can be requested for a given Socket. For instance, you can request
the minimum delay available at low cost. These measures are all fuzzy and relative, not
guarantees of service. Not all routers and native TCP stacks support these classes.

The setPerformancePreferences() method expresses the relative preferences given
to connection time, latency, and bandwidth for sockets accepted on this server:

public void setPerformancePreferences(int connectionTime, int latency,
int bandwidth)

For instance, by setting connectionTime to 2, latency to 1, and bandwidth to 3, you
indicate that maximum bandwidth is the most important characteristic, minimum la-
tency is the least important, and connection time is in the middle:

ss.setPerformancePreferences(2, 1, 3);

Exactly how any given VM implements this is implementation dependent. The under-
lying socket implementation is not required to respect any of these requests. They only
provide a hint to the TCP stack about the desired policy. Many implementations in-
cluding Android ignore these values completely.

HTTP Servers

This section shows several different HTTP servers you can build with server sockets,
each with a different special purpose and each slightly more complex than the previous
one.

HTTP is a large protocol. As you saw in Chapter 5, a full-featured HTTP server must
respond to requests for files, convert URLs into filenames on the local system, respond
to POST and GET requests, handle requests for files that don’t exist, interpret MIME types,
and much, much more. However, many HTTP servers don’t need all of these features.

HTTP Servers | 309

For example, many sites simply display an “under construction” message. Clearly,
Apache is overkill for a site like this. Such a site is a candidate for a custom server that
does only one thing. Java’s network class library makes writing simple servers like this
almost trivial.

Custom servers aren’t useful only for small sites. High-traffic sites like Yahoo! are also
candidates for custom servers because a server that does only one thing can often be
much faster than a general-purpose server such as Apache or Microsoft IIS. It is easy to
optimize a special-purpose server for a particular task; the result is often much more
efficient than a general-purpose server that needs to respond to many different kinds
of requests. For instance, icons and images that are used repeatedly across many pages
or on high-traffic pages might be better handled by a server that read all the image files
into memory on startup and then served them straight out of RAM, rather than having
to read them off disk for each request. Furthermore, this server could avoid wasting
time on logging if you didn’t want to track the image requests separately from the re-
quests for the pages in which they were included.

Finally, Java isn’t a bad language for full-featured web servers meant to compete with
the likes of Apache or IIS. Even if you believe CPU-intensive Java programs are slower
than CPU-intensive C and C++ programs (something I very much doubt is true in
modern VMs), most HTTP servers are limited by network bandwidth and latency, not
by CPU speed. Consequently, Javas other advantages, such as its half-compiled/half-
interpreted nature, dynamic class loading, garbage collection, and memory protection
really get a chance to shine. In particular, sites that make heavy use of dynamic content
through servlets, PHP pages, or other mechanisms can often run much faster when
reimplemented on top of a pure or mostly pure Java web server. Indeed, there are several
production web servers written in Java, such as the Eclipse Foundation’s Jetty. Many
other web servers written in C now include substantial Java components to support the
Java Servlet API and Java Server Pages. These largely replaced traditional CGIs, ASPs,
and server-side includes, mostly because the Java equivalents are faster and less resource
intensive. 'm not going to explore these technologies here because they easily deserve
a book of their own. I refer interested readers to Jason Hunter’s Java Servlet Program-
ming (O'Reilly). However, it is important to note that servers in general and web servers
in particular are one area where Java really is competitive with C for real-world perfor-
mance.

A Single-File Server

Our investigation of HTTP servers begins with a server that always sends out the same
file, no matter what the request. It’s called SingleFileHTTPServer and is shown in
Example 9-10. The filename, local port, and content encoding are read from the com-
mand line. If the port is omitted, port 80 is assumed. If the encoding is omitted, ASCII
is assumed.

310 | Chapter9: Sockets for Servers

http://eclipse.org/jetty/$$
http://shop.oreilly.com/product/9780596000400.do
http://shop.oreilly.com/product/9780596000400.do

Example 9-10. An HTTP server that serves a single file

import java.io.*;

import java.net.*;

import java.nio.charset.Charset;
import java.nio.file.¥;

import java.util.concurrent.¥*;
import java.util.logging.*;

public class SingleFileHTTPServer {
private static final Logger logger = Logger.getlLogger("SingleFileHTTPServer");

private final byte[] content;
private final byte[] header;
private final int port;
private final String encoding;

public SingleFileHTTPServer(String data, String encoding,
String mimeType, int port) throws UnsupportedEncodingException {
this(data.getBytes(encoding), encoding, mimeType, port);
}

public SingleFileHTTPServer(
byte[] data, String encoding, String mimeType, int port) {
this.content = data;
this.port = port;
this.encoding = encoding;
String header = "HTTP/1.0 200 OK\r\n"
+ "Server: OneFile 2.0\r\n"
+ "Content-length: " + this.content.length + "\r\n"
+ "Content-type: " + mimeType + "; charset=" + encoding + "\r\n\r\n";
this.header = header.getBytes(Charset.forName("US-ASCII"));
}

public void start() {
ExecutorService pool = Executors.newFixedThreadPool(100);
try (ServerSocket server = new ServerSocket(this.port)) {
logger.info("Accepting connections on port " + server.getlLocalPort());
logger.info("Data to be sent:");
logger.info(new String(this.content, encoding));

while (true) {
try {
Socket connection = server.accept();
pool.submit(new HTTPHandler(connection));
} catch (IOException ex) {
logger.log(Level .WARNING, "Exception accepting connection", ex);
} catch (RuntimeException ex) {
logger.log(Level.SEVERE, "Unexpected error", ex);
}

}
} catch (IOException ex) {

HTTP Servers |

M

logger.log(Level.SEVERE, "Could not start server", ex);
}
}

private class HTTPHandler implements Callable<Void> {
private final Socket connection;

HTTPHandler (Socket connection) {
this.connection = connection;

}

public Void call() throws IOException {
try {

OutputStream out = new BufferedOutputStream(
connection.getOutputStream()
);

InputStream in = new BufferedInputStream(
connection.getInputStream()
)

// read the first line only; that's all we need

StringBuilder request = new StringBuilder(80);

while (true) {

int c = in.read();

if (c == '\r' || c == "\n' || c == -1) break;
request.append((char) c);

}

// If this is HTTP/1.0 or later send a MIME header

if (request.toString().indexOf("HTTP/") != -1) {
out.write(header);

}

out.write(content);
out.flush();
} catch (IOException ex) {
logger.log(Level.WARNING, "Error writing to client", ex);
} finally {
connection.close();
}
return null;
}
}

public static void main(String[] args) {

// set the port to listen on
int port;
try {
port = Integer.parselnt(args[1]);
if (port < 1 || port > 65535) port = 80;
} catch (RuntimeException ex) {
port = 80;
}

312 | Chapter9: Sockets for Servers

String encoding = "UTF-8";
if (args.length > 2) encoding = args[2];

try {
Path path = Paths.get(args[0]);;
byte[] data = Files.readAllBytes(path);

String contentType = URLConnection.getFileNameMap().getContentTypeFor(args[0]);

SingleFileHTTPServer server = new SingleFileHTTPServer(data, encoding,
contentType, port);

server.start();

} catch (ArrayIndexOutOfBoundsException ex) {
System.out.println(
"Usage: java SingleFileHTTPServer filename port encoding");
} catch (IOException ex) {
logger.severe(ex.getMessage());
}
}
}

The constructors set up the data to be sent along with an HTTP header that includes
information about content length and content encoding. The header and the body of
the response are stored in byte arrays in the desired encoding so that they can be blasted
to clients very quickly.

The SingleFileHTTPServer class holds the content to send, the header to send, and the
port to bind to. The start() method creates a ServerSocket on the specified port, then
enters an infinite loop that continually accepts connections and processes them.

Each incoming socket is processed by a runnable Handler object that is submitted to a
thread pool. Thus, one slow client can’t starve other clients. Each Handler gets an
InputStream from it which it reads the client request. It looks at the first line to see
whether it contains the string HTTP. If it sees this string, the server assumes that the client
understands HTTP/1.0 or later and therefore sends a MIME header for the file; then it
sends the data. If the client request doesn’t contain the string HTTP, the server omits the
header, sending the data by itself. Finally, the handler closes the connection.

The main() method just reads parameters from the command line. The name of the file
to be served is read from the first command-line argument. If no file is specified or the
file cannot be opened, an error message is printed and the program exits. Assuming the
file can be read, its contents are read into the byte array data using the Path and Files
classes introduced in Java 7. The URLConnection class makes a reasonable guess about
the content type of the file, and that guess is stored in the contentType variable. Next,
the port number is read from the second command-line argument. If no port is specified
orifthesecond argumentis notan integer from 1to 65,535, port 80 is used. The encoding

HTTP Servers | 313

is read from the third command-line argument, if present. Otherwise, UTF-8 is as-
sumed. Then these values are used to construct a SingleFileHTTPServer object and
start it.

The main() method is only one possible interface. You could easily use this class as part
of some other program. If you added a setter method to change the content, you could
easily use it to provide simple status information about a running server or system.
However, that would raise some additional issues of thread safety that Example 9-10
doesn’t have to address because the data is immutable.

Here’s what you see when you connect to this server via Telnet (the specifics depend on
the exact server and file):

% telnet macfaqg.dialup.cloud9.net 80
Trying 168.100.203.234...

Connected to macfaq.dialup.cloud9.net.
Escape character is '~]'.

GET / HTTP/1.0

HTTP/1.0 200 OK

OneFile 2.0
Content- 959
Content- text/html; charset=UTF-8

≪ !DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">
&1t;HTML&Qt;

≪HEAD&gGt;

<TITLE&gGt;Under Construction</TITLE>

≪ /HEAD&GL;

<BODY>

A Redirector

Redirection is another simple but useful application for a special-purpose HT TP server.
In this section, you develop a server that redirects users from one website to another—
for example, from cnet.com to www.cnet.com. Example 9-11 reads a URL and a port
number from the command line, opens a server socket on the port, and redirects all
requests that it receives to the site indicated by the new URL using a 302 FOUND code.
In this example, I chose to use a new thread rather than a thread pool for each connec-
tion. This is perhaps a little simpler to code and understand but somewhat less efficient.

Example 9-11. An HTTP redirector

import java.io.*;

import java.net.*;

import java.util.*;

import java.util.logging.*;

public class Redirector {

314 | Chapter9: Sockets for Servers

private static final Logger logger = Logger.getlLogger("Redirector");

private final int port;
private final String newSite;

public Redirector(String newSite, int port) {
this.port = port;
this.newSite = newSite;

3

public void start() {
try (ServerSocket server = new ServerSocket(port)) {
logger.info("Redirecting connections on port "
+ server.getLocalPort() + " to " + newSite);

while (true) {
try {
Socket s = server.accept();
Thread t = new RedirectThread(s);
t.start();
} catch (IOException ex) {
logger.warning("Exception accepting connection");
} catch (RuntimeException ex) {
logger.log(Level.SEVERE, "Unexpected error", ex);
}
}
} catch (BindException ex) {
logger.log(Level.SEVERE, "Could not start server.", ex);
} catch (IOException ex) {
logger.log(Level.SEVERE, "Error opening server socket", ex);
}
}

private class RedirectThread extends Thread {
private final Socket connection;

RedirectThread(Socket s) {
this.connection = s;

}

public void run() {
try {
Writer out = new BufferedWriter(
new OutputStreamWriter(
connection.getOutputStream(), "US-ASCII"
)
);
Reader in = new InputStreamReader (
new BufferedInputStream(
connection.getInputStream()

HTTP Servers

315

}

}

(]

-

}

)
)s

// read the first line only; that's all we need
StringBuilder request = new StringBuilder(80);
while (true) {
int ¢ = in.read();
if (c == '\r' || ¢ == "'\n" || c == -1) break;
request.append((char) c);
}

String get = request.toString();
String[] pleces = get.split("\\w*");
String theFile = pieces[1];

// If this is HTTP/1.0 or later send a MIME header
if (get.indexOf("HTTP") != -1) {
out.write("HTTP/1.0 302 FOUND\r\n");
Date now = new Date();
out.write("Date: " + now + "\r\n");
out.write("Server: Redirector 1.1\r\n");
out.write("Location: " + newSite + theFile + "\r\n");
out.write("Content-type: text/html\r\n\r\n");
out.flush();
}
// Not all browsers support redirection so we need to
// produce HTML that says where the document has moved to.
out.write("<HTML><HEAD><TITLE>Document moved</TITLE></HEAD>\r\n");
out.write("<BODY><H1>Document moved</H1>\r\n");
out.write("The document " + theFile
+ " has moved to\r\n"
+ newSite + theFile
+ ".\r\n Please update your bookmarks<P>");
out.write("</BODY></HTML>\r\n");
out.flush();
logger.log(Level.INFO,
"Redirected " + connection.getRemoteSocketAddress());
catch(IOException ex) {
logger.log(Level.WARNING,
"Error talking to " + connection.getRemoteSocketAddress(), ex);
finally {
try {
connection.close();
} catch (IOException ex) {}

public static void main(String[] args) {

int thePort;
String theSite;

316

Chapter 9: Sockets for Servers

try {
theSite = args[0];
// trim trailing slash
if (theSite.endsWith("/")) {
theSite = theSite.substring(0, theSite.length() - 1);
}
} catch (RuntimeException ex) {
System.out.println(
"Usage: java Redirector http://www.newsite.com/ port");
return;

}

try {
thePort = Integer.parselnt(args[1]);
} catch (RuntimeException ex) {
thePort = 80;

}

Redirector redirector = new Redirector(theSite, thePort);
redirector.start();
}
}

In order to start the redirector on port 80 and redirect incoming requests to http://
www.cafeconleche.org/, type:

\JAVA\INP4\examples\09> java Redirector //www.cafeconleche.org/
Redirecting connections on port 80 to //www.cafeconleche.org/

If you connect to this server via Telnet, this is what you’ll see:

% <userinput moreinfo="none">telnet macfaq.dialup.cloud9.net 80
Trying 168.100.203.234. ..
Connected to macfaq.dialup.cloud9.net.
Escape character is '~]'.
GET / HTTP/1.0
HTTP/1.0 302 FOUND
Sun Mar 31 12:38:42 EDT 2013
Redirector 1.1
//www.cafeconleche.org/

Content- text/html

≪HTML> &1t;HEAD> &1t; TITLE> Document moved</TITLE>≪ /HEAD&gL;
&1t;BODY>&Llt;H1>Document moved< /H1>
The document / has moved to
&1lt;A HREF="http://www.cafeconleche.org/"> //www.cafeconleche.
org/.

Please update your bookmarks<P>&Llt;/BODY>&1lt; /HTML>
Connection closed by foreign host.

If, however, you connect with a web browser, you should be sent to http://www.cafe-
conleche.org/ with only a slight delay. You should never see the HTML added after the

HTTP Servers | 317

response code; this is only provided to support very old browsers that don’t do redi-
rection automatically, as well as a few security paranoids who have configured their
browsers not to redirect automatically.

The main() method provides a very simple interface that reads the URL of the new site
to redirect connections to and the local port to listen on. It uses this information to
construct a Redirector object. Then it invokes start(). If the port is not specified,
Redirector listens on port 80. If the site is omitted, Redirector prints an error message
and exits.

The start() method of Redirector binds the server socket to the port, prints a brief
status message, and then enters an infinite loop in which it listens for connections. Every
time a connection is accepted, the resulting Socket object is used to construct a Redti
rectThread. ThisRedirectThreadis then started. All further interaction with the client
takes place in this new thread. The start() method then simply waits for the next
incoming connection.

The run() method of RedirectThread does most of the work. It begins by chaining a
Writer to the Socket’s output stream and a Reader to the Socket’s input stream. Both
input and output are buffered. Then the run() method reads the first line the client
sends. Although the client will probably send a whole MIME header, you can ignore
that. The first line contains all the information you need. The line looks something like
this:

GET /directory/filename.html HTTP/1.0

Itis possible that the first word will be POST or PUT instead or that there will be no HTTP
version. The second “word” is the file the client wants to retrieve. This must begin with
aslash (/). Browsers are responsible for converting relative URLSs to absolute URLs that
begin with a slash; the server does not do this. The third word is the version of the HT TP
protocol the browser understands. Possible values are nothing at all (pre-HTTP/1.0
browsers), HTTP/1.0, or HT'TP/1.1.

To handle a request like this, Redirector ignores the first word. The second word is
attached to the URL of the target server (stored in the field newSite) to give a full
redirected URL. The third word is used to determine whether to send a MIME header;
MIME headers are not used for old browsers that do not understand HTTP/1.0. If there
is a version, a MIME header is sent; otherwise, it is omitted.

Sending the data is almost trivial. The Writer out is used. Because all the data you send
is pure ASCII, the exact encoding isn’t too important. The only trick here is that the
end-of-line character for HTTP requests is \r\n-a carriage return followed by a line-

feed.

The next lines each send one line of text to the client. The first line printed is:

HTTP/1.0 302 FOUND

318 | Chapter9: Sockets for Servers

This is an HTTP/1.0 response code that tells the client to expect to be redirected. The
second lineisaDate: header that gives the current time at the server. Thisline is optional.
The third line is the name and version of the server; this line is also optional but is used
by spiders that try to keep statistics about the most popular web servers. The next line
is the Location: header, which is required for this response type. It tells the client where
itisbeing redirected to. Last is the standard Content - type: header. You send the content
type text/html to indicate that the client should expect to see HTML. Finally, a blank
line is sent to signify the end of the header data.

Everything after this will be HTML, which is processed by the browser and displayed
to the user. The next several lines print a message for browsers that do not support
redirection, so those users can manually jump to the new site. That message looks like:

<HTML><HEAD><TITLE>Document moved</TITLE></HEAD>

<BODY><H1>Document moved</H1>

The document / has moved to

 //www.cafeconleche.org/.
Please update your bookmarks<P></BODY></HTML>

Finally, the connection is closed and the thread dies.

A Full-Fledged HTTP Server

Enough special-purpose HTTP servers. This next section develops a full-blown HTTP
server, called JHTTP, that can serve an entire document tree, including images, applets,
HTML files, text files, and more. It will be very similar to the SingleFileHTTPServer,
except that it pays attention to the GET requests. This server is still fairly lightweight;
after looking at the code, we’ll discuss other features you might want to add.

Because this server may have to read and serve large files from the filesystem over
potentially slow network connections, you'll change its approach. Rather than process-
ing each request as it arrives in the main thread of execution, you’ll place incoming
connections in a pool. Separate instances of a RequestProcessor class will remove the
connections from the pool and process them. Example 9-12 shows the main JHTTP class.
As in the previous two examples, the main() method of JHTTP handles initialization,
but other programs can use this class to run basic web servers.

Example 9-12. The JHTTP web server

import java.ilo.*;

import java.net.*;

import java.util.concurrent.*;
import java.util.logging.*;

public class JHTTP {

private static final Logger logger = Logger.getLogger(
JHTTP.class.getCanonicalName());

HTTP Servers | 319

private static final int NUM_THREADS = 50;
private static final String INDEX_FILE = "index.html";

private final File rootDirectory;
private final int port;

public JHTTP(File rootDirectory, int port) throws IOException {

if (!rootDirectory.isDirectory()) {
throw new IOException(rootDirectory
+ " does not exist as a directory");
}
this.rootDirectory = rootDirectory;
this.port = port;
}

public void start() throws IOException {
ExecutorService pool = Executors.newFixedThreadPool(NUM_THREADS);
try (ServerSocket server = new ServerSocket(port)) {
logger.info("Accepting connections on port " + server.getLocalPort());
logger.info("Document Root: " + rootDirectory);

while (true) {
try {
Socket request = server.accept();
Runnable r = new RequestProcessor(
rootDirectory, INDEX_FILE, request);
pool.submit(r);
} catch (IOException ex) {
logger.log(Level .WARNING, "Error accepting connection", ex);
}
}
}
}

public static void main(String[] args) {

// get the Document root

File docroot;

try {
docroot = new File(args[0]);

} catch (ArrayIndexOutOfBoundsException ex) {
System.out.println("Usage: java JHTTP docroot port");
return;

}

// set the port to listen on
int port;
try {
port = Integer.parselnt(args[1]);
if (port < 0 || port > 65535) port = 80;
} catch (RuntimeException ex) {

320 | Chapter9: Sockets for Servers

port = 80;
}

try {
JHTTP webserver = new JHTTP(docroot, port);
webserver.start();

} catch (IOException ex) {
logger.log(Level.SEVERE, "Server could not start", ex);

}
3
}

The main() method of the JHTTP class sets the document root directory from
args[0]. The port is read from args[1] or 80 is used for a default. Then a new JHTTP
object is constructed and started. JHTTP creates a thread pool to handle requests and
repeatedly accepts incoming connections. You submit one RequestProcessor thread
per incoming connection into the pool.

Each connection is handled by the run() method of the RequestProcessor class shown
in Example 9-13. It gets input and output streams from the socket and chains them to
a reader and a writer. The reader reads the first line of the client request to determine
the version of HTTP that the client supports—you want to send a MIME header only
if this is HTTP/1.0 or later—and the requested file. Assuming the method is GET, the
file thatis requested is converted to a filename on the local filesystem. If the file requested
is a directory (i.e., its name ends with a slash), you add the name of an index file. You
use the canonical path to make sure that the requested file doesn’t come from outside
the document root directory. Otherwise, a sneaky client could walk all over the local
filesystem by including .. in URLs to walk up the directory hierarchy. This is all you'll
need from the client, although a more advanced web server, especially one that logged
hits, would read the rest of the MIME header the client sends.

Next, the requested file is opened and its contents are read into a by te array. If the HT TP
version is 1.0 or later, you write the appropriate MIME headers on the output stream.
To figure out the content type, you call the URLConnection.getFileNameMap().get
ContentTypeFor (fileName) method to map file extensions such as .html onto MIME
types such as text/html. The byte array containing the file’s contents is written onto the
output stream and the connection is closed. If the file cannot be found or opened, you
send the client a 404 response instead. If the client sends a method you don’t support,
such as POST, you send back a 501 error. If an exception occurs, you log it, close the
connection, and continue.

Example 9-13. The runnable class that handles HTTP requests

import java.ilo.*;

import java.net.¥;

import java.nio.file.Files;
import java.util.*;

HTTP Servers | 321

import java.util.logging.*;
public class RequestProcessor implements Runnable {

private final static Logger logger = Logger.getLogger(
RequestProcessor.class.getCanonicalName());

private File rootDirectory;
private String indexFileName = "index.html";
private Socket connection;

public RequestProcessor(File rootDirectory,
String indexFileName, Socket connection) {

if (rootDirectory.isFile()) {
throw new IllegalArgumentException(
"rootDirectory must be a directory, not a file");
}

try {
rootDirectory = rootDirectory.getCanonicalFile();

} catch (IOException ex) {
}

this.rootDirectory = rootDirectory;

if (indexFileName != null) this.indexFileName = indexFileName;

this.connection = connection;

public void run() {
// for security checks
String root = rootDirectory.getPath();
try {
OutputStream raw = new BufferedOutputStream(
connection.getOutputStream()
);
Writer out = new OutputStreamWriter(raw);
Reader in = new InputStreamReader (
new BufferedInputStream(
connection.getInputStream()
),"US-ASCII"
);
StringBuilder requestLine = new StringBuilder();
while (true) {
int ¢ = in.read();
if (c == '\r' || ¢ == '"\n") break;
requestLine.append((char) c);

}

String get = requestLine.toString();

logger.info(connection.getRemoteSocketAddress() +

322 | Chapter9: Sockets for Servers

String[] tokens = get.split("\\s+");
String method = tokens[0];
String version = "";
if (method.equals("GET")) {
String fileName = tokens[1];
if (fileName.endsWith("/")) fileName += indexFileName;
String contentType =
URLConnection.getFileNameMap().getContentTypeFor(fileName);
if (tokens.length > 2) {
version = tokens[2];

}

File theFile = new File(rootDirectory,
fileName.substring(1, fileName.length()));

if (theFile.canRead()
// Don't let clients outside the document root
&& theFile.getCanonicalPath().startsWith(root)) {
byte[] theData = Files.readAllBytes(theFile.toPath());
if (version.startsWith("HTTP/")) { // send a MIME header
sendHeader (out, "HTTP/1.0 200 OK", contentType, theData.length);

}

// send the file; it may be an image or other binary data
// so use the underlying output stream
// instead of the writer
raw.write(theData);
raw.flush();
else { // can't find the file
String body = new StringBuilder("<HTML>\r\n")
.append("<HEAD><TITLE>File Not Found</TITLE>\r\n")
.append("</HEAD>\r\n")
.append("<BODY>")
.append("<H1>HTTP Error 404: File Not Found</H1>\r\n")
.append("</BODY></HTML>\r\n").toString();
if (version.startsWith("HTTP/")) { // send a MIME header
sendHeader (out, "HTTP/1.0 404 File Not Found",
"text/html; charset=utf-8", body.length());

[

}
out.write(body);
out.flush();

}

} else { // method does not equal "GET"

String body = new StringBuilder("<HTML>\r\n")
.append("<HEAD><TITLE>Not Implemented</TITLE>\r\n")
.append("</HEAD>\r\n")

.append("<BODY>")
.append("<H1>HTTP Error 501: Not Implemented</H1>\r\n")
.append("</BODY></HTML>\r\n").toString();

if (version.startsWith("HTTP/")) { // send a MIME header

sendHeader (out, "HTTP/1.0 501 Not Implemented",

HTTP Servers

323

"text/html; charset=utf-8", body.length());

}
out.write(body);

out.flush();

}
} catch (IOException ex) {
logger.log(Level.WARNING,
"Error talking to " + connection.getRemoteSocketAddress(), ex);
} finally {

try {
connection.close();

}
catch (IOException ex) {}

}
3

private void sendHeader(Writer out, String responseCode,
String contentType, int length)
throws IOException {
out.write(responseCode + "\r\n");
Date now = new Date();
out.write("Date: " + now + "\r\n");
out.write("Server: JHTTP 2.0\r\n");
out.write("Content-length: " + length + "\r\n");
out.write("Content-type: " + contentType + "\r\n\r\n");
out.flush();

3
}

This server is functional but still rather austere. Here are a few features that could be

added:

o A server administration interface
o Support for the Java Servlet API
o Support for other request methods, such as POST, HEAD, and PUT

o Support for multiple document roots so individual users can have their own sites

Finally, spend a little time thinking about ways to optimize this server. If you really want
to use JHTTP to run a high-traffic site, there are a couple of things that can speed this
server up. The first thing to do is implement smart caching. Keep track of the requests
you've received and store the data from the most frequently requested files in a Map so
that they’re kept in memory. Use a low-priority thread to update this cache. You can
also try using nonblocking I/O and channels instead of threads and streams. We’ll ex-
plore this possibility in Chapter 11.

324 | Chapter9: Sockets for Servers

CHAPTER 10
Secure Sockets

AT&T has provided the United States National Security Agency with full access to all
of its customers’ Internet traffic by copying packets to data-mining equipment installed
in secret rooms in its switching centers.' Britain's GCHQ taps into the fiber-optic cables
that carry most of the world’s phone calls and Internet traffic.? In Sweden, the National
Defence Radio Establishment requires fiber-optic cable owners to install fiber mirroring
equipment on their premises. And this is just a small sampling of government sponsored
eavesdropping we know about.

As an Internet user, you do have defenses against snooping bureaucrats. To make In-
ternet connections more fundamentally secure, sockets can be encrypted. This allows
transactions to be confidential, authenticated, and accurate.

However, encryption is a complex subject. Performing it properly requires a detailed
understanding not only of the mathematical algorithms used to encrypt data, but also
of the protocols used to exchange keys and encrypted data. Even a small mistake can
open a large hole in your armor and reveal your communications to an eavesdropper.
Consequently, writing encryption software is a task best left to experts. Fortunately,
nonexperts with only a layperson’s understanding of the underlying protocols and al-
gorithms can secure their communications with software designed by experts. Every
time you order something from an online store, chances are the transaction is encrypted
and authenticated using protocols and algorithms you need to know next to nothing
about. As a programmer who wants to write network client software that talks to online
stores, you need to know a little more about the protocols and algorithms involved, but
notalotmore, provided you can usea classlibrary written by experts who do understand
the details. If you want to write the server software that runs the online store, you need

1. Ryan Singel, “Whistle-Blower Outs NSA Spy Room,” Wired. April 7, 2006.

2. Ewen MacAskill, Julian Borger, Nick Hopkins, Nick Davies, and James Ball, “GCHQ taps fibre-optic cables
for secret access to world’s communications,” The Guardian. June 21, 2013.

325

http://bit.ly/whistleblower-wired-article
http://bit.ly/guardian-fibre-optic
http://bit.ly/guardian-fibre-optic

to know a little bit more but still not as much as you would if you were designing all
this from scratch without reference to other work.

The Java Secure Sockets Extension (JSSE) can secure network communications using
the Secure Sockets Layer (SSL) Version 3 and Transport Layer Security (TLS) protocols
and their associated algorithms. SSL is a security protocol that enables web browsers
and other TCP clients to talk to HTTP and other TCP servers using various levels of
confidentiality and authentication.

Secure Communications

Confidential communication through an open channel such as the public Internet ab-
solutely requires that data be encrypted. Most encryption schemes that lend themselves
to computer implementation are based on the notion of a key, a slightly more general
kind of password that’s not limited to text. The plain-text message is combined with the
bits of the key according to a mathematical algorithm to produce the encrypted cipher-
text. Using keys with more bits makes messages exponentially more difficult to decrypt
by brute-force guessing of the key.

In traditional secret key (or symmetric) encryption, the same key is used to encrypt and
decrypt the data. Both the sender and the receiver have to know the single key. Imagine
Angela wants to send Gus a secret message. She first sends Gus the key they’ll use to
exchange the secret. But the key can’t be encrypted because Gus doesn't have the key
yet, so Angela has to send the key unencrypted. Now suppose Edgar is eavesdropping
on the connection between Angela and Gus. He will get the key at the same time that
Gus does. From that point forward, he can read anything Angela and Gus say to each
other using that key.

In public key (or asymmetric) encryption, different keys are used to encrypt and decrypt
the data. One key, called the public key, encrypts the data. This key can be given to
anyone. A different key, called the private key, is used to decrypt the data. This must be
kept secret but needs to be possessed by only one of the correspondents. If Angela wants
to send a message to Gus, she asks Gus for his public key. Gus sends it to her over an
unencrypted connection. Angela uses Gus’s public key to encrypt her message and sends
it to him. If Edgar is eavesdropping when Gus sends Angela his key, Edgar also gets
Gus’s public key. However, this doesn’t allow Edgar to decrypt the message Angela sends
Gus, because decryption requires Gus’s private key. The message is safe even if the public
key is detected in transit.

Asymmetric encryption can also be used for authentication and message integrity
checking. For this use, Angela would encrypt a message with her private key before
sending it. When Gus received it, he’d decrypt it with Angela’s public key. If the de-
cryption succeeded, Gus would know that the message came from Angela. After all, no
one else could have produced a message that would decrypt properly with her public

326 | Chapter 10: Secure Sockets

key. Gus would also know that the message wasn’t changed en route, either maliciously
by Edgar or unintentionally by buggy software or network noise, because any such
change would have screwed up the decryption. With a little more effort, Angela can
double-encrypt the message, once with her private key, once with Gus’s public key, thus
getting all three benefits of privacy, authentication, and integrity.

In practice, public-key encryption is much more CPU-intensive and much slower than
secret-key encryption. Therefore, instead of encrypting the entire transmission with
Gus’s public key, Angela encrypts a traditional secret key and sends it to Gus. Gus de-
crypts it with his private key. Now Angela and Gus both know the secret key, but Edgar
doesn’'t. Therefore, Gus and Angela can now use faster secret-key encryption to com-
municate privately without Edgar listening in.

Edgar still has one good attack on this protocol, however. (Important: the attack is on
the protocol used to send and receive messages, not on the encryption algorithms used.
This attack does not require Edgar to break Gus and Angela’s encryption and is com-
pletely independent of key length.) Edgar can not only read Gus’s public key when he
sends it to Angela, but he can also replace it with his own public key! Then when Angela
thinks she’s encrypting a message with Gus’s public key, she’s really using Edgar’s. When
she sends a message to Gus, Edgar intercepts it, decrypts it using his private key, encrypts
it using Gus’s public key, and sends it on to Gus. This is called a man-in-the-middle
attack. Working alone on an insecure channel, Gus and Angela have no easy way to
protect against this. The solution used in practice is for both Gus and Angela to store
and verify their public keys with a trusted third-party certification authority. Rather
than sending each other their public keys, Gus and Angela retrieve each other’s public
key from the certification authority. This scheme still isn’t perfect—Edgar may be able
to place himself in between Gus and the certification authority, Angela and the certifi-
cation authority, and Gus and Angela—but it makes life harder for Edgar.

As this example indicates, the theory and practice of encryption and authentication,
both algorithms and protocols, is a challenging field that’s fraught with mines and pitfalls
to surprise the amateur cryptographer. It is much easier to design a bad encryption
algorithm or protocol than a good one. And it’s not always obvious which algorithms
and protocols are good and which aren’t. Fortunately, you don’t have to be a cryptog-
raphy expert to use strong cryptography in Java network programs. JSSE shields you
from the low-level details of how algorithms are negotiated, keys are exchanged, cor-
respondents are authenticated, and data is encrypted. JSSE allows you to create sockets
and server sockets that transparently handle the negotiations and encryption necessary
for secure communication. All you have to do is send your data over the same streams
and sockets you're familiar with from previous chapters. The Java Secure Socket Ex-
tension is divided into four packages:

javax.net.ssl
The abstract classes that define Java’s API for secure network communication.

Secure Communications | 327

javax.net
The abstract socket factory classes used instead of constructors to create secure
sockets.

java.security.cert
The classes for handling the public-key certificates needed for SSL.

com.sun.net.ssl
The concrete classes that implement the encryption algorithms and protocols in
Sun’s reference implementation of the JSSE. Technically, these are not part of the
JSSE standard. Other implementers may replace this package with one of their own;
for instance, one that uses native code to speed up the CPU-intensive key generation
and encryption process.

Creating Secure Client Sockets

If you don't care very much about the underlying details, using an encrypted SSL socket
to talk to an existing secure server is truly straightforward. Rather than constructing a
java.net.Socket object with a constructor, you get one from a jav
ax.net.ssl.SSLSocketFactory using its createSocket() method. SSLSocketFacto
ry is an abstract class that follows the abstract factory design pattern. You get an instance
of it by invoking the static SSLSocketFactory.getDefault() method:

SocketFactory factory = SSLSocketFactory.getDefault();
Socket socket = factory.createSocket("login.ibiblio.org", 7000);

This either returns an instance of SSLSocketFactory or throws an InstantiationEx
ception if no concrete subclass can be found. Once you have a reference to the factory,
use one of these five overloaded createSocket() methods to build an SSLSocket:

public abstract Socket createSocket(String host, int port)
throws IOException, UnknownHostException

public abstract Socket createSocket(InetAddress host, int port)
throws IOException

public abstract Socket createSocket(String host, int port,
InetAddress interface, int localPort)
throws IOException, UnknownHostException

public abstract Socket createSocket(InetAddress host, int port,
InetAddress interface, int localPort)
throws IOException, UnknownHostException

public abstract Socket createSocket(Socket proxy, String host, int port,
boolean autoClose) throws IOException

The first two methods create and return a socket that’s connected to the specified host
and port or throw an I0Exception if they can’t connect. The third and fourth methods
connect and return a socket that’s connected to the specified host and port from the
specified local network interface and port. The last createSocket() method, however,

328 | Chapter 10: Secure Sockets

is a little different. It begins with an existing Socket object that’s connected to a proxy
server. It returns a Socket that tunnels through this proxy server to the specified host
and port. The autoClose argument determines whether the underlying proxy socket
should be closed when this socket is closed. If autoClose is true, the underlying socket
will be closed; if false, it won't be.

The Socket that all these methods return will really be a javax.net.ssl.SSLSocket, a
subclass of java.net.Socket. However, you don’t need to know that. Once the secure
socket has been created, you use it just like any other socket, through its getInput
Stream(), getOutputStream(), and other methods. For example, suppose a server that
accepts orders is listening on port 7000 of login.ibiblio.org. Each order is sent as an ASCII
string using a single TCP connection. The server accepts the order and closes the con-
nection. (’'m leaving out a lof of details that would be necessary in a real-world system,
such as the server sending a response code telling the client whether the order was
accepted.) The orders that clients send look like this:

Name: John Smith

Product-ID: 67X-89

Address: 1280 Deniston Blvd, NY NY 10003
Card number: 4000-1234-5678-9017
Expires: 08/05

There’s enough information in this message to let someone snooping packets use John
Smith’s credit card number for nefarious purposes. Consequently, before sending this
order, you should encrypt it. The simplest way to do that without burdening either the
server or the client with a lot of complicated, error-prone encryption code is to use a
secure socket. The following code sends the order over a secure socket:

SSLSocketFactory factory
= (SSLSocketFactory) SSLSocketFactory.getDefault();
Socket socket = factory.createSocket("login.ibiblio.org", 7000);

Writer out = new OutputStreamWriter(socket.getOutputStream(),
"US-ASCII");

out.write("Name: John Smith\r\n");

out.write("Product-ID: 67X-89\r\n");

out.write("Address: 1280 Deniston Blvd, NY NY 10003\r\n");

out.write("Card number: 4000-1234-5678-9017\r\n");

out.write("Expires: 08/05\r\n");

out.flush();

Only the first three statements in the try block are noticeably different from what you’d
do with an insecure socket. The rest of the code just uses the normal methods of the
Socket, OutputStream, and Writer classes.

Reading input is no harder. Example 10-1 is a simple program that connects to a secure
HTTP server, sends a simple GET request, and prints out the response.

Creating Secure Client Sockets | 329

Example 10-1. HTTPSClient

import java.io.*;
import javax.net.ssl.¥;

public class HTTPSClient {
public static void main(String[] args) {

if (args.length == 0) {
System.out.println("Usage: java HTTPSClient2 host");
return;

}

int port = 443; // default https port
String host = args[0];

SSLSocketFactory factory
= (SSLSocketFactory) SSLSocketFactory.getDefault();
SSLSocket socket = null;
try {
socket = (SSLSocket) factory.createSocket(host, port);

// enable all the suites
String[] supported = socket.getSupportedCipherSuites();
socket.setEnabledCipherSuites(supported);

Writer out = new OutputStreamWriter(socket.getOutputStream(), "UTF-8");
// https requires the full URL in the GET line

out.write("GET http://" + host + "/ HTTP/1.1\r\n");

out.write("Host: " + host + "\r\n");

out.write("\r\n");

out.flush();

// read response
BufferedReader in = new BufferedReader(
new InputStreamReader(socket.getInputStream()));

// read the header

String s;

while (!(s = in.readLine()).equals("")) {
System.out.println(s);

}

System.out.println();

// read the length
String contentLength = in.readLine();
int length = Integer.MAX_VALUE;
try {
length = Integer.parselnt(contentLength.trim(), 16);
} catch (NumberFormatException ex) {
// This server doesn't send the content-length
// in the first line of the response body

330 | Chapter 10: Secure Sockets

}
System.out.println(contentLength);

int c;

int 1 = 0;

while ((c = in.read()) != -1 & i++ < length) {
System.out.write(c);

}

System.out.println();
} catch (IOException ex) {
System.err.println(ex);
} finally {
try {
if (socket != null) socket.close();
} catch (IOException e) {}
}
}
}

Here are the first few lines of output from this program when you connect to the U.S.
Postal Service’s website:

% java HTTPSClient www.usps.com
HTTP/1.1 200 OK

Server: IBM_HTTP_Server

Cache-Control: max-age=0

Expires: Sun, 31 Mar 2013 17:29:33 GMT
Content-Type: text/html

Date: Sun, 31 Mar 2013 18:00:14 GMT
Transfer-Encoding: chunked
Connection: keep-alive

Connection: Transfer-Encoding

00004000

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0org/TR/html4/loose.dtd">

W8
Y When I tested this program for the previous edition, it initially re-
t‘s‘.‘ fused to connect to www.usps.com because it couldn't verify the iden-
"ol tity of the remote server. The problem was that the root certificates

shipped with the version of the JDK I was using (1.4.2_02-b3) had
expired. Upgrading to the latest minor version (1.4.2_03-b2) fixed the
problem. If you see any exception messages like “No trusted certifi-
cate found,” try upgrading to the latest minor version of the JDK.

When you run this program, you may notice that it’s slower to respond than you expect.
There’s a noticeable amount of both CPU and network overhead involved in generating

Creating Secure Client Sockets | 331

and exchanging the public keys. Even over a fast network, it can take a few seconds to
establish a connection. Consequently, you may not want to serve all your content over
HTTPS, only the content that really needs to be private and isn’t latency sensitive.

Choosing the Cipher Suites

Different implementations of the JSSE support different combinations of authentication
and encryption algorithms. For instance, the implementation that Oracle bundles with
Java 7 only supports 128-bit AES encryption, whereas IAIK’s iSaSiLk supports 256-bit
AES encryption.

W 8
\ The stock JSSE bundled with the JDK actually does have code for
,‘s . stronger 256-bit encryption, but it’s disabled unless you install the JCE
"o} Unlimited Strength Jurisdiction Policy Files. I don’t even want to be-

gin trying to explain the legal briar patch that makes this necessary.

The getSupportedCipherSuites() methodin SSLSocketFactory tells you which com-
bination of algorithms is available on a given socket:

public abstract String[] getSupportedCipherSuites()

However, not all cipher suites that are understood are necessarily allowed on the con-
nection. Some may be too weak and consequently disabled. The getEnabledCipher
Suites() method of SSLSocketFactory tells you which suites this socket is willing to
use:

public abstract String[] getEnabledCipherSuites()

The actual suite used is negotiated between the client and server at connection time. It’s
possible that the client and the server won't agree on any suite. It’s also possible that
although a suite is enabled on both client and server, one or the other or both won't have
the keys and certificates needed to use the suite. In either case, the createSocket()
method will throw an SSLException, a subclass of I0Exception. You can change the
suites the client attempts to use via the setEnabledCipherSuites() method:

public abstract void setEnabledCipherSuites(String[] suites)

The argument to this method should be a list of the suites you want to use. Each name
must be one of the suites listed by getSupportedCipherSuites(). Otherwise, an Ille
galArgumentException will be thrown. Oracle’s JDK 1.7 supports these cipher suites:

o TLS_ ECDHE_ECDSA_WITH_AES 128 CBC_SHA256
o TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
o TLS_RSA_WITH_AES_128 CBC_SHA256

332 | Chapter 10: Secure Sockets

http://bit.ly/JCE-unlimited
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256
TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256
TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
TLS_DHE_DSS_WITH_AES_128_CBC_SHA256
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
TLS_RSA_WITH_AES_128_CBC_SHA
TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA
TLS_ECDH_RSA_WITH_AES_128_CBC_SHA
TLS_DHE_RSA_WITH_AES_128_CBC_SHA
TLS_DHE_DSS_WITH_AES_128_CBC_SHA
TLS_ECDHE_ECDSA_WITH_RC4_128_SHA
TLS_ECDHE_RSA_WITH_RC4_128_SHA
SSL_RSA_WITH_RC4_128_SHA
TLS_ECDH_ECDSA_WITH_RC4_128_SHA
TLS_ECDH_RSA_WITH_RC4_128_SHA
TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA
TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
SSL_RSA_WITH_3DES_EDE_CBC_SHA
TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA
TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA
SSI._DHE_RSA_WITH_3DES_EDE_CBC_SHA
SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA
SSL_RSA_WITH_RC4_128_MD5
TLS_EMPTY_RENEGOTIATION_INFO_SCSV
TLS_DH_anon_WITH_AES_128_CBC_SHA256
TLS_ECDH_anon_WITH_AES_128_CBC_SHA
TLS_DH_anon_WITH_AES_128_CBC_SHA
TLS_ECDH_anon_WITH_RC4_128_SHA
SSL_DH_anon_WITH_RC4_128_MD5
TLS_ECDH_anon_WITH_3DES_EDE_CBC_SHA
SSL_DH_anon_WITH_3DES_EDE_CBC_SHA

Choosing the Cipher Suites

333

o TLS_RSA_WITH_NULL_SHA256

o« TLS_ECDHE_ECDSA_WITH_NULL_SHA

o TLS_ECDHE_RSA_WITH_NULL_SHA

o SSIL_RSA_WITH_NULL_SHA

o TLS_ECDH_ECDSA_WITH_NULL_SHA

o TLS_ECDH_RSA_WITH_NULL_SHA

o TLS_ECDH_anon_WITH_NULL_SHA

e SSL_RSA_WITH_NULL_MD5

o SSIL_RSA_WITH_DES_CBC_SHA

o SSI_DHE_RSA_WITH_DES_CBC_SHA

o SSI._DHE_DSS_WITH_DES_CBC_SHA

o« SSL_DH_anon_WITH_DES_CBC_SHA

o SSL_RSA_EXPORT_WITH_RC4_40_MD5

e SSL_DH_anon_EXPORT_WITH_RC4_40_MD5

o SSL_RSA_EXPORT_WITH_DES40_CBC_SHA

o SSI_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA
o SSI._DHE_DSS_EXPORT_WITH_DES40_CBC_SHA
o SSI._DH_anon_EXPORT_WITH_DES40_CBC_SHA
o TLS_KRB5_WITH_RC4_128_SHA

o TLS_KRB5_WITH_RC4_128_MD5

o TLS_KRB5_WITH_3DES_EDE_CBC_SHA

o TLS_KRB5_WITH_3DES_EDE_CBC_MD5

o TLS_KRB5_WITH_DES_CBC_SHA

o TLS_KRB5_WITH_DES_CBC_MD5

o TLS_KRB5_EXPORT_WITH_RC4_40_SHA

o TLS_KRB5_EXPORT_WITH_RC4_40_MD5

o TLS_KRB5_EXPORT_WITH_DES_CBC_40_SHA

o TLS_KRB5_EXPORT_WITH_DES_CBC_40_MD5

Each name has an algorithm divided into four parts: protocol, key exchange algorithm,
encryption algorithm, and checksum. For example, the name SSL_DH_anon_EX-
PORT_WITH_DES40_CBC_SHA means Secure Sockets Layer Version 3; Diffie-
Hellman method for key agreement; no authentication; Data Encryption Standard en-

334 | Chapter 10: Secure Sockets

cryption with 40-bit keys; Cipher Block Chaining, and the Secure Hash Algorithm
checksum.

By default, the JDK 1.7 implementation enables all the encrypted authenticated suites
(the first 28 members of this list). If you want nonauthenticated transactions or au-
thenticated but unencrypted transactions, you must enable those suites explicitly with
the setEnabledCipherSuites() method. You should probably avoid any of these suites
that contain NULL, ANON, or EXPORT in their names unless you want the NSA to
read your messages.

TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 is believed to be reasonably
secure against all known attacks. TLS_ECDHE_ECD-
SA_WITH_AES_256_CBC_SHA256 is even better if you've enabled it. In general, any
suite that begins with TLS_ECDHE and ends with SHA256 or SHA384 is the strongest
possible encryption widely available today. Most others are subject to attacks of varying
levels of severity.

Besides key lengths, there’s an important difference between DES/AES and RC4-based
ciphers. DES and AES are block ciphers (i.e., they encrypt a certain number of bits at a
time). DES always encrypts 64 bits. If 64 bits aren’t available, the encoder has to pad the
input with extra bits. AES can encrypt blocks of 128, 192, or 256 bits, but still has to pad
the input if it doesn’t come out to an even multiple of the block size. This isn’t a problem
for file transfer applications such as secure HT'TP and FTP, where more or less all the
data is available at once. However, it’s problematic for user-centered protocols such as
chat and Telnet. RC4 is a stream cipher that can encrypt one byte at a time and is more
appropriate for protocols that may need to send a single byte at a time.

For example, let’s suppose that Edgar has some fairly powerful parallel computers at his
disposal and can quickly break any encryption thats 64 bits or less and that Gus and
Angela know this. Furthermore, they suspect that Edgar can blackmail one of their ISPs
or the phone company into letting him tap the line, so they want to avoid anonymous
connections that are vulnerable to man-in-the-middle attacks. To be safe, Gus and An-
gela decide to use only the strongest suite available, which happens to be
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256. This code fragment limits
their connection to that one suite:

String[] strongSuites = {"TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256"};
socket.setEnabledCipherSuites(strongSuites);
If the other side of the connection doesn’t support this encryption protocol, the socket
will throw an exception when they try to read from or write to it, thus ensuring that no
confidential information is accidentally transmitted over a weak channel.

Choosing the Cipher Suites | 335

Event Handlers

Network communications are slow compared to the speed of most computers. Authen-
ticated network communications are even slower. The necessary key generation and
setup for a secure connection can easily take several seconds. Consequently, you may
want to deal with the connection asynchronously. JSSE uses the standard Java event
model to notify programs when the handshaking between client and server is complete.
The pattern is a familiar one. In order to get notifications of handshake-complete events,
simply implement the HandshakeCompletedListener interface:

public interface HandshakeCompletedListener
extends java.util.EventListener

This interface declares the handshakeCompleted() method:
public void handshakeCompleted(HandshakeCompletedEvent event)
This method receives as an argument a HandshakeCompletedEvent:
public class HandshakeCompletedEvent extends java.util.EventObject

The HandshakeCompletedEvent class provides four methods for getting information
about the event:

public SSLSession getSession()

public String getCipherSuite()

public X509Certificate[] getPeerCertificateChain()
throws SSLPeerUnverifiedException

public SSLSocket getSocket()

Particular HandshakeCompletedListener objects register their interest in handshake-
completed events from a particular SSLSocket via its addHandshakeCompletedListen
er() and removeHandshakeCompletedListener() methods:

public abstract void addHandshakeCompletedListener(
HandshakeCompletedListener listener)

public abstract void removeHandshakeCompletedListener(
HandshakeCompletedListener listener) throws IllegalArgumentException

Session Management

SSL is commonly used on web servers, and for good reason. Web connections tend to
be transitory; every page requires a separate socket. For instance, checking out of Am-
azon.com on its secure server requires seven separate page loads, more if you have to
edit an address or choose gift wrapping. Imagine if every one of those pages took an
extra 10 seconds or more to negotiate a secure connection. Because of the high overhead
involved in handshaking between two hosts for secure communications, SSL allows
sessions to be established that extend over multiple sockets. Different sockets within the
same session use the same set of public and private keys. If the secure connection to

336 | Chapter 10: Secure Sockets

Amazon.com takes seven sockets, all seven will be established within the same session
and use the same keys. Only the first socket within that session will have to endure the
overhead of key generation and exchange.

As a programmer using JSSE, you don’t need to do anything extra to take advantage of
sessions. If you open multiple secure sockets to one host on one port within a reasonably
short period of time, JSSE will reuse the session’s keys automatically. However, in high-
security applications, you may want to disallow session-sharing between sockets or force
reauthentication of a session. In the JSSE, sessions are represented by instances of the
SSLSession interface; you can use the methods of this interface to check the times the
session was created and last accessed, invalidate the session, and get various information
about the session:

public byte[] getId()

public SSLSessionContext getSessionContext()
public long getCreationTime()

public long getlLastAccessedTime()

public void invalidate()

public void putValue(String name, Object value)
public Object getValue(String name)

public void removeValue(String name)

public String[] getValueNames()

public X509Certificate[] getPeerCertificateChain()
throws SSLPeerUnverifiedException

public String getCipherSuite()

public String getPeerHost()

The getSession() method of SSLSocket returns the Session this socket belongs to:
public abstract SSLSession getSession()

However, sessions are a trade-off between performance and security. It is more secure
to renegotiate the key for each and every transaction. If you've got really spectacular
hardware and are trying to protect your systems from an equally determined, rich,
motivated, and competent adversary, you may want to avoid sessions. To prevent a
socket from creating a session that passes false to setEnableSessionCreation(), use:

public abstract void setEnableSessionCreation(boolean allowSessions)

The getEnableSessionCreation() method returns true if multisocket sessions are
allowed, false if they’re not:

public abstract boolean getEnableSessionCreation()

On rare occasions, you may even want to reauthenticate a connection (i.e., throw away
all the certificates and keys that have previously been agreed to and start over with a
new session). The startHandshake() method does this:

public abstract void startHandshake() throws IOException

Session Management | 337

Client Mode

It’s a rule of thumb that in most secure communications, the server is required to au-
thenticate itself using the appropriate certificate. However, the client is not. That is, when
I buy a book from Amazon using its secure server, it has to prove to my browser’s
satisfaction that it is indeed Amazon and not Joe Random Hacker. However, I do not
have to prove to Amazon that I am Elliotte Rusty Harold. For the most part, this is as it
should be, because purchasing and installing the trusted certificates necessary for au-
thentication is a fairly user-hostile experience that readers shouldn’t have to go through
just to buy the latest Nutshell Handbook. However, this asymmetry can lead to credit
card fraud. To avoid problems like this, sockets can be required to authenticate them-
selves. This strategy wouldn’t work for a service open to the general public. However, it
might be reasonable in certain internal, high-security applications.

The setUseClientMode() method determines whether the socket needs to use authen-
tication in its first handshake. The name of the method is a little misleading. It can be
used for both client- and server-side sockets. However, when true is passed in, it means
the socket is in client mode (whether it’s on the client side or not) and will not offer to
authenticate itself. When false is passed, it will try to authenticate itself:
public abstract void setUseClientMode(boolean mode)
throws IllegalArgumentException

This property can be set only once for any given socket. Attempting to set it a second
time throws an I1legalArgumentException.

The getUseClientMode() method simply tells you whether this socket will use authen-
tication in its first handshake:

public abstract boolean getUseClientMode()

A secure socket on the server side (i.e., one returned by the accept() method of an
SSLServerSocket) uses the setNeedClientAuth() method to require that all clients
connecting to it authenticate themselves (or not):

public abstract void setNeedClientAuth(boolean needsAuthentication)
throws IllegalArgumentException

This method throws an I1legalArgumentException if the socket is not on the server
side.

The getNeedClientAuth() method returns true if the socket requires authentication
from the client side, false otherwise:

public abstract boolean getNeedClientAuth()

338 | Chapter 10: Secure Sockets

Creating Secure Server Sockets

Secure client sockets are only half of the equation. The other half is SSL-enabled server
sockets. These are instances of the javax.net.SSLServerSocket class:

public abstract class SSLServerSocket extends ServerSocket

Like SSLSocket, all the constructors in this class are protected and instances are created
by an abstract factory class, javax.net.SSLServerSocketFactory:

public abstract class SSLServerSocketFactory
extends ServerSocketFactory

Also like SSLSocketFactory, an instance of SSLServerSocketFactory is returned by a
static SSLServerSocketFactory.getDefault() method:

public static ServerSocketFactory getDefault()

And like SSLSocketFactory, SSLServerSocketFactory has three overloaded create
ServerSocket() methods that return instances of SSLServerSocket and are easily un-
derstood by analogy with the java.net.ServerSocket constructors:

public abstract ServerSocket createServerSocket(int port)
throws IOException
public abstract ServerSocket createServerSocket(int port,
int queuelLength) throws IOException
public abstract ServerSocket createServerSocket(int port,
int queuelLength, InetAddress interface) throws IOException
If that were all there was to creating secure server sockets, they would be quite straight-
forward and simple to use. Unfortunately, that’s not all there is to it. The factory that
SSLServerSocketFactory.getDefault() returns generally only supports server au-
thentication. It does not support encryption. To get encryption as well, server-side se-
cure sockets require more initialization and setup. Exactly how this setup is performed
is implementation dependent. In Sunms reference implementation, a
com.sun.net.ssl.SSLContext object is responsible for creating fully configured and
initialized secure server sockets. The details vary from JSSE implementation to JSSE
implementation, but to create a secure server socket in the reference implementation,
you have to:

1. Generate public keys and certificates using keytool.

2. Pay money to have your certificates authenticated by a trusted third party such as
Comodo.

3. Create an SSLContext for the algorithm you’ll use.
4. CreateaTrustManagerFactory for the source of certificate material you’ll be using.

5. Create a KeyManagerFactory for the type of key material you’ll be using.

Creating Secure Server Sockets | 339

6. Create a KeyStore object for the key and certificate database. (Oracle’s default is
JKS.)

7. Fill the KeyStore object with keys and certificates; for instance, by loading them
from the filesystem using the passphrase they’re encrypted with.

8. Initialize the KeyManagerFactory with the KeyStore and its passphrase.

9. Initialize the context with the necessary key managers from the KeyManagerFacto
ry, trust managers from the TrustManagerFactory, and a source of randomness.
(The last two can be null if you're willing to accept the defaults.)

Example 10-2 demonstrates this procedure with a complete SecureOrderTaker for ac-
cepting orders and printing them on System. out. Of course, in a real application, you'd
do something more interesting with the orders.

Example 10-2. SecureOrderTaker

import java.io.*;

import java.net.*;

import java.security.¥;

import java.security.cert.CertificateException;
import java.util.Arrays;

import javax.net.ssl.¥;
public class SecureOrderTaker {

public final static int PORT = 7000;
public final static String algorithm = "SSL";

public static void main(String[] args) {

try {
SSLContext context = SSLContext.getInstance(algorithm);

// The reference implementation only supports X.509 keys
KeyManagerFactory kmf = KeyManagerFactory.getInstance("SunX509");

// Oracle's default kind of key store
KeyStore ks = KeyStore.getInstance("JKS");

// For security, every key store is encrypted with a

// passphrase that must be provided before we can load

// it from disk. The passphrase is stored as a char[] array
// so it can be wiped from memory quickly rather than

// waiting for a garbage collector.

char[] password = System.console().readPassword();
ks.load(new FileInputStream("jnp4de.keys"), password);
kmf.init(ks, password);

context.init(kmf.getKeyManagers(), null, null);

// wipe the password

340 | Chapter 10: Secure Sockets

Arrays.fill(password, '0");

SSLServerSocketFactory factory
= context.getServerSocketFactory();

SSLServerSocket server
= (SSLServerSocket) factory.createServerSocket(PORT);

// add anonymous (non-authenticated) cipher suites
String[] supported = server.getSupportedCipherSuites();
String[] anonCipherSuitesSupported = new String[supported.length];
int numAnonCipherSuitesSupported = 0;
for (int 1 = 0; 1 < supported.length; i++) {
if (supported[i].indexOf("_anon_") > 0) {
anonCipherSuitesSupported[numAnonCipherSuitesSupported++] =
supported[i];
}
}

String[] oldEnabled = server.getEnabledCipherSuites();
String[] newEnabled = new String[oldEnabled.length
+ numAnonCipherSuitesSupported];
System.arraycopy(oldEnabled, 0, newEnabled, 0, oldEnabled.length);
System.arraycopy(anonCipherSuitesSupported, 0, newEnabled,
oldEnabled. length, numAnonCipherSuitesSupported);

server.setEnabledCipherSuites(newEnabled);

// Now all the set up is complete and we can focus
// on the actual communication.
while (true) {
// This socket will be secure,
// but there's no indication of that in the code!
try (Socket theConnection = server.accept()) {
InputStream in = theConnection.getInputStream();
int c;
while ((c = in.read()) !'= -1) {
System.out.write(c);
}
} catch (IOException ex) {
ex.printStackTrace();
}
}
} catch (IOException | KeyManagementException
| KeyStoreException | NoSuchAlgorithmException
| CertificateException | UnrecoverableKeyException ex) {
ex.printStackTrace();
}
}
}

Creating Secure Server Sockets | 341

This example loads the necessary keys and certificates from a file named jnp4e.keys in
the current working directory protected with the password “2andnotafnord” What this
example doesn’t show you is how that file was created. It was built with the keytool
program that’s bundled with the JDK like this:

$ keytool -genkey -alias ourstore -keystore jnpde.keys
Enter keystore password:
Re-enter new password:
What is your first and last name?
[Unknown]: Elliotte Harold
What is the name of your organizational unit?
[Unknown]: Me, Myself, and I
What is the name of your organization?
[Unknown]: Cafe au Lait
What is the name of your City or Locality?
[Unknown]: Brooklyn
What is the name of your State or Province?
[Unknown]: New York
What is the two-letter country code for this unit?
[Unknown]: NY
Is <CN=Elliotte Harold, OU="Me, Myself, and I", O0=Cafe au Lait, L=Brooklyn,
ST=New York, C=NY> correct?
[no]: vy

Enter key password for <ourstore>
(RETURN if same as keystore password):

When this is finished, you’ll have a file named jnp4e.keys, which contains your public
keys. However, no one will believe that these are your public keys unless you have them
certified by a trusted third party such as GeoTrust or GoDaddy. If you just want to
explore the JSSE before deciding whether to go through the hassle and expense of pur-
chasing a verified certificate, Oracle includes a verified keystore file called testkeys, pro-
tected with the password “passphrase,” that has some JSSE samples. However, this isn’t
good enough for real work.

Another approach is to use cipher suites that don't require authentication. There are
several of these in the JDK, including:

o SSL_DH_anon_EXPORT_WITH_DES40_CBC_SHA

o SSL_DH_anon_EXPORT_WITH_RC4_40_MD5

o SSL_DH_anon_WITH_3DES_EDE_CBC_SHA

o« SSL_DH_anon_WITH_DES_CBC_SHA

o SSL_DH_anon_WITH_RC4 128 MD?5

o TLS_DH_anon WITH_AES 128 _CBC_SHA

o TLS_DH_anon_WITH_AES_128_CBC_SHA256

o TLS_ECDH_anon_WITH_3DES_EDE_CBC_SHA

342 | Chapter 10: Secure Sockets

« TLS ECDH_anon_ WITH_AES_128 CBC_SHA
o TLS ECDH_anon_WITH_NULL_SHA
o TLS_ ECDH_anon_WITH_RC4_128 SHA

These are not enabled by default because they’re vulnerable to a man-in-the-middle
attack, but at least they allow you to write simple programs without paying money.

Configuring SSLServerSockets

Once you've successfully created and initialized an SSLServerSocket, there are a lot of
applications you can write using nothing more than the methods inherited from
java.net.ServerSocket. However, there are times when you need to adjust its behavior
a little. Like SSLSocket, SSLServerSocket provides methods to choose cipher suites,
manage sessions, and establish whether clients are required to authenticate themselves.
Most of these methods are similar to the methods of the same name in SSLSocket. The
difference is that they work on the server side and set the defaults for sockets accepted
by an SSLServerSocket. In some cases, once an SSLSocket has been accepted, you can
still use the methods of SSLSocket to configure that one socket rather than all sockets
accepted by this SSLServerSocket.

Choosing the Cipher Suites

The SSLServerSocket class has the same three methods for determining which cipher
suites are supported and enabled as SSLSocket does:

public abstract String[] getSupportedCipherSuites()
public abstract String[] getEnabledCipherSuites()
public abstract void setEnabledCipherSuites(String[] suites)

These use the same suite names as the similarly named methods in SSLSocket. The
difference is that these methods apply to all sockets accepted by the SSLServerSocket
rather than to just one SSLSocket. For example, the following code fragment has the
effect of enabling anonymous, unauthenticated connections on the SSLServerSocket
server. It relies on the names of these suites containing the string anon. This is true for
Oracle’s reference implementations, though there’s no guarantee that other implement-
ers will follow this convention:

String[] supported = server.getSupportedCipherSuites();
String[] anonCipherSuitesSupported = new String[supported.length];
int numAnonCipherSuitesSupported = 0;
for (int 1 = 0; 1 < supported.length; i++) {
if (supported[i].indexOf("_anon_") > 0) {
anonCipherSuitesSupported[numAnonCipherSuitesSupported++]
= supported[i];

Configuring SSLServerSockets | 343

}

String[] oldEnabled = server.getEnabledCipherSuites();
String[] newEnabled = new String[oldEnabled.length
+ numAnonCipherSuitesSupported];
System.arraycopy(oldEnabled, 0, newEnabled, 0, oldEnabled.length);
System.arraycopy(anonCipherSuitesSupported, 0, newEnabled,
oldEnabled.length, numAnonCipherSuitesSupported);

server.setEnabledCipherSuites(newEnabled);

This fragment retrieves the list of both supported and enabled cipher suites using get
SupportedCipherSuites() and getEnabledCipherSuites(). It looks at the name of
every supported suite to see whether it contains the substring “anon.” If the suite name
does contain this substring, the suite is added to a list of anonymous cipher suites. Once
thelist of anonymous cipher suites is built, it's combined in a new array with the previous
list of enabled cipher suites. The new array is then passed to setEnabledCipher

Suites() so that both the previously enabled and the anonymous cipher suites can now
be used.

Session Management

Both client and server must agree to establish a session. The server side uses the setE
nableSessionCreation() method to specify whether this will be allowed and the ge
tEnableSessionCreation() method to determine whether this is currently allowed:
public abstract void setEnableSessionCreation(boolean allowSessions)
public abstract boolean getEnableSessionCreation()
Session creation is enabled by default. If the server disallows session creation, then a
client that wants a session will still be able to connect. It just won’t get a session and will

have to handshake again for every socket. Similarly, if the client refuses sessions but the
server allows them, they’ll still be able to talk to each other but without sessions.

(Client Mode

The SSLServerSocket class has two methods for determining and specifying whether
client sockets are required to authenticate themselves to the server. By passing true to
the setNeedClientAuth() method, you specify that only connections in which the client
is able to authenticate itself will be accepted. By passing false, you specify that authen-
tication is not required of clients. The default is false. If, for some reason, you need to
know what the current state of this property is, the getNeedClientAuth() method will
tell you:

public abstract void setNeedClientAuth(boolean flag)
public abstract boolean getNeedClientAuth()

344 | Chapter 10: Secure Sockets

The setUseClientMode() method allows a program to indicate that even though it has
created an SSLServerSocket, itis and should be treated as a clientin the communication
with respect to authentication and other negotiations. For example, in an FTP session,
the client program opens a server socket to receive data from the server, but that doesn’t
make it less of a client. The getUseClientMode() method returns true if the
SSLServerSocket is in client mode, false otherwise:

public abstract void setUseClientMode(boolean flag)
public abstract boolean getUseClientMode()

Configuring SSLServerSockets | 345

CHAPTER 11

Nonblocking I/0

Compared to CPUs and memory or even disks, networks are slow. A high-end modern
PC is capable of moving data between the CPU and main memory at speeds of around
six gigabytes per second. It can move data to and from disk at the much slower but still
respectable speed of about 150 megabytes per second.' By contrast, the theoretical max-
imum on today’s fastest local area networks tops out at about 150 megabytes per second,
though many LANSs only support speeds ten to a hundred times slower than that. And
the speed across the public Internet is generally at least an order of magnitude smaller
than what you see across a LAN. My faster than average FIOS connection promises 6
megabytes per second down and 3 megabytes per second up, about 5% of what my LAN
can support. CPUs, disks, and networks are all speeding up over time. These numbers
are all substantially higher than I reported in the third edition of this book 10 years ago.
Nonetheless, CPUs and disks are likely to remain several orders of magnitude faster
than networks for the foreseeable future. The last thing you want to do in these cir-
cumstances is make the blazingly fast CPU wait for the (relatively) molasses-slow net-
work.

The traditional Java solution for allowing the CPU to race ahead of the network is a
combination of buffering and multithreading. Multiple threads can generate data for
several different connections at once and store that data in buffers until the network is
actually ready to send it; this approach works well for fairly simple servers and clients
without extreme performance needs. However, the overhead of spawning multiple
threads and switching between them can be nontrivial. For instance, each thread re-

1. Theseare rough, theoretical maximum numbers. Nonetheless, it’s worth pointing out that I'm using megabyte
to mean 1,024*1,024 bytes and gigabyte to mean 1,024 megabytes. Manufacturers often round the size of a
gigabyte down to 1,000 megabytes and the size of a megabyte down to 1,000,000 bytes to make their numbers
sound more impressive. Furthermore, networking speeds are often referred to in kilo/mega/giga bits per
second rather than bytes per second. Here I'm reporting all numbers in bytes so I can compare hard drive,
memory, and network bandwidths.

347

quires about one extra megabyte of RAM. On a large server that may be processing
thousands of requests a second, you may not want to assign a thread to each connection.
It’s faster if one thread can take responsibility for multiple connections, pick one that’s
ready to receive data, fill it with as much data as that connection can manage as quickly
as possible, then move on to the next ready connection.

To work well, this approach needs to be supported by the underlying operating system.
Fortunately, pretty much every modern operating system you're likely to be using as a
high-volume server supports such nonblocking I/O. However, it might not be well sup-
ported on some client systems of interest, such as tablets, cell phones, and the like.
Indeed, the java.nio package that provides this support is not part of any current or
planned Java ME profiles, though it is found in Android. However, the whole new I/O
API s designed for and only really matters on servers, which is why I haven’t done more
than allude to it until we began talking about servers. Client and even peer-to-peer
systems rarely need to process so many simultaneous connections that multithreaded,
stream-based I/O becomes a noticeable bottleneck.

NIO Too Little, Too Late?

There was a time when properly architected nonblocking I/O dramatically outper-
formed multithreaded, multiprocess designs. That time was the 1990s. Unfortunately,
Java didn’t get nonblocking I/O until Java 1.4 in 2002. By the time Java 5 was released
in 2004 and certainly by the time Java 6 was released in 2006, the continuing improve-
ments to native threading in operating systems had eliminated almost all context
switching and uncontested synchronization overhead. Furthermore, server memory
had grown to the point where 10,000 simultaneous threads could easily fit in memory
on commodity hardware; and multicore/multi-CPU systems that required multiple
threads for maximum utilization were becoming common. On today’s Java 7 and Java
8 64-bit VMs thats even more true. In 2013, it’s really hard to justify the added com-
plexity of a NIO-based architecture compared to a much simpler thread-per-request or
thread-per-connection design.

But isn’t NIO faster? Not necessarily. In actual measurements in Java 6 on Linux, multi-
threaded classic I/O designs outperform NIO by 30% or so.

Are there any situations in which asynchronous I/O does beat classic I/O? Maybe. The
one situation I can still imagine is a server that needs to support a colossal number of
long-lived, simultaneous connections, say 10,000+, but where each client doesn't send
very much data very frequently. For instance, imagine a central server in the home office
collecting transactions from each cash register in a nationwide chain of convenience
stores. This scenario is tailor-made for NIO, and can probably be implemented much
more efficiently with asynchronous or nonblocking on-demand processing in just a few
threads.

But always remember the two golden rules of optimization:

348 | Chapter 11: Nonblocking I/0

http://bit.ly/Java-measurements

1. Don't do it.

2. (For experts only) OK, do it but only after you have clear and unambiguous meas-
urements proving you have a problem, and that will clearly show whether your
changes have fixed the problem.

An Example Client

Although the new I/O APIs aren’t specifically designed for clients, they do work for
them. 'm going to begin with a client program using the new I/O APIs because it’s a
little simpler. In particular, many clients can be implemented with one connection at a
time, so I can introduce channels and buffers before talking about selectors and non-
blocking I/O.

A simple client for the character generator protocol defined in RFC 864 will demonstrate
the basics. This protocol is designed for testing clients. The server listens for connections
on port 19. When a client connects, the server sends a continuous sequence of characters
until the client disconnects. Any input from the client is ignored. The RFC does not
specify which character sequence to send, but recommends that the server use a rec-
ognizable pattern. One common pattern is rotating, 72-character carriage return/line-
feed delimited lines of the 95 ASCII printing characters, like this:

1 #S%8' () *+, - . /0123456789 ;<=>?@ABCDEFGHIIKLMNOPQRSTUVIWXYZ[\]~_"abcdefgh
"#$%& ' ()*+, - . /0123456789 ; <=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]~_ " abcdefght
#$%&"' ()*+, - . /0123456789 : ; <=>?@ABCDEFGHI JKLMNOPQRSTUVWXYZ[\]*_" abcdefghtj
$%8&' ()*+,-./0123456789: ;<=>?@ABCDEFGHI JKLMNOPQRSTUVWXYZ[\]~_" abcdefghijk
%8&' ()*+,-./0123456789: ;<=>?@ABCDEFGHI JKLMNOPQRSTUVIWXYZ[\]~_ abcdefghijkl
&' ()*+,-./0123456789: ; <=>? @ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]~_ " abcdefghijklm

I picked this protocol for the examples in this chapter because both the protocol for
transmitting the data and the algorithm to generate the data are simple enough that they
won't obscure the I/O. However, chargen can transmit a lot of data over a relatively few
connections and quickly saturate a network. It’s thus a good candidate for the new I/O
APIs.

Chargen is not commonly used these days, and may be blocked by local
firewalls even if it’s turned on. It’s vulnerable to a “ping-pong” denial-
of-service attack, in which spoofed Internet packets cause two hosts to
spew an unlimited amount of data at each other. Furthermore, be-
cause it's almost infinitely asymmetric—the server sends an unlimi-
ted amount of data in response to the smallest of client requests—it’s
very easy for even a few dozen compromised hosts, much less a large
botnet, to convince a chargen server to saturate its local bandwidth.

AnExample Client | 349

When implementinga client that takes advantage of the new I/O APIs, begin by invoking
the static factory method SocketChannel.open() to create a new java.nio.chan
nels.SocketChannel object. The argument to this method is a java.net.SocketAd
dress object indicating the host and port to connect to. For example, this fragment
connects the channel to rama.poly.edu on port 19:

SocketAddress rama = new InetSocketAddress('rama.poly.edu", 19);

SocketChannel client = SocketChannel.open(rama);
The channel is opened in blocking mode, so the next line of code won't execute until

the connection is established. If the connection can’t be established, an IOException is
thrown.

If this were a traditional client, you'd now ask for the socket’s input and/or output
streams. However, it's not. With a channel you write directly to the channel itself. Rather
than writing byte arrays, you write ByteBuffer objects. You've got a pretty good idea
that the lines of text are 74 ASCII characters long (72 printable characters followed by
a carriage return/linefeed pair) so you'll create a ByteBuffer that has a 74-byte capacity
using the static allocate() method:

ByteBuffer buffer = ByteBuffer.allocate(74);

Pass this ByteBuffer object to the channel’s read() method. The channel fills this buffer
with the data it reads from the socket. It returns the number of bytes it successfully read
and stored in the buffer:

int bytesRead = client.read(buffer);

By default, this will read at least one byte or return -1 to indicate the end of the data,
exactly as an InputStream does. It will often read more bytes if more bytes are available
to be read. Shortly you'll see how to put this client in nonblocking mode where it will
return 0 immediately if no bytes are available, but for the moment this code blocks just
like an InputStream. As you could probably guess, this method can also throw an
I0Exception if anything goes wrong with the read.

Assuming there is some data in the buffer—that is, n > 0—this data can be copied to
System.out. There are ways to extract a byte array from a ByteBuffer that can then be
written on a traditional OutputStream such as System.out. However, it's more infor-
mative to stick with a pure, channel-based solution. Such a solution requires wrapping
the OutputStream System.out in a channel using the Channels utility class, specifically,
its newChannel() method:

WritableByteChannel output = Channels.newChannel(System.out);

You can then write the data that was read onto this output channel connected to
System.out. However, before you do that, you have to flip the buffer so that the output
channel starts from the beginning of the data that was read rather than the end:

350 | Chapter 11: Nonblocking I/0

buffer.flip();
output.write(buffer);

You don’t have to tell the output channel how many bytes to write. Buffers keep track
of how many bytes they contain. However, in general, the output channel is not guar-
anteed to write all the bytes in the buffer. In this specific case, though, it’s a blocking
channel and it will either do so or throw an I0Exception.

You shouldn’t create a new buffer for each read and write. That would kill the perfor-
mance. Instead, reuse the existing buffer. You'll need to clear the buffer before reading
into it again:

buffer.clear();

This is a little different than flipping. Flipping leaves the data in the buffer intact, but
prepares it for writing rather than reading. Clearing resets the buffer to a pristine state.
(Actually that’s a tad simplistic. The old data is still present; it’s not overwritten, but it
will be overwritten with new data read from the source as soon as possible.)

Example 11-1 puts this together into a complete client. Because chargen is by design an
endless protocol, you'll need to kill the program using Ctrl-C.

Example 11-1. A channel-based chargen client

import java.nio.*;
import java.nio.channels.*;
import java.net.*;
import java.io.IOException;

public class ChargenClient {
public static int DEFAULT_PORT = 19;
public static void main(String[] args) {

if (args.length == 0) {
System.out.println("Usage: java ChargenClient host [port]");
return;

}

int port;
try {
port = Integer.parselnt(args[1]);
} catch (RuntimeException ex) {
port = DEFAULT_PORT;
}

try {
SocketAddress address = new InetSocketAddress(args[0], port);

SocketChannel client = SocketChannel.open(address);

ByteBuffer buffer = ByteBuffer.allocate(74);

An Example Client | 351

WritableByteChannel out = Channels.newChannel(System.out);

while (client.read(buffer) != -1) {
buffer.flip();
out.write(buffer);
buffer.clear();
}
} catch (IOException ex) {
ex.printStackTrace();
}
}
}

Here’s the output from a sample run:

$ java ChargenClient rama.poly.edu

VU#$%8 ! ()*+, - . /0123456789 ; <=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]~_ " abcdefg
V'#S%& ' ()*+,-./0123456789: ; <=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]~_"abcdefgh
"#$%8' ()*+,-./0123456789: ;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]~_ " abcdefght
#$%8' ()*+,-. /0123456789 ; <=>?@ABCDEFGHI JKLMNOPQRSTUVWXYZ[\]~_"abcdefghij
$%8&"' ()*+,-./0123456789: ;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]~_ " abcdefghijk
%&' ()*+,-./0123456789: ;<=>?@ABCDEFGHI JKLMNOPQRSTUVWXYZ[\]~_"abcdefghijkl
&' ()*+,-./0123456789: ;<=>?@ABCDEFGHI JKLMNOPQRSTUVWXYZ[\]~_ " abcdefghijklm

So far, this is just an alternate vision of a program that could have easily been written
using streams. The really new feature comes if you want the client to do something
besides copying all input to output. You can run this connection in either blocking or
nonblocking mode in which read() returns immediately even if no data is available.
This allows the program to do something else before it attempts to read. It doesn’t have
to wait for a slow network connection. To change the blocking mode, pass true (block)
or false (don’t block) to the configureBlocking() method. Let’s make this connection
nonblocking:

client.configureBlocking(false);

In nonblocking mode, read() may return 0 because it doesn’t read anything. Therefore,
the loop needs to be a little different:

while (true) {
// Put whatever code here you want to run every pass through the loop
// whether anything is read or not
int n = client.read(buffer);
if (n > 0) {
buffer.flip();
out.write(buffer);
buffer.clear();
} else if (n == -1) {
// This shouldn't happen unless the server is misbehaving.
break;
}
}

352 | Chapter 11: Nonblocking I/0

There’s not a lot of call for this in a one-connection client like this one. Perhaps you
could check to see if the user has done something to cancel input, for example. However,
as you'll see in the next section, when a program is processing multiple connections,
this enables code to run very quickly on the fast connections and more slowly on the
slow ones. Each connection gets to run at its own speed without being held up behind
the slowest driver on the one-lane road.

An Example Server

Clients are well and good, but channels and buffers are really intended for server systems
that need to process many simultaneous connections efficiently. Handling servers re-
quires a third new piece in addition to the buffers and channels used for the client.
Specifically, you need selectors that allow the server to find all the connections that are
ready to receive output or send input.

To demonstrate the basics, this example implements a simple server for the character
generator protocol. When implementing a server that takes advantage of the new I/O
APIs, begin by calling the static factory method ServerSocketChannel. open() method
to create a new ServerSocketChannel object:

ServerSocketChannel serverChannel = ServerSocketChannel.open();

Initially, this channel is not actually listening on any port. To bind it to a port, retrieve
its ServerSocket peer object with the socket() method and then use the bind() meth-
od on that peer. For example, this code fragment binds the channel to a server socket
on port 19:

ServerSocket ss = serverChannel.socket();
ss.bind(new InetSocketAddress(19));

In Java 7 and later, you can bind directly without retrieving the underlying
java.net.ServerSocket:

serverChannel.bind(new InetSocketAddress(19));

As with regular server sockets, binding to port 19 requires you to be root on Unix
(including Linux and Mac OS X). Nonroot users can only bind to ports 1024 and higher.

The server socket channel is now listening for incoming connections on port 19. To
accept one, call the accept() method, which returns a SocketChannel object:

SocketChannel clientChannel = serverChannel.accept();

On the server side, you'll definitely want to make the client channel nonblocking to
allow the server to process multiple simultaneous connections:

clientChannel.configureBlocking(false);

An Example Server | 353

You may also want to make the ServerSocketChannel nonblocking. By default, this
accept() method blocks until there’s an incoming connection, like the accept () meth-
od of ServerSocket. To change this, simply call configureBlocking(false) before
calling accept():

serverChannel.configureBlocking(false);

A nonblocking accept() returns null almost immediately if there are no incoming
connections. Be sure to check for that or you’ll get a nasty NullPointerException when
trying to use the socket.

There are now two open channels: a server channel and a client channel. Both need to
be processed. Both can run indefinitely. Furthermore, processing the server channel
will create more open client channels. In the traditional approach, you assign each con-
nection a thread, and the number of threads climbs rapidly as clients connect. Instead,
in the new I/O AP, you create a Selector that enables the program to iterate over all
the connections that are ready to be processed. To construct a new Selector, just call
the static Selector.open() factory method:

Selector selector = Selector.open();

Next, you need to register each channel with the selector that monitors it using the
channel’s register () method. When registering, specify the operation you’re interested
in using a named constant from the SelectionKey class. For the server socket, the only
operation of interest is OP_ACCEPT; that is, is the server socket channel ready to accept
a new connection?

serverChannel.register(selector, SelectionKey.OP_ACCEPT);

For the client channels, you want to know something a little different—specifically,
whether they’re ready to have data written onto them. For this, use the OP_WRITE key:

SelectionKey key = clientChannel.register(selector, SelectionKey.OP_WRITE);

Both register() methods return a SelectionKey object. However, youre only going
to need to use that key for the client channels, because there can be more than one of
them. Each SelectionKey has an attachment of arbitrary Object type. This is normally
used to hold an object that indicates the current state of the connection. In this case,
you can store the buffer that the channel writes onto the network. Once the buffer is
fully drained, youll refill it. Fill an array with the data that will be copied into each buffer.
Rather than writing to the end of the buffer, and then rewinding to the beginning of the
buffer and writing again, it’s easier just to start with two sequential copies of the data so
every line is available as a contiguous sequence in the array:
byte[] rotation = new byte[95%2];

for (byte 1 ="' '; 1 <= '~'; 1++) {
rotation[i - ' '] = 1
rotation[i + 95 - ' '

}

5
=1;

354 | Chapter 11: Nonblocking I/0

Because this array will only be read from after it’s been initialized, you can reuse it for
multiple channels. However, each channel will get its own buffer filled with the contents
of this array. You’'ll stuff the buffer with the first 72 bytes of the rotation array, then add
a carriage return/linefeed pair to break the line. Then you’ll flip the buffer so it’s ready
for draining, and attach it to the channels key:

ByteBuffer buffer = ByteBuffer.allocate(74);
buffer.put(rotation, 0, 72);
buffer.put((byte) '\r');

buffer.put((byte) '\n');

buffer.flip();

key2.attach(buffer);

To check whether anything is ready to be acted on, call the selector’s select() method.
For a long-running server, this normally goes in an infinite loop:

while (true) {
selector.select ();
// process selected keys...

}

Assuming the selector does find a ready channel, its selectedKeys() method returns
a java.util.Set containing one SelectionKey object for each ready channel. Other-
wise, it returns an empty set. In either case, you can loop through this with a
java.util.Iterator:

Set<SelectionKey> readyKeys = selector.selectedKeys();
Iterator iterator = readyKeys.iterator();
while (iterator.hasNext()) {
SelectionKey key = iterator.next();
// Remove key from set so we don't process it twice
iterator.remove();
// operate on the channel...

}

Removing the key from the set tells the Selector that you've dealt with it, and the
Selector doesn't need to keep giving it back every time you call select(). The Selec
tor will add the channel back into the ready set when select() is called again if the
channel becomes ready again. It’s really important to remove the key from the ready set
here, though.

If the ready channel is the server channel, the program accepts a new socket channel
and adds it to the selector. If the ready channel is a socket channel, the program writes
as much of the buffer as it can onto the channel. If no channels are ready, the selector
waits for one. One thread, the main thread, processes multiple simultaneous connec-
tions.

In this case, it’s easy to tell whether a client or a server channel has been selected because
the server channel will only be ready for accepting and the client channels will only be

An Example Server | 355

ready for writing. Both of these are I/O operations, and both can throw I0Exceptions
for a variety of reasons, so you'll want to wrap this all in a try block:

try {
if (key.isAcceptable()) {
ServerSocketChannel server = (ServerSocketChannel) key.channel();
SocketChannel connection = server.accept();
connection.configureBlocking(false);
connection.register(selector, SelectionKey.OP_WRITE);
// set up the buffer for the client..
} else if (key.isWritable()) {
SocketChannel client = (SocketChannel) key.channel();
// write data to client...
}
}

Writing the data onto the channel is easy. Retrieve the key’s attachment, cast it to Byte
Buffer, and call hasRemaining() to check whether there’s any unwritten data left in the
buffer. If there is, write it. Otherwise, refill the buffer with the next line of data from the
rotation array and write that.

ByteBuffer buffer = (ByteBuffer) key.attachment();
if (!buffer.hasRemaining()) {
// Refill the buffer with the next line
// Figure out where the last line started
buffer.rewind();
int first = buffer.get();
// Increment to the next character
buffer.rewind();
int position = first - '+ 1
buffer.put(rotation, position, 72);
buffer.put((byte) '\r');
buffer.put((byte) '\n');
buffer.flip();
}

client.write(buffer);

The algorithm that figures out where to grab the next line of data relies on the characters
being stored in the rotation array in ASCII order. buffer.get() reads the first byte of
data from the buffer. From this number you subtract the space character (32) because
that’s the first character in the rotation array. This tells you which index in the array

the buffer currently starts at. You add 1 to find the start of the next line and refill the
buffer.

In the chargen protocol, the server never closes the connection. It waits for the client
to break the socket. When this happens, an exception will be thrown. Cancel the key
and close the corresponding channel:

catch (IOException ex) {
key.cancel();
try {

356 | Chapter 11: Nonblocking I/0

key.channel().close();
} catch (IOException cex) {
// ignore
}
}

Example 11-2 puts this all together in a complete chargen server that processes multiple
connections efficiently in a single thread.

Example 11-2. A nonblocking chargen server

import java.nio.*;
import java.nio.channels.*;
import java.net.*;
import java.util.*;
import java.ilo.IOException;

public class ChargenServer {
public static int DEFAULT_PORT = 19;
public static void main(String[] args) {

int port;
try {
port = Integer.parselnt(args[0]);
} catch (RuntimeException ex) {
port = DEFAULT_PORT;
}

System.out.println("Listening for connections on port

+ port);

byte[] rotation = new byte[95%2];
for (byte 1 = ' '; 1 <= '~'; 1++) {
rotation[i -' '] = 1;
rotation[i1 + 95 - ' '] = 1;

}

ServerSocketChannel serverChannel;
Selector selector;
try {
serverChannel = ServerSocketChannel.open();
ServerSocket ss = serverChannel.socket();
InetSocketAddress address = new InetSocketAddress(port);
ss.bind(address);
serverChannel.configureBlocking(false);
selector = Selector.open();
serverChannel.register(selector, SelectionKey.OP_ACCEPT);
} catch (IOException ex) {
ex.printStackTrace();
return;

}

while (true) {

An Example Server | 357

try {
selector.select();

} catch (IOException ex) {
ex.printStackTrace();
break;

}

Set<SelectionKey> readyKeys = selector.selectedKeys();
Iterator<SelectionKey> iterator = readyKeys.iterator();
while (iterator.hasNext()) {

SelectionKey key = iterator.next();

iterator.remove();

try {

if (key.isAcceptable()) {
ServerSocketChannel server = (ServerSocketChannel) key.channel();
SocketChannel client = server.accept();
System.out.println("Accepted connection from
client.configureBlocking(false);
SelectionKey key2 = client.register(selector, SelectionKey.
OP_WRITE);

+ client);

ByteBuffer buffer = ByteBuffer.allocate(74);
buffer.put(rotation, 0, 72);
buffer.put((byte) '\r');
buffer.put((byte) '\n');
buffer.flip();
key2.attach(buffer);
} else if (key.isWritable()) {
SocketChannel client = (SocketChannel) key.channel();
ByteBuffer buffer = (ByteBuffer) key.attachment();
if (!buffer.hasRemaining()) {
// Refill the buffer with the next line
buffer.rewind();
// Get the old first character
int first = buffer.get();
// Get ready to change the data in the buffer
buffer.rewind();
// Find the new first characters position in rotation
int position = first - ' ' + 1;
// copy the data from rotation into the buffer
buffer.put(rotation, position, 72);
// Store a line break at the end of the buffer
buffer.put((byte) '\r');
buffer.put((byte) '\n');
// Prepare the buffer for writing
buffer.flip();
}
client.write(buffer);
}
} catch (IOException ex) {
key.cancel();
try {

358 | Chapter 11: Nonblocking I/0

key.channel().close();

}
catch (IOException cex) {}

This example only uses one thread. There are situations where you might still want to
use multiple threads, especially if different operations have different priorities. For in-
stance, you might want to accept new connections in one high-priority thread and
service existing connections in a lower-priority thread. However, you're no longer re-
quired to have a 1:1 ratio between threads and connections, which improves the scala-
bility of servers written in Java.

It may also be important to use multiple threads for maximum performance. Multiple
threads allow the server to take advantage of multiple CPUs. Even with a single CPU,
it’s often a good idea to separate the accepting thread from the processing threads. The
thread pools discussed in Chapter 3 are still relevant even with the new I/O model. The
thread that accepts the connections can add the connections it’s accepted into the queue
for processing by the threads in the pool. This is still faster than doing the same thing
without selectors because select() ensures youre never wasting any time on connec-
tions that aren’t ready to receive data. On the other hand, the synchronization issues
here are tricky, so don't attempt this until profiling proves there is a bottleneck.

Buffers

In Chapter 2, I recommended that you always buffer your streams. Almost nothing has
a greater impact on the performance of network programs than a big enough buffer. In
the new I/O model, you're no longer given the choice. All I/O is buffered. Indeed, the
buffers are fundamental parts of the API. Instead of writing data onto output streams
and reading data from input streams, you read and write data from buffers. Buffers may
appear to be just an array of bytes as in buffered streams. However, native implemen-
tations can connect them directly to hardware or memory or use other, very efficient
implementations.

From a programming perspective, the key difference between streams and channels is
that streams are byte-based whereas channels are block-based. A stream is designed to
provide one byte after the other, in order. Arrays of bytes can be passed for performance.
However, the basic notion is to pass data one byte at a time. By contrast, a channel passes
blocks of data around in buffers. Before bytes can be read from or written to a channel,
the bytes have to be stored in a buffer, and the data is written or read one buffer at a
time.

Buffers | 359

The second key difference between streams and channels/buffers is that channels and
buffers tend to support both reading and writing on the same object. This isn't always
true. For instance, a channel that points to a file on a CD-ROM can be read but not
written. A channel connected to a socket that has shutdown input could be written but
not read. If you try to write to a read-only channel or read from a write-only channel,
an UnsupportedOperationException will be thrown. However, more often than not
network programs can read from and write to the same channels.

Without worrying too much about the underlying details (which can vary hugely from
one implementation to the next, mostly as a result of being tuned very closely to the
host operating system and hardware), you can think of a buffer as a fixed-size list of
elements of a particular, normally primitive data type, like an array. However, it's not
necessarily an array behind the scenes. Sometimes it is; sometimes it isn’t. There are
specific subclasses of Buffer for all of Java’s primitive data types except boolean: Byte
Buffer, CharBuffer, ShortBuffer, IntBuffer, LongBuffer, FloatBuffer, and Double
Buffer. The methods in each subclass have appropriately typed return values and ar-
gument lists. For example, the DoubleBuffer class has methods to put and get doubles.
The IntBuffer class has methods to put and get ints. The common Buffer superclass
only provides methods that don’t need to know the type of the data the buffer contains.
(The lack of primitive-aware generics really hurts here.) Network programs use Byte
Buffer almost exclusively, although occasionally one program might use a view that
overlays the ByteBuffer with one of the other types.

Besides its list of data, each buffer tracks four key pieces of information. All buffers have
the same methods to set and get these values, regardless of the buffer’s type:

position
The next location in the buffer that will be read from or written to. This starts
counting at 0 and has a maximum value equal to the size of the buffer. It can be set
or gotten with these two methods:

public final int position()
public final Buffer position(int newPosition)
capacity
The maximum number of elements the buffer can hold. This is set when the buffer
is created and cannot be changed thereafter. It can be read with this method:

public final int capacity()

limit
The end of accessible data in the buffer. You cannot write or read at or past this
point without changing the limit, even if the buffer has more capacity. It is set and
gotten with these two methods:

public final int Timit()
public final Buffer limit(int newLimit)

360 | Chapter 11: Nonblocking I/0

mark
A client-specified index in the buffer. It is set at the current position by invoking
the mark() method. The current position is set to the marked position by invoking
reset():

public final Buffer mark()
public final Buffer reset()

If the position is set below an existing mark, the mark is discarded.

Unlike reading from an InputStream, reading from a buffer does not actually change
the buffer’s data in any way. It’s possible to set the position either forward or backward
so you can start reading from a particular place in the buffer. Similarly, a program can
adjust the limit to control the end of the data that will be read. Only the capacity is fixed.

The common Buffer superclass also provides a few other methods that operate by
reference to these common properties.

The clear () method “empties” the buffer by setting the position to zero and the limit
to the capacity. This allows the buffer to be completely refilled:

public final Buffer clear()
However, the clear () method does not remove the old data from the buffer. It’s still
present and could be read using absolute get methods or changing the limit and position
again.
The rewind() method sets the position to zero, but does not change the limit:
public final Buffer rewind()
This allows the buffer to be reread.
The flip() method sets the limit to the current position and the position to zero:
public final Buffer flip()

It is called when you want to drain a buffer you've just filled.

Finally, there are two methods that return information about the buffer but don’t change
it. The remaining() method returns the number of elements in the buffer between the
current position and the limit. The hasRemaining() method returns true if the number
of remaining elements is greater than zero:

public final int remaining()
public final boolean hasRemaining()

Creating Buffers

The buffer class hierarchy is based on inheritance but not really on polymorphism, at
least not at the top level. You normally need to know whether youre dealing with an

Buffers | 361

IntBuffer or a ByteBuffer or a CharBuffer or something else. You write code to one
of these subclasses, not to the common Buffer superclass.

Each typed buffer class has several factory methods that create implementation-specific
subclasses of that type in various ways. Empty buffers are normally created by allocate
methods. Buffers that are prefilled with data are created by wrap methods. The allocate
methods are often useful for input, and the wrap methods are normally used for output.

Allocation

The basic allocate() method simply returns a new, empty buffer with a specified fixed
capacity. For example, these lines create byte and int buffers, each with a size of 100:

ByteBuffer bufferl = ByteBuffer.allocate(100);

IntBuffer buffer2 = IntBuffer.allocate(100);
The cursor is positioned at the beginning of the buffer (i.e., the position is 0). A buffer
created by allocate() will be implemented on top of a Java array, which can be accessed
bythearray() and arrayoffset() methods. For example, you could read alarge chunk
of data into a buffer using a channel and then retrieve the array from the buffer to pass
to other methods:

byte[] datal
int[] data2

bufferl.array();
buffer2.array();

The array() method does expose the buffer’s private data, so use it with caution.
Changes to the backing array are reflected in the buffer and vice versa. The normal
pattern here is to fill the buffer with data, retrieve its backing array, and then operate on
the array. This isn’t a problem as long as you don't write to the buffer after you've started
working with the array.

Direct allocation

The ByteBuffer class (but not the other buffer classes) has an additional allocateDir
ect() method that may not create a backing array for the buffer. The VM may imple-
ment a directly allocated ByteBuffer using direct memory access to the buffer on an
Ethernet card, kernel memory, or something else. It's not required, but it’s allowed, and
this can improve performance for I/O operations. From an API perspective, allocate
Direct() is used exactly like allocate():

ByteBuffer buffer = ByteBuffer.allocateDirect(100);

Invoking array() and arrayOffset() on a direct buffer will throw an Unsupportedo
perationException. Direct buffers may be faster on some virtual machines, especially
if the buffer is large (roughly a megabyte or more). However, direct buffers are more
expensive to create than indirect buffers, so they should only be allocated when the
buffer is expected to be around for a while. The details are highly VM dependent. As is
generally true for most performance advice, you probably shouldn’t even consider using
direct buffers until measurements prove performance is an issue.

362 | Chapter 11: Nonblocking I/0

Wrapping

If you already have an array of data that you want to output, you'll normally wrap a
buffer around it, rather than allocating a new buffer and copying its components into
the buffer one at a time. For example:

byte[] data = "Some data".getBytes("UTF-8");

ByteBuffer bufferl = ByteBuffer.wrap(data);

char[] text = "Some text".toCharArray();

CharBuffer buffer2 = CharBuffer.wrap(text);
Here, the buffer contains a reference to the array, which serves as its backing array.
Buffers created by wrapping are never direct. Again, changes to the array are reflected
in the buffer and vice versa, so don’t wrap the array until you're finished with it.

Filling and Draining

Buffers are designed for sequential access. Recall that each buffer has a curent position
identified by the position() method that is somewhere between zero and the number
of elements in the buffer, inclusive. The buffer’s position is incremented by one when
an element is read from or written to the buffer. For example, suppose you allocate a
CharBuffer with capacity 12, and fill it by putting five characters into it:

CharBuffer buffer = CharBuffer.allocate(12);
buffer.put('H');
buffer.put('e');
buffer.put('l');
buffer.put('l');
buffer.put('o');

The position of the buffer is now 5. This is called filling the buffer.

You can only fill the buffer up to its capacity. If you tried to fill it past its initially set
capacity, the put() method would throw a BufferOverflowException.

If you now tried to get() from the buffer, youd get the null character (\u0000) that Java
initializes char buffers with that’s found at position 5. Before you can read the data you
wrote in out again, you need to flip the buffer:

buffer.flip();

This sets the limit to the position (5 in this example) and resets the position to 0, the
start of the buffer. Now you can drain it into a new string:

wn,
B

String result =

while (buffer.hasRemaining()) {
result += buffer.get();

}

Each call to get () moves the position forward one. When the position reaches the limit,
hasRemaining() returns false. This is called draining the buffer.

Buffers | 363

Buffer classes also have absolute methods that fill and drain at specific positions within
the buffer without updating the position. For example, ByteBuffer has these two:

public abstract byte get(int index)
public abstract ByteBuffer put(int index, byte b)

These both throw an IndexOutOfBoundsException if you try to access a position at or
past the limit of the buffer. For example, using absolute methods, you can put the same
text into a buffer like this:

CharBuffer buffer = CharBuffer.allocate(12);

buffer.put(0, 'H');

buffer.put(1l, 'e');

buffer.put(2, 'l");

buffer.put(3, 'l');

buffer.put(4, 'o');
However, you no longer need to flip before reading it out, because the absolute methods
don’t change the position. Furthermore, order no longer matters. This produces the
same end result:

CharBuffer buffer = CharBuffer.allocate(12);
buffer.put(1l, 'e');
buffer.put(4, 'o');
buffer.put(0, 'H');
buffer.put(3, 'l');
buffer.put(2, 'l');

Bulk Methods

Even with buffers, it’s often faster to work with blocks of data rather than filling and
draining one element at a time. The different buffer classes have bulk methods that fill
and drain an array of their element type.

For example, ByteBuffer has put() and get() methods that fill and drain a ByteBuff
er from a preexisting byte array or subarray:

public ByteBuffer get(byte[] dst, int offset, int length)

public ByteBuffer get(byte[] dst)

public ByteBuffer put(byte[] array, int offset, int length)

public ByteBuffer put(byte[] array)
These put methods insert the data from the specified array or subarray, beginning at
the current position. The get methods read the data into the argument array or subarray
beginning at the current position. Both put and get increment the position by thelength
of the array or subarray. The put methods throw a BufferOverflowException if the
buffer does not have sufficient space for the array or subarray. The get methods throw
aBufferUnderflowException if the buffer does not have enough data remaining to fill
the array or subarrray. These are runtime exceptions.

364 | Chapter11: Nonblocking I/0

Data Conversion

All data in Java ultimately resolves to bytes. Any primitive data type—1int, double,
float, etc.—can be written as bytes. Any sequence of bytes of the right length can be
interpreted as a primitive datum. For example, any sequence of four bytes corresponds
toan int or a float (actually both, depending on how you want to read it). A sequence
of eight bytes corresponds to a long or a double. The ByteBuffer class (and only the
ByteBuffer class) provides relative and absolute put methods that fill a buffer with the
bytes corresponding to an argument of primitive type (except boolean) and relative and
absolute get methods that read the appropriate number of bytes to form a new primitive
datum:

public abstract char getChar()

public abstract ByteBuffer putChar(char value)

public abstract char getChar(int index)

public abstract ByteBuffer putChar(int index, char value)
public abstract short getShort()

public abstract ByteBuffer putShort(short value)

public abstract short getShort(int index)

public abstract ByteBuffer putShort(int index, short value)
public abstract int getInt()

public abstract ByteBuffer putInt(int value)

public abstract int getInt(int index)

public abstract ByteBuffer putInt(int index, int value)
public abstract long getLong()

public abstract ByteBuffer putLong(long value)

public abstract long getLong(int index)

public abstract ByteBuffer putLong(int index, long value)
public abstract float getFloat()

public abstract ByteBuffer putFloat(float value)

public abstract float getFloat(int index)

public abstract ByteBuffer putFloat(int index, float value)
public abstract double getDouble()

public abstract ByteBuffer putDouble(double value)

public abstract double getDouble(int index)

public abstract ByteBuffer putDouble(int index, double value)

In the world of new I/O, these methods do the job performed by DataOutputStream
and DataInputStreanm in traditional I/O. These methods do have an additional ability
not present in DataOutputStream and DataInputStream. You can choose whether to
interpret the byte sequences as big-endian or little-endian ints, floats, doubles, and
so on. By default, all values are read and written as big endian (i.e., most significant byte
first. The two order () methods inspect and set the buffer’s byte order using the named
constants in the ByteOrder class. For example, you can change the buffer to little-endian
interpretation like so:

if (buffer.order().equals(ByteOrder.BIG_ENDIAN)) {
buffer.order(ByteOrder.LITTLE_ENDIAN);
}

Buffers | 365

Suppose instead of a chargen protocol, you want to test the network by generating binary
data. This test can highlight problems that aren’t apparent in the ASCII chargen protocol,
such as an old gateway configured to strip off the high-order bit of every byte, throw
away every 2*° byte, or put into diagnostic mode by an unexpected sequence of control
characters. These are not theoretical problems. I've seen variations on all of these at one
time or another.

You could test the network for such problems by sending out every possible int. This
would, after almost 4.3 billion iterations, test every possible four-byte sequence. On the
receiving end, you could easily test whether the data received is expected with a simple
numeric comparison. If any problems are found, it is easy to tell exactly where they
occurred. In other words, this protocol (call it Intgen) behaves like this:

1. The client connects to the server.

2. Theserverimmediately begins sending four-byte, big-endian integers, starting with
0 and incrementing by 1 each time. The server will eventually wrap around into the
negative numbers.

3. The server runs indefinitely. The client closes the connection when it’s had enough.

The server would store the current int in a four-byte-long direct ByteBuffer. One buffer
would be attached to each channel. When the channel becomes available for writing,
the buffer is drained onto the channel. Then the buffer is rewound and the content of
the buffer is read with getInt(). The program then clears the buffer, increments the
previous value by one, and fills the buffer with the new value using putInt(). Finally,
it flips the buffer so it will be ready to be drained the next time the channel becomes
writable. Example 11-3 demonstrates.

Example 11-3. Intgen server

import java.nio.*;
import java.nio.channels.*;
import java.net.*;
import java.util.*;
import java.io.IOException;

public class IntgenServer {
public static int DEFAULT_PORT = 1919;
public static void main(String[] args) {

int port;
try {
port = Integer.parselnt(args[0]);
} catch (RuntimeException ex) {
port = DEFAULT_PORT;
}

366 | Chapter 11: Nonblocking I/0

System.out.println("Listening for connections on port " + port);
ServerSocketChannel serverChannel;
Selector selector;
try {
serverChannel = ServerSocketChannel.open();
ServerSocket ss = serverChannel.socket();
InetSocketAddress address = new InetSocketAddress(port);
ss.bind(address);
serverChannel.configureBlocking(false);
selector = Selector.open();
serverChannel.register(selector, SelectionKey.OP_ACCEPT);
} catch (IOException ex) {
ex.printStackTrace();
return;

}

while (true) {
try {
selector.select();
} catch (IOException ex) {
ex.printStackTrace();
break;

}

Set<SelectionKey> readyKeys = selector.selectedKeys();
Iterator<SelectionKey> iterator = readyKeys.iterator();
while (iterator.hasNext()) {
SelectionKey key = iterator.next();
iterator.remove();
try {
if (key.isAcceptable()) {
ServerSocketChannel server = (ServerSocketChannel) key.channel();
SocketChannel client = server.accept();
System.out.println("Accepted connection from
client.configureBlocking(false);
SelectionKey key2 = client.register(selector, SelectionKey.

+ client);

OP_WRITE);

ByteBuffer output = ByteBuffer.allocate(4);
output.putInt(0);
output.flip();
key2.attach(output);
} else if (key.isWritable()) {
SocketChannel client = (SocketChannel) key.channel();
ByteBuffer output = (ByteBuffer) key.attachment();
if (! output.hasRemaining()) {
output.rewind();
int value = output.getInt();
output.clear();
output.putInt(value + 1);
output.flip();

Buffers

367

client.write(output);

}
} catch (IOException ex) {
key.cancel();

try {
key.channel().close();

}
catch (IOException cex) {}

View Buffers

If you know the ByteBuffer read from a SocketChannel contains nothing but elements
of one particular primitive data type, it may be worthwhile to create a view buffer. This
is a new Buffer object of appropriate type (e.g., DoubleBuffer, IntBuffer, etc.), that
draws its data from an underlying ByteBuffer beginning with the current position.
Changes to the view buffer are reflected in the underlying buffer and vice versa. How-
ever, each buffer has its own independent limit, capacity, mark, and position. View
buffers are created with one of these six methods in ByteBuffer:

public abstract ShortBuffer asShortBuffer()
public abstract CharBuffer asCharBuffer()
public abstract IntBuffer asIntBuffer()
public abstract LongBuffer asLongBuffer()
public abstract FloatBuffer asFloatBuffer()
public abstract DoubleBuffer asDoubleBuffer()

For example, consider a client for the Intgen protocol. This protocol is only going to
read ints, so it may be helpful to use an IntBuffer rather than a ByteBuffer.
Example 11-4 demonstrates. For variety, this client is synchronous and blocking, but it
still uses channels and buffers.
Example 11-4. Intgen client
import java.nio.*;
import java.nio.channels.*;
import java.net.*;
import java.io.IOException;
public class IntgenClient {
public static int DEFAULT_PORT = 1919;

public static void main(String[] args) {

if (args.length == 0) {

368 | Chapter 11: Nonblocking I/0

System.out.println("Usage: java IntgenClient host [port]");
return;

}

int port;
try {
port = Integer.parselnt(args[1]);
} catch (RuntimeException ex) {
port = DEFAULT_PORT;
}

try {
SocketAddress address = new InetSocketAddress(args[0], port);
SocketChannel client = SocketChannel.open(address);
ByteBuffer buffer = ByteBuffer.allocate(4);
IntBuffer view = buffer.asIntBuffer();

for (int expected = 0; ; expected++) {
client.read(buffer);
int actual = view.get();
buffer.clear();
view.rewind();

if (actual != expected) {
System.err.println("Expected " + expected +
break;

; was " + actual);

}
System.out.println(actual);

}
} catch(IOException ex) {
ex.printStackTrace();
}
}
}

There’s one thing to note here. Although you can fill and drain the buffers using the
methods of the IntBuffer class exclusively, data must be read from and written to the
channel using the original ByteBuffer of which the IntBuffer is a view. The SocketCh
annel class only has methods to read and write ByteBuffers. It cannot read or write
any other kind of buffer. This also means you need to clear the ByteBuffer on each pass
through the loop or the buffer will fill up and the program will halt. The positions and
limits of the two buffers are independent and must be considered separately. Finally, if
youre working in nonblocking mode, be careful that all the data in the underlying
ByteBuffer is drained before reading or writing from the overlaying view buffer. Non-
blocking mode provides no guarantee that the buffer will still be aligned on an int,
double, or char. boundary following a drain. It's completely possible for a nonblocking
channel to write half the bytes of an int or a double. When using nonblocking I/O, be
sure to check for this problem before putting more data in the view buffer.

Buffers | 369

Compacting Buffers
Most writable buffers support a compact() method:

public abstract ByteBuffer compact()
public abstract IntBuffer compact()
public abstract ShortBuffer compact()
public abstract FloatBuffer compact()
public abstract CharBuffer compact()
public abstract DoubleBuffer compact()

(If it weren’t for invocation chaining, these six methods could have been replaced by
one method in the common Buffer superclass.) Compacting shifts any remaining data
in the buffer to the start of the buffer, freeing up more space for elements. Any data that
was in those positions will be overwritten. The buffer’s position is set to the end of the
data so it’s ready for writing more data.

Compacting is an especially useful operation when you're copying—reading from one
channel and writing the data to another using nonblocking I/O. You can read some data
into a buffer, write the buffer out again, then compact the data so all the data that wasn’t
written is at the beginning of the buffer, and the position is at the end of the data re-
maining in the buffer, ready to receive more data. This allows the reads and writes to
be interspersed more or less at random with only one buffer. Several reads can take place
in a row, or several writes follow consecutively. If the network is ready for immediate
output but not input (or vice versa), the program can take advantage of that. This tech-
nique can be used to implement an echo server as shown in Example 11-5. The echo
protocol simply responds to the client with whatever data the client sent. Like chargen,
it’s useful for network testing. Also like chargen, echo relies on the client to close the
connection. Unlike chargen, however, an echo server must both read and write from
the connection.

Example 11-5. Echo server

import java.nio.*;
import java.nio.channels.*;
import java.net.*;
import java.util.*;
import java.io.IOException;

public class EchoServer {
public static int DEFAULT_PORT = 7;
public static void main(String[] args) {
int port;
try {
port = Integer.parselnt(args[0]);

} catch (RuntimeException ex) {
port = DEFAULT_PORT;

370 | Chapter 11: Nonblocking I/0

}

System.out.println("Listening for connections on port

+ port);

ServerSocketChannel serverChannel;
Selector selector;
try {

}

serverChannel = ServerSocketChannel.open();

ServerSocket ss = serverChannel.socket();
InetSocketAddress address = new InetSocketAddress(port);
ss.bind(address);

serverChannel.configureBlocking(false);

selector = Selector.open();
serverChannel.register(selector, SelectionKey.OP_ACCEPT);
catch (IOException ex) {

ex.printStackTrace();

return;

while (true) {

try {
selector.select();

} catch (IOException ex) {
ex.printStackTrace();
break;

}

Set<SelectionKey> readyKeys = selector.selectedKeys();
Iterator<SelectionKey> iterator = readyKeys.iterator();
while (iterator.hasNext()) {
SelectionKey key = iterator.next();
iterator.remove();
try {
if (key.isAcceptable()) {
ServerSocketChannel server = (ServerSocketChannel) key.channel();
SocketChannel client = server.accept();
System.out.println("Accepted connection from
client.configureBlocking(false);
SelectionKey clientKey = client.register(
selector, SelectionKey.OP_WRITE | SelectionKey.OP_READ);
ByteBuffer buffer = ByteBuffer.allocate(100);
clientKey.attach(buffer);
}
if (key.isReadable()) {
SocketChannel client = (SocketChannel) key.channel();
ByteBuffer output = (ByteBuffer) key.attachment();
client.read(output);
}
if (key.isWritable()) {
SocketChannel client = (SocketChannel) key.channel();
ByteBuffer output = (ByteBuffer) key.attachment();
output.flip();
client.write(output);

+ client);

Buffers

3N

output.compact();

}
} catch (IOException ex) {
key.cancel();

try {
key.channel().close();
} catch (IOException cex) {}

One thing I noticed while writing and debugging this program: the buffer size makes a
big difference, although perhaps not in the way you might think. A big buffer can hide
a lot of bugs. If the buffer is large enough to hold complete test cases without being
flipped or drained, it’s very easy to not notice that the buffer isn't being flipped or com-
pacted at the right times because the test cases never actually need to do that. Before
shipping your program, try turning the buffer size down to something significantly
lower than the input you're expecting. In this case, I tested with a buffer size of 10. This
test degrades performance, so you shouldn't ship with such a ridiculously small buffer,
but you absolutely should test your code with small buffers to make sure it behaves
properly when the buffer fills up.

Duplicating Buffers

It’s often desirable to make a copy of a buffer to deliver the same information to two or
more channels. The duplicate() methods in each of the six typed buffer classes do this:

public abstract ByteBuffer duplicate()
public abstract IntBuffer duplicate()
public abstract ShortBuffer duplicate()
public abstract FloatBuffer duplicate()
public abstract CharBuffer duplicate()
public abstract DoubleBuffer duplicate()

The return values are not clones. The duplicated buffers share the same data, including
the same backing array if the buffer is indirect. Changes to the data in one buffer are
reflected in the other buffer. Thus, you should mostly use this method when you're only
going to read from the buffers. Otherwise, it can be tricky to keep track of where the
data is being modified.

The original and duplicated buffers do have independent marks, limits, and positions
even though they share the same data. One buffer can be ahead of or behind the other
buffer.

Duplication is useful when you want to transmit the same data over multiple channels,
roughly in parallel. You can make duplicates of the main buffer for each channel and

372 | Chapter 11: Nonblocking I/0

allow each channel to run at its own speed. For example, recall the single-file HTTP
server in Example 9-10. Reimplemented with channels and buffers as shown in
Example 11-6, NonblockingSingleFileHTTPServer, the single file to serve is stored in
one constant, read-only buffer. Every time a client connects, the program makes a du-
plicate of this buffer just for that channel, which is stored as the channel’s attachment.
Without duplicates, one client has to wait until the other finishes so the original buffer
can be rewound. Duplicates enable simultaneous buffer reuse.

Example 11-6. A nonblocking HTTP server that serves one file

import java.io.*;

import java.nio.*;

import java.nio.channels.*;
import java.nio.charset.¥*;
import java.nio.file.*;
import java.util.*;

import java.net.*;

public class NonblockingSingleFileHTTPServer {

private ByteBuffer contentBuffer;
private int port = 80;

public NonblockingSingleFileHTTPServer(
ByteBuffer data, String encoding, String MIMEType, int port) {

this.port = port;
String header = "HTTP/1.0 200 OK\r\n"
+ "Server: NonblockingSingleFileHTTPServer\r\n"
+ "Content-length: " + data.limit() + "\r\n"
+ "Content-type: " + MIMEType + "\r\n\r\n";
byte[] headerData = header.getBytes(Charset.forName("US-ASCII"));

ByteBuffer buffer = ByteBuffer.allocate(
data.limit() + headerData.length);

buffer.put(headerData);

buffer.put(data);

buffer.flip();

this.contentBuffer = buffer;

}

public void run() throws IOException {
ServerSocketChannel serverChannel = ServerSocketChannel.open();
ServerSocket serverSocket = serverChannel.socket();
Selector selector = Selector.open();
InetSocketAddress localPort = new InetSocketAddress(port);
serverSocket.bind(localPort);
serverChannel.configureBlocking(false);
serverChannel.register(selector, SelectionKey.OP_ACCEPT);

while (true) {

Buffers | 373

selector.select();
Iterator<SelectionKey> keys = selector.selectedKeys().iterator();
while (keys.hasNext()) {

SelectionKey key = keys.next();

keys.remove();

try {

if (key.isAcceptable()) {

ServerSocketChannel server = (ServerSocketChannel) key.channel();
SocketChannel channel = server.accept();
channel.configureBlocking(false);
channel.register(selector, SelectionKey.OP_READ);
else if (key.isWritable()) {
SocketChannel channel = (SocketChannel) key.channel();
ByteBuffer buffer = (ByteBuffer) key.attachment();
if (buffer.hasRemaining()) {

channel.write(buffer);
} else { // we're done

channel.close();

-

}
else if (key.isReadable()) {
// Don't bother trying to parse the HTTP header.
// Just read something.
SocketChannel channel = (SocketChannel) key.channel();
ByteBuffer buffer = ByteBuffer.allocate(4096);
channel.read(buffer);
// switch channel to write-only mode
key.interestOps(SelectionKey.OP_WRITE);
key.attach(contentBuffer.duplicate());

}
} catch (IOException ex) {

key.cancel();

try {

key.channel().close();
}
catch (IOException cex) {}

-

}
}
3

public static void main(String[] args) {
if (args.length == 0) {
System.out.println(
"Usage: java NonblockingSingleFileHTTPServer file port encoding");
return;

}

try {
// read the single file to serve
String contentType =
URLConnection.getFileNameMap().getContentTypeFor(args[0]);
Path file = FileSystems.getDefault().getPath(args[0]);

374 | Chapter 11: Nonblocking I/0

byte[] data = Files.readAllBytes(file);
ByteBuffer input = ByteBuffer.wrap(data);

// set the port to listen on
int port;
try {
port = Integer.parselnt(args[1]);
if (port < 1 || port > 65535) port = 80;
} catch (RuntimeException ex) {
port = 80;
}

String encoding = "UTF-8";
if (args.length > 2) encoding = args[2];

NonblockingSingleFileHTTPServer server
= new NonblockingSingleFileHTTPServer(
input, encoding, contentType, port);
server.run();
} catch (IOException ex) {
System.err.println(ex);
}
}
}

The constructors set up the data to be sent along with an HTTP header that includes
information about content length and content encoding. The header and the body of
the response are stored in a single ByteBuffer so that they can be blasted to clients very
quickly. However, although all clients receive the same content, they may not receive it
at the same time. Different parallel clients will be at different locations in the file. This
is why we duplicate the buffer, so each channel has its own buffer. The overhead is small
because all channels do share the same content. They just have different indexes into
that content.

All incoming connections are handled by a single Selector in the run() method. The
initial setup here is very similar to the earlier chargen server. The run() method opens
a ServerSocketChannel and binds it to the specified port. Then it creates the Selec
tor and registers it with the ServerSocketChannel. When a SocketChannelisaccepted,
the same Selector object is registered with it. Initially it’s registered for reading because
the HTTP protocol requires the client to send a request before the server responds.

The response to a read is simplistic. The program reads as many bytes of input as it can
up to 4K. Then it resets the interest operations for the channel to writability. (A more
complete server would actually attempt to parse the HTTP header request here and
choose the file to send based on that information.) Next, the content buffer is duplicated
and attached to the channel.

Buffers | 375

The next time the program passes through the while loop, this channel should be ready
to receive data (or if not the next time, the time after that; the asynchronous nature of
the connection means we won't see it until it's ready). At this point, you get the buffer
out of the attachment, and write as much of the buffer as you can onto the channel. It’s
no big deal if you don't write it all this time. You’'ll just pick up where you left off the
next pass through the loop. The buffer keeps track of its own position. Although many
incoming clients might result in the creation of many buffer objects, the real overhead
is minimal because they’ll all share the same underlying data.

The main() method reads parameters from the command line. The name of the file to
be served is read from the first command-line argument. If no file is specified or the file
cannot be opened, an error message is printed and the program exits. Assuming the file
can beread, its contents are read into a ByteBuffer using the convenient Path and Files
classes from Java 7. A reasonable guess is made about the content type of the file, and
that guess is stored in the contentType variable. Next, the port number is read from the
second command-line argument. If no port is specified, or if the second argument is
not an integer from 1 to 65,535, port 80 is used. The encoding is read from the third
command-line argument if present. Otherwise, UTF-8 is assumed. Then these values
are used to construct a NonblockingSingleFileHTTPServer object and start it running.

Slicing Buffers

Slicing a buffer is a slight variant of duplicating. Slicing also creates a new buffer that
shares data with the old buffer. However, the slice’s zero position is the current position
of the original buffer, and its capacity only goes up to the source buffer’s limit. That is,
the slice is a subsequence of the original buffer that only contains the elements from the
current position to the limit. Rewinding the slice only moves it back to the position of
the original buffer when the slice was created. The slice can’t see anything in the original
buffer before that point. Again, there are separate slice() methods in each of the six
typed buffer classes:

public abstract ByteBuffer slice()
public abstract IntBuffer slice()
public abstract ShortBuffer slice()
public abstract FloatBuffer slice()
public abstract CharBuffer slice()
public abstract DoubleBuffer slice()

This is useful when you have a long buffer of data that is easily divided into multiple
parts such as a protocol header followed by the data. You can read out the header, then
slice the buffer and pass the new buffer containing only the data to a separate method
or class.

376 | Chapter 11: Nonblocking I/0

Marking and Resetting

Like input streams, buffers can be marked and reset if you want to reread some data.
Unlike input streams, this can be done to all buffers, not just some of them. For a change,
the relevant methods are declared once in the Buffer superclass and inherited by all
the various subclasses:

public final Buffer mark()
public final Buffer reset()
The reset() method throws an InvalidMarkException, a runtime exception, if the

mark is not set. The mark is also unset when the position is set to a point before the
mark.

Object Methods

The buffer classes all provide the usual equals(), hashCode(), and toString() meth-
ods. They also implement Comparable, and therefore provide compareTo() methods.
However, buffers are not Serializable or Cloneable.

Two buffers are considered to be equal if:

o They have the same type (e.g., a ByteBuffer is never equal to an IntBuffer but
may be equal to another ByteBuffer).

« They have the same number of elements remaining in the buffer.

o The remaining elements at the same relative positions are equal to each other.

Note that equality does not consider the buffers’ elements that precede the position, the
buffers’ capacity, limits, or marks. For example, this code fragment prints true even
though the first buffer is twice the size of the second:

CharBuffer bufferl = CharBuffer.wrap("12345678");
CharBuffer buffer2 = CharBuffer.wrap("5678");
bufferl.get();

bufferl.get();

bufferl.get();

bufferl.get();
System.out.println(bufferl.equals(buffer2));

The hashCode() method is implemented in accordance with the contract for equality.
That is, two equal buffers will have equal hash codes and two unequal buffers are very
unlikely to have equal hash codes. However, because the buffer’s hash code changes

every time an element is added to or removed from the buffer, buffers do not make good
hash table keys.

Comparison is implemented by comparing the remaining elements in each buffer, one
by one. If all the corresponding elements are equal, the buffers are equal. Otherwise,

Buffers | 377

the result is the outcome of comparing the first pair of unequal elements. If one buffer
runs out of elements before an unequal element is found and the other buffer still has
elements, the shorter buffer is considered to be less than the longer buffer.

The toString() method returns strings that look something like this:
java.nilo.HeapByteBuffer[pos=0 1im=62 cap=62]

These are primarily useful for debugging. The notable exception is CharBuffer, which
returns a string containing the remaining chars in the buffer.

Channels

Channels move blocks of data into and out of buffers to and from various I/O sources
such as files, sockets, datagrams, and so forth. The channel class hierarchy is rather
convoluted, with multiple interfaces and many optional operations. However, for pur-
poses of network programming there are only three really important channel classes,
SocketChannel, ServerSocketChannel, and DatagramChannel; and for the TCP con-
nections we've talked about so far you only need the first two.

SocketChannel

The SocketChannel class reads from and writes to TCP sockets. The data must be en-
coded in ByteBuffer objects for reading and writing. Each SocketChannel is associated
with a peer Socket object that can be used for advanced configuration, but this re-
quirement can be ignored for applications where the default options are fine.

Connecting

The SocketChannel class does not have any public constructors. Instead, you create a
new SocketChannel object using one of the two static open() methods:
public static SocketChannel open(SocketAddress remote) throws IOException
public static SocketChannel open() throws IOException
The first variant makes the connection. This method blocks (i.e., the method will not
return until the connection is made or an exception is thrown). For example:
SocketAddress address = new InetSocketAddress("www.cafeaulait.org", 80);
SocketChannel channel = SocketChannel.open(address);
The noargs version does not immediately connect. It creates an initially unconnected
socket that must be connected later using the connect() method. For example:
SocketChannel channel = SocketChannel.open();

SocketAddress address = new InetSocketAddress("www.cafeaulait.org", 80);
channel.connect(address);

378 | Chapter 11: Nonblocking I/0

You might choose this more roundabout approach in order to configure various options
on the channel and/or the socket before connecting. Specifically, use this approach if
you want to open the channel without blocking:

SocketChannel channel = SocketChannel.open();

SocketAddress address = new InetSocketAddress("www.cafeaulait.org", 80);

channel.configureBlocking(false);

channel.connect();
With a nonblocking channel, the connect() method returns immediately, even before
the connection is established. The program can do other things while it waits for the
operating system to finish the connection. However, before it can actually use the con-
nection, the program must call finishConnect():

public abstract boolean finishConnect() throws IOException

(This is only necessary in nonblocking mode. For a blocking channel, this method
returns true immediately.) If the connection is now ready for use, finishConnect()
returns true. If the connection has not been established yet, finishConnect() returns
false. Finally, if the connection could not be established, for instance because the net-
work is down, this method throws an exception.

If the program wants to check whether the connection is complete, it can call these two
methods:

public abstract boolean isConnected()

public abstract boolean isConnectionPending()

The isConnected() method returns true if the connection is open. The isConnection
Pending() method returns true if the connection is still being set up but is not yet open.

Reading

To read from a SocketChannel, first create a ByteBuffer the channel can store data in.
Then pass it to the read() method:

public abstract int read(ByteBuffer dst) throws IOException

The channel fills the buffer with as much data as it can, then returns the number of bytes
it put there. When it encounters the end of stream, the channel fills the buffer with any
remaining bytes and then returns -1 on the next call to read (). If the channel is blocking,
this method will read at least one byte or return -1 or throw an exception. If the channel
is nonblocking, however, this method may return 0.

Because the data is stored into the buffer at the current position, which is updated
automatically as more data is added, you can keep passing the same buffer to the read()
method until the buffer is filled. For example, this loop will read until the buffer is filled
or the end of stream is detected:

while (buffer.hasRemaining() && channel.read(buffer) != -1) ;

Channels | 379

It is sometimes useful to be able to fill several buffers from one source. This is called a
scatter. These two methods accept an array of ByteBuffer objects as arguments and fill
each one in turn:

public final long read(ByteBuffer[] dsts) throws IOException
public final long read(ByteBuffer[] dsts, int offset, int length)
throws IOException
The first variant fills all the buffers. The second method fills length buffers, starting
with the one at of fset.

To fill an array of buffers, just loop while the last buffer in the list has space remaining.
For example:

ByteBuffer[] buffers = new ByteBuffer[2];

buffers[0] = ByteBuffer.allocate(1000);

buffers[1] = ByteBuffer.allocate(1000);

while (buffers[1].hasRemaining() && channel.read(buffers) != -1) ;
Writing
Socket channels have both read and write methods. In general, they are full duplex. In
order to write, simply fill a ByteBuffer, flip it, and pass it to one of the write methods,
which drains it while copying the data onto the output—pretty much the reverse of the
reading process.

The basic write() method takes a single buffer as an argument:
public abstract int write(ByteBuffer src) throws IOException

As with reads (and unlike OutputStreams), this method is not guaranteed to write the
complete contents of the buffer if the channel is nonblocking. Again, however, the
cursor-based nature of buffers enables you to easily call this method again and again
until the buffer is fully drained and the data has been completely written:

while (buffer.hasRemaining() && channel.write(buffer) != -1) ;

It is often useful to be able to write data from several buffers onto one socket. This is
called a gather. For example, you might want to store the HTTP header in one buffer
and the HTTP body in another buffer. The implementation might even fill the two
buffers simultaneously using two threads or overlapped I/O. These two methods accept
an array of ByteBuffer objects as arguments, and drain each one in turn:

public final long write(ByteBuffer[] dsts) throws IOException
public final long write(ByteBuffer[] dsts, int offset, int length)
throws IOException
The first variant drains all the buffers. The second method drains length buffers, start-
ing with the one at offset.

380 | Chapter 11: Nonblocking I/0

Closing

Just as with regular sockets, you should close a channel when you're done with it to free
up the port and any other resources it may be using:

public void close() throws IOException

Closing an already closed channel has no effect. Attempting to write data to or read data
from a closed channel throws an exception. If youre uncertain whether a channel has
been closed, check with 1sOpen():

public boolean isOpen()

Naturally, this returns false if the channel is closed, true if it's open (close() and
isOpen() are the only two methods declared in the Channel interface and shared by all
channel classes).

Starting in Java 7, SocketChannel implements AutoCloseable, so you can use it in try-
with-resources.

ServerSocketChannel

The ServerSocketChannel class has one purpose: to accept incoming connections. You
cannot read from, write to, or connect a ServerSocketChannel. The only operation it
supports is accepting a new incoming connection. The class itself only declares four
methods, of which accept() is the most important. ServerSocketChannel also inherits
several methods from its superclasses, mostly related to registering with a Selector for
notification of incoming connections. And finally, like all channels, it has a close()
method that shuts down the server socket.

Creating server socket channels

The static factory method ServerSocketChannel.open() creates a new ServerSock
etChannel object. However, the name is a little deceptive. This method does not actually
open a new server socket. Instead, it just creates the object. Before you can use it, you
need to call the socket() method to get the corresponding peer ServerSocket. At this
point, you can configure any server options you like, such as the receive buffer size or
the socket timeout, using the various setter methods in ServerSocket. Then connect
this ServerSocket to a SocketAddress for the port you want to bind to. For example,
this code fragment opens a ServerSocketChannel on port 80:

try {
ServerSocketChannel server = ServerSocketChannel.open();
ServerSocket socket = serverChannel.socket();
SocketAddress address = new InetSocketAddress(80);
socket.bind(address);
} catch (IOException ex) {
System.err.println("Could not bind to port 80 because
}

+ ex.getMessage());

Channels | 381

In Java 7, this gets a little simpler because ServerSocketChannel now has a bind()
method of its own:

try {
ServerSocketChannel server = ServerSocketChannel.open();
SocketAddress address = new InetSocketAddress(80);
server.bind(address);
} catch (IOException ex) {
System.err.println("Could not bind to port 80 because
}

A factory method is used here rather than a constructor so that different virtual ma-
chines can provide different implementations of this class, more closely tuned to the
local hardware and OS. However, this factory is not user configurable. The open()
method always returns an instance of the same class when running in the same virtual
machine.

+ ex.getMessage());

Accepting connections

Once you've opened and bound a ServerSocketChannel object, the accept() method
can listen for incoming connections:

public abstract SocketChannel accept() throws IOException

accept() can operate in either blocking or nonblocking mode. In blocking mode, the
accept() method waits for an incoming connection. It then accepts that connection
and returns a SocketChannel object connected to the remote client. The thread cannot
do anything until a connection is made. This strategy might be appropriate for simple
servers that can respond to each request immediately. Blocking mode is the default.

A ServerSocketChannel can also operate in nonblocking mode. In this case, the ac
cept() method returns null if there are no incoming connections. Nonblocking mode
is more appropriate for servers that need to do a lot of work for each connection and
thus may want to process multiple requests in parallel. Nonblocking mode is normally
used in conjunction with a Selector. To make a ServerSocketChannel nonblocking,
pass false to its configureBlocking() method.

The accept() method is declared to throw an I0Exception if anything goes wrong.
There are several subclasses of I0Exception that indicate more detailed problems, as
well as a couple of runtime exceptions:

ClosedChannelException
You cannot reopen a ServerSocketChannel after closing it.

AsynchronousCloseException
Another thread closed this ServerSocketChannel while accept() was executing.

382 | (Chapter 11: Nonblocking I/0

ClosedByInterruptException
Another thread interrupted this thread while a blocking ServerSocketChannel was
waiting.

NotYetBoundException
You called open() but did not bind the ServerSocketChannel’s peer ServerSock
et to an address before calling accept(). This is a runtime exception, not an
IOException.

SecurityException
The security manager refused to allow this application to bind to the requested port.

The Channels Class

Channels is a simple utility class for wrapping channels around traditional I/O-based
streams, readers, and writers, and vice versa. It's useful when you want to use the new
I/0 model in one part of a program for performance, but still interoperate with legacy
APIs that expect streams. It has methods that convert from streams to channels and
methods that convert from channels to streams, readers, and writers:

public static InputStream newInputStream(ReadableByteChannel ch)

public static OutputStream newOutputStream(WritableByteChannel ch)

public static ReadableByteChannel newChannel(InputStream in)

public static WritableByteChannel newChannel(OutputStream out)

public static Reader newReader (ReadableByteChannel channel,
CharsetDecoder decoder, int minimumBufferCapacity)

public static Reader newReader (ReadableByteChannel ch, String encoding)

public static Writer newWriter (WritableByteChannel ch, String encoding)

The SocketChannel class discussed in this chapter implements both the ReadableByte
Channel and WritableByteChannel interfaces seen in these signatures. ServerSock
etChannel implements neither of these because you can’t read from or write to it.

For example, all current XML APIs use streams, files, readers, and other traditional
I/O APIs to read the XML document. If youre writing an HTTP server designed to
process SOAP requests, you may want to read the HTTP request bodies using channels
and parse the XML using SAX for performance. In this case, you'd need to convert these
channels into streams before passing them to XMLReader’s parse() method:

SocketChannel channel = server.accept();
processHTTPHeader (channel);

XMLReader parser = XMLReaderFactory.createXMLReader();
parser.setContentHandler (someContentHandlerObject);
InputStream in = Channels.newInputStream(channel);
parser.parse(in);

Channels | 383

Asynchronous Channels (Java 7)

Java 7 introduces the AsynchronousSocketChannel and AsynchronousServerSock
etChannel classes. These behave like and have almost the same interface as SocketCh
annel and ServerSocketChannel (though they are not subclasses of those classes).
However, unlike SocketChannel and ServerSocketChannel, reads from and writes to
asynchronous channels return immediately, even before the I/O is complete. The data
read or written is further processed by a Future or a CompletionHandler. The con
nect() and accept() methods also execute asynchronously and return Futures. Se-
lectors are not used.

For example, suppose a program needs to perform alot of initialization at startup. Some
of that involves network connections that are going to take several seconds each. You
can start several asynchronous operations in parallel, then perform your local initiali-
zations, and then request the results of the network operations:

SocketAddress address = new InetSocketAddress(args[0], port);
AsynchronousSocketChannel client = AsynchronousSocketChannel.open();
Future<Void> connected = client.connect(address);

ByteBuffer buffer = ByteBuffer.allocate(74);

// wait for the connection to finish
connected.get();

// read from the connection
Future<Integer> future = client.read(buffer);

// do other things...

// wait for the read to finish...
future.get();

// flip and drain the buffer

buffer.flip();

WritableByteChannel out = Channels.newChannel(System.out);
out.write(buffer);

The advantage of this approach is that the network connections run in parallel while
the program does other things. When you're ready to process the data from the network,
but not before, you stop and wait for it by calling Future.get(). You could achieve the
same effect with thread pools and callables, but this is perhaps a little simpler, especially
if buffers are a natural fit for your application.

This approach fits the situation where you want to get results back in a very particular
order. However, if you don't care about order, if you can process each network read
independently of the others, then you may be better off using a CompletionHandler
instead. For example, imagine you're writing a search engine web spider that feeds pages

384 | Chapter 11: Nonblocking I/0

into some backend. Because you don’t care about the order of the responses returned,
you can spawn a large number of AsynchronousSocketChannel requests and give each
one a CompletionHandler that stores the results in the backend.

The generic CompletionHandler interface declares two methods: completed(), which
is invoked if the read finishes successfully; and failed(), which is invoked on an I/O
error. For example, here’s a simple CompletionHandler that prints whatever it received
on System.out:

class LineHandler implements CompletionHandler<Integer, ByteBuffer> {

@Override
public void completed(Integer result, ByteBuffer buffer) {
buffer.flip();
WritableByteChannel out = Channels.newChannel(System.out);
try {
out.write(buffer);
} catch (IOException ex) {
System.err.println(ex);
}
}

@Override
public void failed(Throwable ex, ByteBuffer attachment) {
System.err.println(ex.getMessage());

}
}

When you read from the channel you pass a buffer, an attachment, and a Completion
Handler to the read() method:

ByteBuffer buffer = ByteBuffer.allocate(74);

CompletionHandler<Integer, ByteBuffer> handler = new LineHandler();

channel.read(buffer, buffer, handler);
Here I've made the attachment the buffer itself. This is one way to push the data read
from the network into the CompletionHandler where it can handle it. Another common
pattern is to make the CompletionHandler an anonymous inner class and the buffer a
final local variable so it’s in scope inside the completion handler.

Although you can safely share an AsynchronousSocketChannel or AsynchronousSer
verSocketChannel between multiple threads, no more than one thread can read from
this channel at a time and no more than one thread can write to the channel at a time.
(One thread can read and another thread can write simultaneously, though.) If a thread
attempts to read while another thread has a pending read, the read() method throws
a ReadPendingException. Similarly, if a thread attempts to write while another thread
has a pending write, the write() method throws a WritePendingException.

Channels | 385

Socket Options (Java 7)

Beginning in Java 7, SocketChannel, ServerSocketChannel, AsynchronousServer
SocketChannel, AsynchronousSocketChannel, and DatagramChannel all implement
the new NetworkChannel interface. The primary purpose of this interface is to support
the various TCP options such as TCP_NODELAY, SO_TIMEOUT, SO_LINGER,
SO_SNDBUEFE, SO_RCVBUE, and SO_KEEPALIVE discussed in Chapter 8 and Chap-
ter 9. The options have the same meaning in the underlying TCP stack whether set on
a socket or a channel. However, the interface to these options is a little different. Rather
than individual methods for each supported option, the channel classes each have just
three methods to get, set, and list the supported options:

<T> T getOption(SocketOption<T> name) throws IOException
<T> NetworkChannel setOption(SocketOption<T> name, T value) throws IOException
Set<SocketOption<?>> supportedOptions()

The SocketOption class is a generic class specifying the name and type of each option.
The type parameter <T> determines whether the option is a boolean, Integer, or Net
workInterface. The StandardSocketOptions class provides constants for each of the
11 options Java recognizes:

o SocketOption<NetworkInterface> StandardSocketOptions.IP_MULTICAST_IF

¢ SocketOption<Boolean> StandardSocketOptions.IP_MULTICAST_LOOP

o SocketOption<Integer> StandardSocketOptions.IP_MULTICAST_TTL

e SocketOption<Integer> StandardSocketOptions.IP_T0S

¢ SocketOption<Boolean> StandardSocketOptions.SO_BROADCAST

e SocketOption<Boolean> StandardSocketOptions.SO_KEEPALIVE

e SocketOption<Integer> StandardSocketOptions.SO_LINGER

e SocketOption<Integer> StandardSocketOptions.SO_RCVBUF

¢ SocketOption<Boolean> StandardSocketOptions.SO_REUSEADDR

e SocketOption<Integer> StandardSocketOptions.SO_SNDBUF

o SocketOption<Boolean> StandardSocketOptions.TCP_NODELAY
For example, this code fragment opens a client network channel and sets SO_LINGER
to 240 seconds:

NetworkChannel channel = SocketChannel.open();
channel.setOption(StandardSocketOptions.SO_LINGER, 240);

Different channels and sockets support different options. For instance, ServerSock
etChannel supports SO_REUSEADDR and SO_RCVBUF but not SO_SNDBUE. Try-

386 | Chapter 11: Nonblocking I/0

ing to set an option the channel doesn’t support throws an UnsupportedOperationEx
ception.

Example 11-7 is a simple program to list all supported socket options for the different
types of network channels.

Example 11-7. Listing supported options

import java.io.*;
import java.net.*;
import java.nio.channels.*;

public class OptionSupport {

public static void main(String[] args) throws IOException {
printOptions(SocketChannel.open());
printOptions(ServerSocketChannel.open());
printOptions(AsynchronousSocketChannel.open());
printOptions(AsynchronousServerSocketChannel.open());
printOptions(DatagramChannel.open());

}

private static void printOptions(NetworkChannel channel) throws IOException {
System.out.println(channel.getClass().getSimpleName() + " supports:");
for (SocketOption<?> option : channel.supportedOptions()) {
System.out.println(option.name() + ": " + channel.getOption(option));
}
System.out.println();
channel.close();

}

Here’s the output showing which options are supported by which types of channels, and
what the default values are:

SocketChannelImpl supports:
SO_OOBINLINE: false
SO_REUSEADDR: false
SO_LINGER: -1

SO_KEEPALIVE: false

IP_TOS: 0

SO_SNDBUF: 131072
SO_RCVBUF: 131072
TCP_NODELAY: false

ServerSocketChannelImpl supports:
SO_REUSEADDR: true
SO_RCVBUF: 131072

UnixAsynchronousSocketChannelImpl supports:
SO_KEEPALIVE: false

Channels | 387

SO_REUSEADDR: false
SO_SNDBUF: 131072
TCP_NODELAY: false
SO_RCVBUF: 131072

UnixAsynchronousServerSocketChannelImpl supports:
SO_REUSEADDR: true
SO_RCVBUF: 131072

DatagramChannelImpl supports:
IP_MULTICAST_TTL: 1
SO_BROADCAST: false
SO_REUSEADDR: false
IP_MULTICAST_IF: null

IP_TOS: 0

IP_MULTICAST_LOOP: true
SO_SNDBUF: 9216

SO_RCVBUF: 196724

Readiness Selection

For network programming, the second part of the new I/O APIs is readiness selection,
the ability to choose a socket that will not block when read or written. This is primarily
of interest to servers, although clients running multiple simultaneous connections with
several windows open—such as a web spider or a browser—can take advantage of it as
well.

In order to perform readiness selection, different channels are registered with a Selec
tor object. Each channel is assigned a SelectionKey. The program can then ask the
Selector object for the set of keys to the channels that are ready to perform the operation
you want to perform without blocking.

The Selector Class

The only constructor in Selector is protected. Normally, a new selector is created by
invoking the static factory method Selector.open():

public static Selector open() throws IOException

The next step is to add channels to the selector. There are no methods in the Selec
tor class to add a channel. The register() method is declared in the SelectableChan
nel class. Not all channels are selectable—in particular, FileChannels aren’t selectable
—but all network channels are. Thus, the channel is registered with a selector by passing
the selector to one of the channel’s register methods:

public final SelectionKey register(Selector sel, int ops)
throws ClosedChannelException

public final SelectionKey register(Selector sel, int ops, Object att)
throws ClosedChannelException

388 | Chapter 11: Nonblocking I/0

This approach feels backward to me, but it’s not hard to use. The first argument is the
selector the channel is registering with. The second argument is a named constant from
the SelectionKey class identifying the operation the channel is registering for. The
SelectionKey class defines four named bit constants used to select the type of the op-
eration:

e SelectionKey.OP_ACCEPT
¢ SelectionKey.OP_CONNECT
e SelectionKey.OP_READ

e SelectionKey.OP_WRITE

These are bit-flag int constants (1, 2, 4, etc.). Therefore, if a channel needs to register
for multiple operations in the same selector (e.g., for both reading and writing on a
socket), combine the constants with the bitwise or operator (|) when registering:

channel.register(selector, SelectionKey.OP_READ | SelectionKey.OP_WRITE);

The optional third argument is an attachment for the key. This object is often used to
store state for the connection. For example, if you were implementing a web server, you
might attach a FileInputStream or FileChannel connected to the local file the server
streams to the client.

After the different channels have been registered with the selector, you can query the
selector at any time to find out which channels are ready to be processed. Channels may
be ready for some operations and not others. For instance, a channel could be ready for
reading but not writing.

There are three methods that select the ready channels. They differ in how long they
wait to find a ready channel. The first, selectNow(), performs a nonblocking select. It
returns immediately if no connections are ready to be processed now:

public abstract int selectNow() throws IOException
The other two select methods are blocking:

public abstract int select() throws IOException

public abstract int select(long timeout) throws IOException
The first method waits until at least one registered channel is ready to be processed
before returning. The second waits no longer than timeout milliseconds for a channel
to be ready before returning 0. These methods are useful if your program doesn’t have
anything to do when no channels are ready to be processed.

When you know the channels are ready to be processed, retrieve the ready channels
using selectedKeys():

public abstract Set<SelectionKey> selectedKeys()

Readiness Selection | 389

You iterate through the returned set, processing each SelectionKey in turn. You'll also
want to remove the key from the iterator to tell the selector that you've handled it.
Otherwise, the selector will keep telling you about it on future passes through the loop.

Finally, when you’re ready to shut down the server or when you no longer need the
selector, you should close it:

public abstract void close() throws IOException

This step releases any resources associated with the selector. More importantly, it cancels
all keys registered with the selector and interrupts up any threads blocked by one of this
selector’s select methods.

The SelectionKey Class

SelectionKey objects serve as pointers to channels. They can also hold an object at-
tachment, which is how you normally store the state for the connection on that channel.

SelectionKey objects are returned by the register() method when registering a
channel with a selector. However, you don’t usually need to retain this reference. The
selectedKeys() method returns the same objects again inside a Set. A single channel
can be registered with multiple selectors.

When retrieving a SelectionKey from the set of selected keys, you often first test what
that key is ready to do. There are four possibilities:

public final boolean isAcceptable()
public final boolean isConnectable()
public final boolean isReadable()
public final boolean isWritable()

This test isn’t always necessary. In some cases, the selector is only testing for one pos-
sibility and will only return keys to do that one thing. But if the selector does test for
multiple readiness states, you'll want to test which one kicked the channel into the ready
state before operating on it. It’s also possible that a channel is ready to do more than one
thing.

Once you know what the channel associated with the key is ready to do, retrieve the
channel with the channel() method:

public abstract SelectableChannel channel()

If you've stored an objectin the SelectionKey to hold state information, you can retrieve
it with the attachment() method:

public final Object attachment()

Finally, when you're finished with a connection, deregister its SelectionKey object so
the selector doesn’'t waste any resources querying it for readiness. I don’t know that this

390 | Chapter 11: Nonblocking I/0

is absolutely essential in all cases, but it doesn't hurt. You do this by invoking the key’s
cancel() method:

public abstract void cancel()

However, this step is only necessary if you haven't closed the channel. Closing a channel
automatically deregisters all keys for that channel in all selectors. Similarly, closing a
selector invalidates all keys in that selector.

Readiness Selection | 391

CHAPTER 12

UDP

Previous chapters discussed network applications that run on top of the TCP transport
layer protocol. TCP is designed for reliable transmission of data. If data is lost or dam-
aged in transmission, TCP ensures that the data is resent. If packets of data arrive out
of order, TCP puts them back in the correct order. If the data is coming too fast for the
connection, TCP throttles the speed back so that packets won't be lost. A program never
needs to worry about receiving data that is out of order or incorrect. However, this
reliability comes at a price. That price is speed. Establishing and tearing down TCP
connections can take a fair amount of time, particularly for protocols such as HTTP,
which tend to require many short transmissions.

The User Datagram Protocol (UDP) is an alternative transport layer protocol for send-
ing data over IP that is very quick, but not reliable. When you send UDP data, you have
no way of knowing whether it arrived, much less whether different pieces of data arrived
in the order in which you sent them. However, the pieces that do arrive generally arrive
quickly.

The UDP Protocol

The obvious question to ask is why anyone would ever use an unreliable protocol. Surely,
if you have data worth sending, you care about whether the data arrives correctly?
Clearly, UDP isn't a good match for applications like FTP that require reliable trans-
mission of data over potentially unreliable networks. However, there are many kinds of
applications in which raw speed is more important than getting every bit right. For
example, in real-time audio or video, lost or swapped packets of data simply appear as
static. Static is tolerable, but awkward pauses in the audio stream, when TCP requests
a retransmission or waits for a wayward packet to arrive, are unacceptable. In other
applications, reliability tests can be implemented in the application layer. For example,
if a client sends a short UDP request to a server, it may assume that the packet is lost if
no response is returned within an established period of time; this is one way the Domain

393

Name System (DNS) works. (DNS can also operate over TCP.) In fact, you could im-
plement a reliable file transfer protocol using UDP, and many people have: Network
File System (NFS), Trivial FTP (TFTP), and FSP, a more distant relative of FTP, all use
UDP. (The latest version of NES can use either UDP or TCP) In these protocols, the
application is responsible for reliability; UDP doesn’t take care of it (the application
must handle missing or out-of-order packets). This is a lot of work, but there’s no reason
it can’t be done—although if you find yourself writing this code, think carefully about
whether you might be better off with TCP.

The difference between TCP and UDP is often explained by analogy with the phone
system and the post office. TCP is like the phone system. When you dial a number, the
phone is answered and a connection is established between the two parties. As you talk,
you know that the other party hears your words in the order in which you say them. If
the phone is busy or no one answers, you find out right away. UDP, by contrast, is like
the postal system. You send packets of mail to an address. Most of the letters arrive, but
some may be lost on the way. The letters probably arrive in the order in which you sent
them, but that’s not guaranteed. The farther away you are from your recipient, the more
likely it is that mail will be lost on the way or arrive out of order. If this is a problem,
you can write sequential numbers on the envelopes, then ask the recipients to arrange
them in the correct order and send you mail telling you which letters arrived so that
you can resend any that didn’t get there the first time. However, you and your corre-
spondent need to agree on this protocol in advance. The post office will not do it for
you.

Both the phone system and the post office have their uses. Although either one could
be used for almost any communication, in some cases one is definitely superior to the
other. The same is true of UDP and TCP. The past several chapters have all focused on
TCP applications, which are more common than UDP applications. However, UDP also
has its place; in this chapter, we’ll look at what you can do with UDP. If you want to go
further, the next chapter describes multicasting over UDP. A multicast socket is a fairly
simple variation on a standard UDP socket.

Java’s implementation of UDP is split into two classes: DatagramPacket and Datagram
Socket. The DatagramPacket class stuffs bytes of data into UDP packets called data-
grams and lets you unstuff datagrams that you receive. A DatagramSocket sends as well
as receives UDP datagrams. To send data, you put the data in a DatagramPacket and
send the packet using a DatagramSocket. To receive data, you take a DatagramPacket
object from a DatagramSocket and then inspect the contents of the packet. The sockets
themselves are very simple creatures. In UDP, everything about a datagram, including
the address to which it is directed, is included in the packet itself; the socket only needs
to know the local port on which to listen or send.

This division of labor contrasts with the Socket and ServerSocket classes used by TCP.
First, UDP doesn't have any notion of a unique connection between two hosts. One

394 | Chapter12: UDP

socket sends and receives all data directed to or from a port without any concern for
who the remote host is. A single DatagramSocket can send data to and receive data from
many independent hosts. The socket isn’t dedicated to a single connection, as it is in
TCP. In fact, UDP doesn't have any concept of a connection between two hosts; it only
knows about individual datagrams. Figuring out who sent what data is the application’s
responsibility. Second, TCP sockets treat a network connection as a stream: you send
and receive data with inputand output streams that you get from the socket. UDP doesn’t
support this; you always work with individual datagram packets. All the data you stuft
into a single datagram is sent as a single packet and is either received or lost as a group.
One packet is not necessarily related to the next. Given two packets, there is no way to
determine which packet was sent first and which was sent second. Instead of the orderly
queue of data that’s necessary for a stream, datagrams try to crowd into the recipient as
quickly as possible, like a crowd of people pushing their way onto a bus. And occasion-
ally, if the bus is crowded enough, a few packets, like people, may not squeeze on and
will be left waiting at the bus stop.

UDP Clients

Let’s begin with a simple example. As in “Reading from Servers with Sockets” on page
240 we will connect to the daytime server at the National Institute for Standards and
Technology (NIST) and ask it for the current time. However, this time you’ll use UDP
instead of TCP. Recall that the daytime server listens on port 13, and that the server
sends the time in a human-readable format and closes the connection.

Now let’s see how to retrieve this same data programmatically using UDP. First, open a
socket on port 0:

DatagramSocket socket = new DatagramSocket(0);

This is very different than a TCP socket. You only specify alocal port to connect to. The
socket does not know the remote host or address. By specifying port 0 you ask Java to
pick a random available port for you, much as with server sockets.

The next step is optional but highly recommended. Set a timeout on the connection
using the setSoTimeout() method. Timeouts are measured in milliseconds, so this
statement sets the socket to time out after 10 seconds of nonresponsiveness:

socket.setSoTimeout(10000);

Timeouts are even more important for UDP than TCP because many problems that
would cause an I0Exception in TCP silently fail in UDP. For example, if the remote
host is not listening on the targeted port, you’ll never hear about it.

Next you need to set up the packets. You'll need two, one to send and one to receive.
For the daytime protocol it doesn’t matter what data you put in the packet, but you do
need to tell it the remote host and remote port to connect to:

UDP Clients | 395

InetAddress host = InetAddress.getByName("time.nist.gov");
DatagramPacket request = new DatagramPacket(new byte[1], 1, host, 13);

The packet that receives the server’s response just contains an empty byte array. This
needs to be large enough to hold the entire response. If it’s too small, it will be silently
truncated—1k should be enough space:

byte[] data = new byte[1024];
DatagramPacket response = new DatagramPacket(data, data.length);

Now you're ready. First send the packet over the socket and then receive the response:

socket.send(request);
socket.receive(response);

Finally, extract the bytes from the response and convert them to a string you can show
to the end user:

String daytime = new String(response.getData(), O, response.getLength(),
"US-ASCII");
System.out.println(daytime);

The constructor and send() and receive() methods can each throw an IOException,
so you’ll usually wrap all this in a try block. In Java 7, DatagramSocket implements
Autocloseable so you can use try-with-resources:

try (DatagramSocket socket = new DatagramSocket(0)) {
// connect to the server..
} catch (IOException ex) {
System.err.println("Could not connect to time.nist.gov");

}

In Java 6 and earlier, you’ll want to explicitly close the socket in a finally block to
release resources the socket holds:

DatagramSocket socket = null;
try {
socket = new DatagramSocket(0);
// connect to the server...
} catch (IOException ex) {
System.err.println(ex);
} finally {
if (socket != null) {
try {
socket.close();
} catch (IOException ex) {
// ignore
}
}
}

Example 12-1 puts this all together.

396 | Chapter12:UDP

Example 12-1. A daytime protocol client

import java.io.*;
import java.net.*;

public class DaytimeUDPClient {

private final static int PORT = 13;
private static final String HOSTNAME = "time.nist.gov";

public static void main(String[] args) {
try (DatagramSocket socket = new DatagramSocket(0)) {
socket.setSoTimeout(10000);
InetAddress host = InetAddress.getByName(HOSTNAME);
DatagramPacket request = new DatagramPacket(new byte[1], 1, host , PORT);
DatagramPacket response = new DatagramPacket(new byte[1024], 1024);
socket.send(request);
socket.receive(response);
String result = new String(response.getData(), 0, response.getlLength(),
"US-ASCII");
System.out.println(result);
} catch (IOException ex) {
ex.printStackTrace();
}
}
}

Typical output is much the same as if you connected with TCP:

$ java DaytimeUDPClient
56375 13-04-11 19:55:22 50 0 0 843.6 UTC(NIST) *

UDP Servers

A UDP server follows almost the same pattern as a UDP client, except that you usually
receive before sending and don't choose an anonymous port to bind to. Unlike TCP,
there’s no separate DatagramServerSocket class.

For example, let’s implement a daytime server over UDP. Begin by opening a datagram
socket on a well-known port. For daytime, this port is 13:

DatagramSocket socket = new DatagramSocket(13);

As with TCP sockets, on Unix systems (including Linux and Mac OS X) you need to be
running as root in order to bind to a port below 1024. You can either use sudo to run
the program or simply change the port to something 1024 or higher.

Next, create a packet into which to receive a request. You need to supply both a byte
array in which to store incoming data, the offset into the array, and the number of bytes
to store. Here you set up a packet with space for 1,024 bytes starting at 0:

UDP Servers | 397

DatagramPacket request = new DatagramPacket(new byte[1024], 0, 1024);
Then receive it:
socket.receive(request);

This call blocks indefinitely until a UDP packet arrives on port 13. When it does, Java
fills the byte array with data and the receive() method returns.

Next, create a response packet. This has four parts: the raw data to send, the number of
bytes of the raw data to send, the host to send to, and the port on that host to address.
In this example, the raw data comes from a String form of the current time, and the
host and the port are simply the host and port of the incoming packet:

String daytime = new Date().toString() + "\r\n";

byte[] data = daytime.getBytes("US-ASCII");

InetAddress host = request.getAddress();

int port = request.getPort();

DatagramPacket response = new DatagramPacket(data, data.length, host, port);

Finally, send the response back over the same socket that received it:
socket.send(response);

Example 12-2 wraps this sequence up in a while loop, complete with logging and ex-
ception handling, so that it can process many incoming requests.

Example 12-2. A daytime protocol server

import java.net.*;

import java.util.Date;
import java.util.logging.*;
import java.ilo.*;

public class DaytimeUDPServer {

private final static int PORT = 13;
private final static Logger audit = Logger.getlLogger("requests");
private final static Logger errors = Logger.getlLogger("errors");

public static void main(String[] args) {
try (DatagramSocket socket = new DatagramSocket(PORT)) {
while (true) {
try {
DatagramPacket request = new DatagramPacket(new byte[1024], 1024);
socket.receive(request);

String daytime = new Date().toString();
byte[] data = daytime.getBytes("US-ASCII");
DatagramPacket response = new DatagramPacket(data, data.length,
request.getAddress(), request.getPort());
socket.send(response);
audit.info(daytime + " " + request.getAddress());
} catch (IOException | RuntimeException ex) {

398 | Chapter12:UDP

errors.log(Level.SEVERE, ex.getMessage(), ex);
}

}

} catch (IOException ex) {
errors.log(Level.SEVERE, ex.getMessage(), ex);

}

}
}

As you can see in this example, UDP servers tend not to be as multithreaded as TCP
servers. They usually don’t do a lot of work for any one client, and they can’t get blocked
waiting for the other end to respond because UDP never reports errors. Unless a lot of
time-consuming work is required to prepare the response, an iterative approach works
just fine for UDP servers.

The DatagramPacket Class

UDP datagrams add very little to the IP datagrams they sit on top of. Figure 12-1 shows
a typical UDP datagram. The UDP header adds only eight bytes to the IP header. The
UDP header includes source and destination port numbers, the length of everything
that follows the IP header, and an optional checksum. Because port numbers are given
as two-byte unsigned integers, 65,536 different possible UDP ports are available per
host. These are distinct from the 65,536 different TCP ports per host. Because the length
is also a two-byte unsigned integer, the number of bytes in a datagram is limited to
65,536 minus the eight bytes for the header. However, this is redundant with the data-
gram length field of the IP header, which limits datagrams to between 65,467 and 65,507
bytes. (The exact number depends on the size of the IP header.) The checksum field is
optional and not used in or accessible from application layer programs. If the checksum
for the data fails, the native network software silently discards the datagram; neither the
sender nor the receiver is notified. UDP is an unreliable protocol, after all.

The DatagramPacket Class | 399

0 4 8 12 16 20 24 28 31
version 'I]ee:;t(ﬂ type of service datagram length]
identification flags fragment offset
time-to-live (TTL) protocol header checksum
P Header
source address
destination address
i options i J
source port (0-65,535) destination port (0-65,535)
UDP Header
combined length of data and UDP header (8-65,515) destination port (0—65,535)
data

Figure 12-1. The structure of a UDP datagram

Although the theoretical maximum amount of data in a UDP datagram is 65,507 bytes,
in practice there is almost always much less. On many platforms, the actual limit is more
likely to be 8,192 bytes (8K). And implementations are not required to accept datagrams
with more than 576 total bytes, including data and headers. Consequently, you should
be extremely wary of any program that depends on sending or receiving UDP packets
with more than 8K of data. Most of the time, larger packets are simply truncated to 8K
of data. For maximum safety, the data portion of a UDP packet should be kept to 512
bytes or less, although this limit can negatively affect performance compared to larger
packet sizes. (This is a problem for TCP datagrams too, but the stream-based API pro-
vided by Socket and ServerSocket completely shields programmers from these de-
tails.)

In Java, a UDP datagram is represented by an instance of the DatagramPacket class:

public final class DatagramPacket extends Object

This class provides methods to get and set the source or destination address from the
IP header, to get and set the source or destination port, to get and set the data, and to
get and set the length of the data. The remaining header fields are inaccessible from
pure Java code.

400 | Chapter12:UDP

The Constructors

DatagramPacket uses different constructors depending on whether the packet will be
used to send data or to receive data. This is a little unusual. Normally, constructors are
overloaded to let you provide different kinds of information when you create an object,
not to create objects of the same class that will be used in different contexts. In this case,
all six constructors take as arguments a byte array that holds the datagram’s data and
the number of bytes in that array to use for the datagram’s data. When you want to
receive a datagram, these are the only arguments you provide. When the socket receives
a datagram from the network, it stores the datagram’s data in the DatagramPacket
object’s buffer array, up to the length you specified.

The second set of DatagramPacket constructors is used to create datagrams you will
send over the network. Like the first, these constructors require a buffer array and a
length, but they also require an address and port to which the packet will be sent. In this
case, you pass to the constructor a byte array containing the data you want to send and
the destination address and port to which the packet is to be sent. The DatagramSock
et reads the destination address and port from the packet; the address and port aren’t
stored within the socket, as they are in TCP.

Constructors for receiving datagrams

These two constructors create new DatagramPacket objects for receiving data from the
network:

public DatagramPacket(byte[] buffer, int length)

public DatagramPacket(byte[] buffer, int offset, int length)
If the first constructor is used, when a socket receives a datagram, it stores the datagram’s
data part in buffer beginning at buffer[0] and continuing until the packet is com-
pletely stored or until length bytes have been written into the buffer. For example, this
code fragment creates a new DatagramPacket for receiving a datagram of up to 8,192
bytes:

byte[] buffer = new byte[8192];

DatagramPacket dp = new DatagramPacket(buffer, buffer.length);
If the second constructor is used, storage begins at buf fer [of fset] instead. Otherwise,
these two constructors are identical. length must be less than or equal to buffer. length
- offset. If you try to construct a DatagramPacket with a length that will overflow the
buffer, the constructor throws an I1legalArgumentException. This is a RuntimeEx
ception, so your code is not required to catch it. It is OK to construct a DatagramPack
et withalengthlessthanbuffer.length - offset.Inthiscase, at most the first length
bytes of buf fer will be filled when the datagram is received.

The constructor doesn’t care how large the buffer is and would happily let you create a
DatagramPacket with megabytes of data. However, the underlying native network soft-

The DatagramPacket Class | 401

ware is less forgiving, and most native UDP implementations don’t support more than
8,192 bytes of data per datagram. The theoretical limit for an IPv4 datagram is 65,507
bytes of data, and a DatagramPacket with a 65,507-byte buffer can receive any possible
IPv4 datagram without losing data. IPv6 datagrams raise the theoretical limit to 65,536
bytes. In practice, however, many UDP-based protocols such as DNS and TFTP use
packets with 512 bytes of data per datagram or fewer. The largest data size in common
usage is 8,192 bytes for NFS. Almost all UDP datagrams you're likely to encounter will
have 8K of data or fewer. In fact, many operating systems don’t support UDP datagrams
with more than 8K of data and either truncate, split, or discard larger datagrams. If a
large datagram is too big and as a result the network truncates or drops it, your Java
program won't be notified of the problem. Consequently, you shouldn't create Data
gramPacket objects with more than 8,192 bytes of data.

Constructors for sending datagrams

These four constructors create new DatagramPacket objects used to send data across
the network:

public DatagramPacket(byte[] data, int length,
InetAddress destination, int port)

public DatagramPacket(byte[] data, int offset, int length,
InetAddress destination, int port)

public DatagramPacket(byte[] data, int length,
SocketAddress destination)

public DatagramPacket(byte[] data, int offset, int length,
SocketAddress destination)

Each constructor creates a new DatagramPacket to be sent to another host. The packet
is filled with length bytes of the data array starting at of fset or 0 if of fset is not used.
If you try to construct a DatagramPacket with a length that is greater than data.length
(or greater than data.length - offset), the constructor throws an Il1legalArgumen
tException. It's OK to construct a DatagramPacket object with an of fset and a length
that will leave extra, unused space at the end of the data array. In this case, only length
bytes of data will be sent over the network. The InetAddress or SocketAddress object

destination points to the host you want the packet delivered to; the int argument port
is the port on that host.

Choosing a Datagram Size

The correct amount of data to stuff into one packet depends on the situation. Some
protocols dictate the size of the packet. For example, rlogin transmits each character to
the remote system almost as soon as the user types it. Therefore, packets tend to be short:
a single byte of data, plus a few bytes of headers. Other applications aren't so picky. For
example, file transfer is more efficient with large buffers; the only requirement is that
you split files into packets no larger than the maximum allowable packet size.

402 | Chapter12:UDP

Several factors are involved in choosing the optimal packet size. If the network is highly
unreliable, such as a packet radio network, smaller packets are preferable because they’re
less likely to be corrupted in transit. On the other hand, very fast and reliable LANs
should use the largest packet size possible. Eight kilobytes—that is, 8,192 bytes—is a
good compromise for many types of networks.

It’s customary to convert the data to a byte array and place it in data before creating the
DatagramPacket, but it’s not absolutely necessary. Changing data after the datagram
has been constructed and before it has been sent changes the data in the datagram; the
data isn't copied into a private buffer. In some applications, you can take advantage of
this. For example, you could store data that changes over time in data and send out the
current datagram (with the most recent data) every minute. However, it's more impor-
tant to make sure that the data doesn’t change when you don’t want it to. This is especially
true if your program is multithreaded, and different threads may write into the data
buffer. If this is the case, copy the data into a temporary buffer before you construct the
DatagramPacket.

For instance, this code fragment creates a new DatagramPacket filled with the data “This
is a test” in UTF-8. The packet is directed at port 7 (the echo port) of www.ibiblio.org:

String s = "This is a test";
byte[] data = s.getBytes("UTF-8");

try {
InetAddress ia = InetAddress.getByName("www.ibiblio.org");

int port = 7;
DatagramPacket dp = new DatagramPacket(data, data.length, ia, port);
// send the packet...

} catch (IOException ex)

}

Most of the time, the hardest part of creating a new DatagramPacket is translating the
data into a byte array. Because this code fragment wants to send a string, it uses the
getBytes() method of java.lang.String. The java.io.ByteArrayOutputStream
class can also be very useful for preparing data for inclusion in datagrams.

The get Methods

DatagramPacket has six methods that retrieve different parts of a datagram: the actual
data plus several fields from its header. These methods are mostly used for datagrams
received from the network.

public InetAddress getAddress()

The getAddress() method returns an InetAddress object containing the address of
the remote host. If the datagram was received from the Internet, the address returned

The DatagramPacket Class | 403

is the address of the machine that sent it (the source address). On the other hand, if the
datagram was created locally to be sent to a remote machine, this method returns the
address of the host to which the datagram is addressed (the destination address). This
method is most commonly used to determine the address of the host that sent a UDP
datagram, so that the recipient can reply.

publicint getPort()

The getPort() method returns an integer specifying the remote port. If this datagram
was received from the Internet, this is the port on the host that sent the packet. If the
datagram was created locally to be sent to a remote host, this is the port to which the
packet is addressed on the remote machine.

public SocketAddress getSocketAddress()

The getSocketAddress() method returns a SocketAddress object containing the IP
addressand port of the remote host. Asisthe case for getInetAddress(),ifthe datagram
was received from the Internet, the address returned is the address of the machine that
sent it (the source address). On the other hand, if the datagram was created locally to
be sent to a remote machine, this method returns the address of the host to which the
datagram is addressed (the destination address). You typically invoke this method to
determine the address and port of the host that sent a UDP datagram before you reply.
The net effect is not noticeably different than calling getAddress() and getPort().
Also, if you're using nonblocking I/O, the DatagramChannel class accepts a SocketAd
dress but not an InetAddress and port.

public byte[] getData()

The getData() method returns a byte array containing the data from the datagram. It’s
often necessary to convert the bytes into some other form of data before they’ll be useful
to your program. One way to do this is to change the byte array into a String. For
example, given a DatagramPacket dp received from the network, you can convert it to
a UTF-8 String like this:

String s = new String(dp.getData(), "UTF-8");

If the datagram does not contain text, converting it to Java data is more difficult. One
approach is to convert the byte array returned by getData() into a ByteArrayInput
Stream. For example:
InputStream in = new ByteArrayInputStream(packet.getData(),
packet.getOffset(), packet.getLength());
You must specify the of fset and the length when constructing the ByteArrayInput
Stream. Do not use the ByteArrayInputStream() constructor that takes only an array

as an argument. The array returned by packet.getData() probably has extra space in
it that was not filled with data from the network. This space will contain whatever

404 | Chapter12:UDP

random values those components of the array had when the DatagramPacket was con-
structed.

The ByteArrayInputStream can then be chained to a DataInputStream:
DataInputStream din = new DataInputStream(in);

The data can then be read using the DataInputStream’s readInt(), readLong(), read
Char(), and other methods. Of course, this assumes that the datagram’s sender uses the
same data formats as Java; it’s probably the case when the sender is written in Java, and
is often (though not necessarily) the case otherwise. (Most modern computers use the
same floating-point format as Java, and most network protocols specify two's comple-
ment integers in network byte order, which also matches Java’s formats.)

publicint getLength()

The getLength() method returns the number of bytes of data in the datagram. This is
not necessarily the same as the length of the array returned by getData() (i.e., getDa
ta().length). The int returned by getLength() may be less than the length of the
array returned by getData().

publicint getOffset()

This method simply returns the point in the array returned by getData() where the
data from the datagram begins.

Example 12-3 uses all the methods covered in this section to print the information in
the DatagramPacket. This example is a little artificial; because the program creates a
DatagramPacket, it already knows what’s in it. More often, you’ll use these methods on
a DatagramPacket received from the network, but that will have to wait for the intro-
duction of the DatagramSocket class in the next section.

Example 12-3. Construct a DatagramPacket to receive data

import java.io.*;
import java.net.¥;

public class DatagramExample {
public static void main(String[] args) {
String s = "This is a test.";

try {
byte[] data = s.getBytes("UTF-8");
InetAddress ia = InetAddress.getByName("www.ibiblio.org");
int port = 7;
DatagramPacket dp
= new DatagramPacket(data, data.length, ia, port);
System.out.println("This packet is addressed to "
+ dp.getAddress() + " on port " + dp.getPort());

The DatagramPacket Class | 405

System.out.println("There are " + dp.getLength()
+ " bytes of data in the packet");
System.out.println(
new String(dp.getData(), dp.getOffset(), dp.getLength(), "UTF-8"));
} catch (UnknownHostException | UnsupportedEncodingException ex) {
System.err.println(ex);
}
}
}

Here’s the output:

% java DatagramExample

This packet is addressed to www.ibiblio.org/152.2.254.81 on port 7
There are 15 bytes of data in the packet

This 1s a test.

The setter Methods

Most of the time, the six constructors are sufficient for creating datagrams. However,
Java also provides several methods for changing the data, remote address, and remote
port after the datagram has been created. These methods might be important in a sit-
uation where the time to create and garbage collect new DatagramPacket objects is a
significant performance hit. In some situations, reusing objects can be significantly
faster than constructing new ones: for example, in a networked twitch game that sends
adatagram for every bullet fired or every centimeter of movement. However, you would
have to use a very speedy connection for the improvement to be noticeable relative to
the slowness of the network itself.

public void setData(byte[] data)

The setData() method changes the payload of the UDP datagram. You might use this
method if you are sending a large file (where large is defined as “bigger than can com-
fortably fit in one datagram”) to a remote host. You could repeatedly send the same
DatagramPacket object, just changing the data each time.

public void setData(byte[] data, int offset, int length)

This overloaded variant of the setData() method provides an alternative approach to
sending a large quantity of data. Instead of sending lots of new arrays, you can put all
the data in one array and send it a piece at a time. For instance, this loop sends a large
array in 512-byte chunks:

int offset = 0;
DatagramPacket dp = new DatagramPacket(bigarray, offset, 512);
int bytesSent = 0;
while (bytesSent < bigarray.length) {
socket.send(dp);
bytesSent += dp.getLength();
int bytesToSend = bigarray.length - bytesSent;

406 | Chapter12:UDP

int size = (bytesToSend > 512) ? 512 : bytesToSend;
dp.setData(bigarray, bytesSent, size);
}

On the other hand, this strategy requires either a lot of confidence that the data will in
fact arrive or, alternatively, a disregard for the consequences of its not arriving. It’s rel-
atively difficult to attach sequence numbers or other reliability tags to individual packets
when you take this approach.

public void setAddress(InetAddress remote)

The setAddress() method changes the address a datagram packet is sent to. This might
allow you to send the same datagram to many different recipients. For example:

String s = "Really Important Message";
byte[] data = s.getBytes("UTF-8");
DatagramPacket dp = new DatagramPacket(data, data.length);
dp.setPort(2000);
int network = "128.238.5.";
for (int host = 1; host < 255; host++) {
try {
InetAddress remote = InetAddress.getByName(network + host);
dp.setAddress(remote);
socket.send(dp);
} catch (IOException ex) {
// skip it; continue with the next host
}
}

Whether this is a sensible choice depends on the application. If you're trying to send to
all the stations on a network segment, as in this fragment, you'd probably be better off
using the local broadcast address and letting the network do the work. The local broad-
cast address is determined by setting all bits of the IP address after the network and
subnet IDs to 1. For example, Polytechnic University’s network address is 128.238.0.0.
Consequently, its broadcast address is 128.238.255.255. Sending a datagram to
128.238.255.255 copies it to every host on that network (although some routers and
firewalls may block it, depending on its origin).

For more widely separated hosts, you're probably better off using multicasting. Multi-
casting actually uses the same DatagramPacket class described here. However, it uses
different IP addresses and a MulticastSocket instead of a DatagramSocket. We’ll dis-
cuss this further in Chapter 13.

public void setPort(int port)

The setPort() method changes the port a datagram is addressed to. I honestly can't
think of many uses for this method. It could be used in a port scanner application that
tried to find open ports running particular UDP-based services such as FSP. Another
possibility might be some sort of networked game or conferencing server where the
clients that need to receive the same information are all running on different ports as

The DatagramPacket Class | 407

well as different hosts. In this case, setPort() could be used in conjunction with se
tAddress() to change destinations before sending the same datagram out again.

public void setAddress(SocketAddress remote)

The setSocketAddress() method changes the address and port a datagram packet is
sent to. You can use this when replying. For example, this code fragment receives a
datagram packet and responds to the same address with a packet containing the string
“Hello there™

DatagramPacket input = new DatagramPacket(new byte[8192], 8192);
socket.receive(input);
DatagramPacket output = new DatagramPacket(

"Hello there".getBytes("UTF-8"), 11);
SocketAddress address = input.getSocketAddress();
output.setAddress(address);
socket.send(output);

You could certainly write the same code using InetAddress objects and ports instead
of a SocketAddress. The code would be just a few lines longer.

public void setLength(int length)

The setLength() method changes the number of bytes of data in the internal buffer
that are considered to be part of the datagram’s data as opposed to merely unfilled space.
This method is useful when receiving datagrams, as we’ll explore later in this chapter.
When a datagram is received, its length is set to the length of the incoming data. This
means that if you try to receive another datagram into the same DatagramPacket, its
limited to no more than the number of bytes in the first. That is, once you've received
a 10-byte datagram, all subsequent datagrams will be truncated to 10 bytes; once you've
received a 9-byte datagram, all subsequent datagrams will be truncated to 9 bytes; and
so on. This method lets you reset the length of the buffer so that subsequent datagrams
aren’t truncated.

The DatagramSocket Class

To send or receive a DatagramPacket, you must open a datagram socket. In Java, a
datagram socket is created and accessed through the DatagramSocket class:

public class DatagramSocket extends Object

All datagram sockets bind to a local port, on which they listen for incoming data and
which they place in the header of outgoing datagrams. If you're writing a client, you
don’t care what the local port is, so you call a constructor that lets the system assign an
unused port (an anonymous port). This port number is placed in any outgoing data-
grams and will be used by the server to address any response datagrams. If you’re writing
a server, clients need to know on which port the server is listening for incoming data-
grams; therefore, when a server constructs a DatagramSocket, it specifies the local port

408 | Chapter12:UDP

on which it will listen. However, the sockets used by clients and servers are otherwise
identical: they differ only in whether they use an anonymous (system-assigned) or a
well-known port. There’s no distinction between client sockets and server sockets, as
there is with TCP. There’s no such thing as a DatagramServerSocket.

The Constructors

The DatagramSocket constructors are used in different situations, much like the Data
gramPacket constructors. The first constructor opens a datagram socket on an anony-
mous local port. The second constructor opens a datagram socket on a well-known local
port that listens to all local network interfaces. The last two constructors open a data-
gram socket on a well-known local port on a specific network interface. All constructors
deal only with the local address and port. The remote address and port are stored in the
DatagramPacket, not the DatagramSocket. Indeed, one DatagramSocket can send and
receive datagrams from multiple remote hosts and ports.

public DatagramSocket() throws SocketException

This constructor creates a socket that is bound to an anonymous port. For example:

tr
)[;a'EagramSocket client = new DatagramSocket();
// send packets. ..
} catch (SocketException ex) {
System.err.println(ex);
}
Pick this constructor for a client that initiates a conversation with a server. In this sce-
nario, you don’t care what port the socket is bound to because the server will send its
response to the port from which the datagram originated. Letting the system assign a
port means that you don't have to worry about finding an unused port. If, for some
reason, you need to know the local port, you can find out with the getLocalPort()
method described later in this chapter.

The same socket can receive the datagrams that a server sends back to it. The constructor
throws a SocketException if the socket can’t bind to a port. It’s unusual for this con-
structor to throw an exception; it’s hard to imagine situations in which the socket could
not be opened, because the system gets to choose an available port.

public DatagramSocket(int port) throws SocketException

This constructor creates a socket that listens for incoming datagrams on a particular
port, specified by the port argument. Use this constructor to write a server that listens
on awell-known port. A SocketException isthrown if the socket can’t be created. There
are two common reasons for the constructor to fail: the specified port is already occu-
pied, or you are trying to connect to a port below 1024 and you don’t have sufficient

The DatagramSocket Class | 409

privileges (i.e., you are not root on a Unix system; for better or worse, other platforms
allow anyone to connect to low-numbered ports).

TCP ports and UDP ports are not related. Two different programs can use the same
port number if one uses UDP and the other uses TCP. Example 12-4 is a port scanner
that looks for UDP ports in use on the local host. It decides that the port is in use if the
DatagramSocket constructor throws an exception. As written, it looks at ports from
1024 and up to avoid Unix’s requirement that it run as root to bind to ports below 1024.
You can easily extend it to check ports below 1024, however, if you have root access or
are running it on Windows.

Example 12-4. Look for local UDP ports

import java.net.¥*;
public class UDPPortScanner {

public static void main(String[] args) {
for (int port = 1024; port <= 65535; port++) {
try {
// the next line will fail and drop into the catch block if
// there is already a server running on port i
DatagramSocket server = new DatagramSocket(port);
server.close();
} catch (SocketException ex) {
System.out.println("There is a server on port " + port + ".");
}
}
}
}

Here are the results from the Linux workstation on which much of the code in this book
was written:

% java UDPPortScanner

There is a server on port 2049.
There is a server on port 32768.
There is a server on port 32770.
There is a server on port 32771.

The first port, 2049, is an NFS server. The high-numbered ports in the 30,000 range are

Remote Procedure Call (RPC) services. Along with RPC, common protocols that use
UDP include NFS, TFTP, and FSP.

It's much harder to scan UDP ports on a remote system than to scan for remote TCP
ports. Whereas there’s always some indication that a listening port, regardless of appli-
cation layer protocol, has received your TCP packet, UDP provides no such guarantees.
To determine that a UDP server is listening, you have to send it a packet it will recognize
and respond to.

410 | Chapter12:UDP

public DatagramSocket(int port, InetAddress interface) throws SocketException

This constructor is primarily used on multihomed hosts; it creates a socket that listens
for incoming datagrams on a specific port and network interface. The port argument
is the port on which this socket listens for datagrams. As with TCP sockets, you need
to be root on a Unix system to create a DatagramSocket on a port below 1024. The
address argument is an InetAddress object matching one of the host’s network ad-
dresses. A SocketException is thrown if the socket can’t be created. There are three
common reasons for this constructor to fail: the specified port is already occupied, you
are trying to connect to a port below 1024 and you’re not root on a Unix system, or
address is not the address of one of the system’s network interfaces.

public DatagramSocket(SocketAddress interface) throws SocketException

This constructor is similar to the previous one except that the network interface address
and port are read from a SocketAddress. For example, this code fragment creates a
socket that only listens on the local loopback address:

SocketAddress address = new InetSocketAddress("127.0.0.1", 9999);
DatagramSocket socket = new DatagramSocket(address);

protected DatagramSocket(DatagramSocketImpl impl) throws SocketException

This constructor enables subclasses to provide their own implementation of the UDP
protocol, rather than blindly accepting the default. Unlike sockets created by the other
four constructors, this socket is not initially bound to a port. Before using it, you have
to bind it to a SocketAddress using the bind() method:

public void bind(SocketAddress addr) throws SocketException

You can pass null to this method, binding the socket to any available address and port.

Sending and Receiving Datagrams

The primary task of the DatagramSocket class is to send and receive UDP datagrams.
One socket can both send and receive. Indeed, it can send and receive to and from
multiple hosts at the same time.

public void send(DatagramPacket dp) throws |OException

OnceaDatagramPacket is created and aDatagramSocket is constructed, send the packet
by passing it to the socket’s send() method. For example, if theSocket is a Datagram
Socket object and theOutput is a DatagramPacket object, send theOutput using the
Socket like this:

theSocket.send(theOutput);

Ifthere’s a problem sending the data, this method may throw an I0Exception. However,
this is less common with DatagramSocket than Socket or ServerSocket, because the
unreliable nature of UDP means you won’t get an exception just because the packet

The DatagramSocket Class | 411

doesn't arrive at its destination. You may get an I0Exception if you're trying to send a
larger datagram than the host’s native networking software supports, but then again you
may not. This depends heavily on the native UDP software in the OS and the native
code that interfaces between this and Java’s DatagramSocketImpl class. This method
may also throw a SecurityException if the SecurityManager won't let you commu-
nicate with the host to which the packet is addressed. This is primarily a problem for
applets and other remotely loaded code.

Example 12-5 is a UDP-based discard client. It reads lines of user input from Sys
tem.in and sends them to a discard server, which simply discards all the data. Each line
is stuffed in a DatagramPacket. Many of the simpler Internet protocols, such as discard
and echo, have both TCP and UDP implementations.

Example 12-5. A UDP discard client

import java.net.¥;
import java.io.*;

public class UDPDiscardClient {
public final static int PORT = 9;
public static void main(String[] args) {
String hostname = args.length > 0 ? args[0] : "localhost";

try (DatagramSocket theSocket = new DatagramSocket()) {
InetAddress server = InetAddress.getByName(hostname);
BufferedReader userInput
= new BufferedReader(new InputStreamReader(System.in));
while (true) {
String thelLine = userInput.readLine();
if (theLine.equals(".")) break;
byte[] data = thelLine.getBytes();
DatagramPacket theOutput
= new DatagramPacket(data, data.length, server, PORT);
theSocket.send(theOutput);
} // end while
} catch (IOException ex) {
System.err.println(ex);
}
}
}

The UDPDiscardClient class should look familiar. It has a single static field, PORT, which
is set to the standard port for the discard protocol (port 9), and a single method,
main(). The main() method reads a hostname from the command line and converts
that hostname to the InetAddress object called server. A BufferedReader is chained
to System.in to read user input from the keyboard. Next, a DatagramSocket object

412 | Chapter12:UDP

called theSocket is constructed. After creating the socket, the program enters an infinite
while loop that reads user input line by line using readLine(). Example 12-5 is careful,
however, to use only readLine() to read data from the console, the one place where it
is guaranteed to work as advertised. Because the discard protocol deals only with raw
bytes, it can ignore character encoding issues.

In the while loop, each line is converted to a byte array using the getBytes() method,
and the bytes are stuffed in a new DatagramPacket, theOutput. Finally, theOutput is
sent over theSocket, and the loop continues. If at any point the user types a period on
a line by itself, the program exits. The DatagramSocket constructor may throw a Sock
etException, so that needs to be caught. Because this is a discard client, you don’t need
to worry about data coming back from the server.

public void receive(DatagramPacket dp) throws I0Exception

This method receives a single UDP datagram from the network and stores it in the
preexisting DatagramPacket object dp. Like the accept() method in the ServerSock
et class, this method blocks the calling thread until a datagram arrives. If your program

does anything besides wait for datagrams, you should call receive() in a separate
thread.

The datagram’s buffer should be large enough to hold the data received. If it’s not,
receive() places as much data in the buffer as it can hold; the rest is lost. Remember
that the maximum size of the data portion of a UDP datagram is 65,507 bytes. (That’s
the 65,536-byte maximum size of an IP datagram minus the 20-byte size of the IP header
and the 8-byte size of the UDP header.) Some application protocols that use UDP further
restrict the maximum number of bytes in a packet; for instance, NFS uses a maximum
packet size of 8,192 bytes.

If there’s a problem receiving the data, receive() may throw an I0Exception. In prac-
tice, this is rare because problems like dropped packets that would shut down a TCP
stream are silently discarded by the network or network stack before Java ever sees them.

Example 12-6 shows a UDP discard server that receives incoming datagrams. Just for
fun, it logs the data in each datagram to System.out so that you can see who’s sending
what to your discard server.

Example 12-6. The UDPDiscardServer

import java.net.*;
import java.ilo.*;

public class UDPDiscardServer {

public final static int PORT = 9;
public final static int MAX_PACKET_SIZE = 65507;

public static void main(String[] args) {

The DatagramSocket Class | 413

byte[] buffer = new byte[MAX_PACKET_SIZE];

try (DatagramSocket server = new DatagramSocket(PORT)) {
DatagramPacket packet = new DatagramPacket(buffer, buffer.length);
while (true) {
try {
server.receive(packet);
String s = new String(packet.getData(), 0, packet.getLength(), "8859_1");
System.out.println(packet.getAddress() + " at port
+ packet.getPort() + " says " + s);
// reset the length for the next packet
packet.setLength(buffer.length);
} catch (IOException ex) {
System.err.println(ex);

}
} // end while
} catch (SocketException ex) {
System.err.println(ex);
}
}
}

This is a simple class with a single method, main(). It reads the port the server listens
to from the command line. If the port is not specified on the command line, it listens
on port 9. It then opens a DatagramSocket on that port and creates a DatagramPacket
with a 65,507-byte buffer—large enough to receive any possible packet. Then the server
enters an infinite loop that receives packets and prints the contents and the originating
host on the console. There’s no particular encoding expected for discard packets. Indeed,
there’s no particular reason these packets have to be text at all. I somewhat arbitrarily
picked the Latin-1 ISO 8859-1 encoding because it's ASCII compatible and defines a
character for every byte.

As each datagram is received, the length of packet is set to the length of the data in that
datagram. Consequently, as the last step of the loop, the length of the packet is reset to
the maximum possible value. Otherwise, the incoming packets would be limited to the
minimum size of all previous packets. You can run the discard client on one machine
and connect to the discard server on a second machine to verify that the network is
working.

publicvoid close()

Calling a DatagramSocket object’s close() method frees the port occupied by that
socket. As with streams and TCP sockets, you'll want to take care to close the datagram
socket in a finally block:

DatagramSocket server = null

try {
server = new DatagramSocket();

414 | Chapter12:UDP

// use the socket...
} catch (IOException ex) {
System.err.println(ex);

} finally {
try {
if (server != null) server.close();
} catch (IOException ex) {
}
}

In Java 7, DatagramSocket implements AutoCloseable so you can use try-with-
resources:

try (DatagramSocket server = new DatagramSocket()) {
// use the socket...

}
It’s never a bad idea to close a DatagramSocket when you're through with it; it’s partic-
ularly important to close an unneeded socket if the program will continue to run for a
significant amount of time. For example, the close() method was essential in
Example 12-4, UDPPortScanner: if this program did not close the sockets it opened, it
would tie up every UDP port on the system for a significant amount of time. On the
other hand, if the program ends as soon as youre through with the DatagramSocket,
you don't need to close the socket explicitly; the socket is automatically closed upon
garbage collection. However, Java won't run the garbage collector just because you've
run out of ports or sockets, unless by lucky happenstance you run out of memory at the
same time. Closing unneeded sockets never hurts and is good programming practice.

publicint getLocalPort()

A DatagramSocket’s getLocalPort() method returns an int that represents the local
port on which the socket is listening. Use this method if you created a DatagramSock
et with an anonymous port and want to find out what port the socket has been as-
signed. For example:

DatagramSocket ds = new DatagramSocket();
System.out.println("The socket i1s using port " + ds.getlLocalPort());

public InetAddress getLocalAddress()
A DatagramSocket’s getLocalAddress() method returns an InetAddress object that
represents the local address to which the socket is bound. It’s rarely needed in practice.

Normally, you either already know or simply don’t care which address a socket is lis-
tening to.

public SocketAddress getLocalSocketAddress()

The getLocalSocketAddress() method returnsa SocketAddress object that wraps the
local interface and port to which the socket is bound. Like getLocalAddress(), it’s a

The DatagramSocket Class | 415

little hard to imagine a realistic use case here. This method probably exists mostly for
parallelism with setLocalSocketAddress().

Managing Connections

Unlike TCP sockets, datagram sockets aren’'t very picky about whom they’ll talk to. In
fact, by default they’ll talk to anyone; but this is often not what you want. For instance,
applets are only allowed to send datagrams to and receive datagrams from the applet
host. An NFS or FSP client should accept packets only from the server it’s talking to. A
networked game should listen to datagrams only from the people playing the game. The
next five methods let you choose which host you can send datagrams to and receive
datagrams from, while rejecting all others” packets.

public void connect(InetAddress host, int port)

The connect() method doesn’t really establish a connection in the TCP sense. However,
it does specify that the DatagramSocket will only send packets to and receive packets
from the specified remote host on the specified remote port. Attempts to send packets
to a different host or port will throw an I1legalArgumentException. Packets received
from a different host or a different port will be discarded without an exception or other
notification.

A security check is made when the connect() method is invoked. If the VM is allowed
to send data to that host and port, the check passes silently. If not, a SecurityExcep
tion is thrown. However, once the connection has been made, send() and receive()
on that DatagramSocket no longer make the security checks they’d normally make.

public void disconnect()

The disconnect() method breaks the “connection” of a connected DatagramSocket so
that it can once again send packets to and receive packets from any host and port.

publicint getPort()

Ifand only ifaDatagramSocket is connected, the getPort() method returns the remote
port to which it is connected. Otherwise, it returns -1.

public InetAddress getInetAddress()

If and only if a DatagramSocket is connected, the getInetAddress() method returns
the address of the remote host to which it is connected. Otherwise, it returns null.

public InetAddress getRemoteSocketAddress()

If aDatagramSocket is connected, the getRemoteSocketAddress() method returns the
address of the remote host to which it is connected. Otherwise, it returns null.

416 | Chapter12:UDP

Socket Options

Java supports six socket options for UDP:

o SO_TIMEOUT

o SO_RCVBUF

o SO_SNDBUF

o SO_REUSEADDR
o SO_BROADCAST
o IP_TOS

SO_TIMEOUT

SO_TIMEOUT is the amount of time, in milliseconds, that receive() waits for an
incoming datagram before throwing an InterruptedIOException, which is a subclass
of I0OException. Its value must be nonnegative. If SO_TIMEOUT is 0, receive() never
times out. This value can be changed with the setSoTimeout() method and inspected
with the getSoTimeout() method:

public void setSoTimeout(int timeout) throws SocketException
public int getSoTimeout() throws IOException

The default is to never time out, and indeed there are few situations in which you need
to set SO_TIMEOUT. You might need it if you were implementing a secure protocol
that required responses to occur within a fixed amount of time. You might also decide
that the host youre communicating with is dead (unreachable or not responding) if you
don’t receive a response within a certain amount of time.

The setSoTimeout () method sets the SO_TIMEOUT field for a datagram socket. When
the timeout expires, a blocked receive() method throws a SocketTimeoutException.
Set this option before you call receive(). You cannot change it while receive() is
waiting for a datagram. The timeout argument must be greater than or equal to zero.
For example:

try {
byte[] buffer = new byte[2056];
DatagramPacket dp = new DatagramPacket(buffer, buffer.length);
DatagramSocket ds = new DatagramSocket(2048);
ds.setSoTimeout(30000); // block for no more than 30 seconds
try {
ds.receive(dp);
// process the packet...
} catch (SocketTimeoutException ex) {
ss.close();
System.err.println("No connection within 30 seconds");

Socket Options | 417

}
} catch (SocketException ex) {

System.err.println(ex);
} catch (IOException ex) {
System.err.println("Unexpected IOException:

}

The getSoTimeout () method returns the current value of this DatagramSocket object’s
SO_TIMEOUT field. For example:

+ ex);

public void printSoTimeout(DatagramSocket ds) {
int timeout = ds.getSoTimeOut();
if (timeout > 0) {
System.out.println(ds + " will time out after
+ timeout + "milliseconds.");
} else if (timeout == 0) {
System.out.println(ds +
} else {
System.out.println("Something is seriously wrong with " + ds);
}
}

SO_RCVBUF

The SO_RCVBUF option of DatagramSocket is closely related to the SO_RCVBUF
option of Socket. It determines the size of the buffer used for network I/O. Larger buffers
tend to improve performance for reasonably fast (say, Ethernet-speed) connections be-
cause they can store more incoming datagrams before overflowing. Sufficiently large
receive buffers are even more important for UDP than for TCP, because a UDP datagram
that arrives when the buffer is full will be lost, whereas a TCP datagram that arrives at
a full buffer will eventually be retransmitted. Furthermore, SO_RCVBUF sets the max-
imum size of datagram packets that can be received by the application. Packets that
won't fit in the receive buffer are silently discarded.

will never time out.");

DatagramSocket has methods to set and get the suggested receive buffer size used for
network input:

public void setReceiveBufferSize(int size) throws SocketException
public int getReceiveBufferSize() throws SocketException

The setReceiveBufferSize() method suggests a number of bytes to use for buffering
input from this socket. However, the underlying implementation is free to ignore this
suggestion. For instance, many 4.3 BSD-derived systems have a maximum receive buffer
size of about 52K and won't let you set a limit higher than this. My Linux box was limited
to 64K. Other systems raise this to about 240K. The details are highly platform-
dependent. Consequently, you may wish to check the actual size of the receive buffer
with getReceiveBufferSize() after setting it. The getReceiveBufferSize() method
returns the number of bytes in the buffer used for input from this socket.

418 | Chapter12:UDP

Both methods throw a SocketException if the underlying socket implementation does
not recognize the SO_RCVBUF option. This might happen on a non-POSIX operating
system. The setReceiveBufferSize() method will throw an I1legalArgumentExcep
tion if its argument is less than or equal to zero.

SO_SNDBUF

DatagramSocket has methods to get and set the suggested send buffer size used for
network output:

public void setSendBufferSize(int size) throws SocketException
public int getSendBufferSize() throws SocketException

The setSendBufferSize() method suggests a number of bytes to use for buffering
output on this socket. Once again, however, the operating system is free to ignore this
suggestion. Consequently, you'll want to check the result of setSendBufferSize() by
immediately following it with a call to getSendBufferSize() to find out the real buffer
size.

Both methods throw a SocketException if the underlying native network software
doesn’t understand the SO_SNDBUF option. The setSendBufferSize() method also
throws an I1legalArgumentException if its argument is less than or equal to zero.

SO_REUSEADDR

The SO_REUSEADDR option does not mean the same thing for UDP sockets as it does
for TCP sockets. For UDP, SO_REUSEADDR controls whether multiple datagram
sockets can bind to the same port and address at the same time. If multiple sockets are
bound to the same port, received packets will be copied to all bound sockets. This option
is controlled by these two methods:

public void setReuseAddress(boolean on) throws SocketException

public boolean getReuseAddress() throws SocketException
For this to work reliably, setReuseAddress () must be called before the new socket binds
to the port. This means the socket must be created in an unconnected state using the
protected constructor that takes a DatagramImpl as an argument. In other words, it
won't work with a plain vanilla DatagramSocket. Reusable ports are most commonly
used for multicast sockets, which will be discussed in the next chapter. Datagram chan-
nels also create unconnected datagram sockets that can be configured to reuse ports, as
you’'ll see later in this chapter.

SO_BROADCAST

The SO_BROADCAST option controls whether a socket is allowed to send packets to
and receive packets from broadcast addresses such as 192.168.254.255, the local network

Socket Options | 419

broadcast address for the network with the local address 192.168.254.*. UDP broad-
casting is often used for protocols such as DHCP that need to communicate with servers
on the local net whose addresses are not known in advance. This option is controlled
with these two methods:

public void setBroadcast(boolean on) throws SocketException

public boolean getBroadcast() throws SocketException
Routers and gateways do not normally forward broadcast messages, but they can still
kick up a lot of traffic on the local network. This option is turned on by default, but if
you like you can disable it thusly:

socket.setBroadcast(false);

This option can be changed after the socket has been bound.

W S
5 On some implementations, sockets bound to a specific address do not
t‘;‘.‘ . receive broadcast packets. In other words, you should use the Data
0% gramPacket(int port) constructor, not the DatagramPacket(InetAd

dress address, int port) constructor to listen to broadcasts. This
is necessary in addition to setting the SO_BROADCAST option to true.

IP_TOS

Because the traffic class is determined by the value of the IP_TOS field in each IP packet
header, it is essentially the same for UDP as it is for TCP. After all, packets are actually
routed and prioritized according to IP, which both TCP and UDP sit on top of. There’s
really no difference between the setTrafficClass() and getTrafficClass() methods
in DatagramSocket and those in Socket. They just have to be repeated here because
DatagramSocket and Socket don’t have a common superclass. These two methods let
you inspect and set the class of service for a socket using these two methods:

public int getTrafficClass() throws SocketException
public void setTrafficClass(int trafficClass) throws SocketException

The traffic class is given as an int between 0 and 255. Because this value is copied to an
eight-bit field in the TCP header, only the low-order byte of this int is used; and values
outside this range cause IllegalArgumentExceptions.

The JavaDoc for these options is severely out of date, and describes a
quality of service scheme based on bit fields for four traffic classes: low
cost, high reliability, maximum throughput, and minimum delay. This
scheme was never widely implemented and probably hasn’t been used
in this century.

420 | Chapter12:UDP

This code fragment sets a socket to use Expedited Forwarding by setting the traffic class
to 10111000:

DatagramSocket s = new DatagramSocket();
s.setTrafficClass(0xB8); // 10111000 in binary

For details of the individual traffic classes, refer to “IP_TOS Class of Service” on page
265.

The underlying socket implementation is not required to respect any of these requests.
Some implementations ignore these values completely. Android in particular treats the
setTrafficClass() method as a noop. If the native network stack is unable to provide
the requested class of service, Java may but is not required to throw a SocketException.

Some Useful Applications

In this section, you'll see several Internet servers and clients that use DatagramPacket
and DatagramSocket. Some of these will be familiar from previous chapters because
many Internet protocols have both TCP and UDP implementations. When an IP packet
is received by a host, the host determines whether the packet is a TCP packet or a UDP
datagram by inspecting the IP header. As I said earlier, there’s no connection between
UDP and TCP ports; TCP and UDP servers can share the same port number without
problems. By convention, if a service has both TCP and UDP implementations, it uses
the same port for both, although there’s no technical reason this has to be the case.

Simple UDP Clients

Several Internet services need to know only the client’s address and port; they ignore
any data the client sends in its datagrams. Daytime, quote of the day, time, and chargen
are four such protocols. Each of these responds the same way, regardless of the data
contained in the datagram, or indeed regardless of whether there actually is any data in
the datagram. Clients for these protocols simply send a UDP datagram to the server and
read the response that comes back. Therefore, let’s begin with a simple client called
UDPPoke, shown in Example 12-7, which sends an empty UDP packet to a specified host
and port and reads a response packet from the same host.

The UDPPoke class has four private fields. The bufferSize field specifies how large a
return packet is expected. An 8,192-byte bufter is large enough for most of the protocols
that UDPPoke is useful for, but it can be increased by passing a different value to the
constructor. The timeout field specifies how long to wait for a response. The host and
the port fields specify the remote host to connect to.

If the buffer length is not specified, 8,192 bytes is used. If the timeout is not given, 30
seconds (30,000 milliseconds) is used. The host, port, and buffer size are also used to
construct the outgoing DatagramPacket. Although in theory you should be able to send

Some Useful Applications | 421

a datagram with no data at all, bugs in some Java implementations require that you add
at least one byte of data to the datagram. The simple servers we’re currently considering
ignore this data.

Once a UDPPoke object has been constructed, clients call its poke() method to send an
empty outgoing datagram to the target and read its response. The response is initially
set to null. When the expected datagram appears, its data is copied into the response
field. This method returns null if the response doesn’t come quickly enough or never
comes at all.

The main() method merely reads the host and port to connect to from the command
line, constructs a UDPPoke object, and pokes it. Most of the simple protocols that this
client suits will return ASCII text, so this example attempts to convert the response to
an ASCII string and print it.

Example 12-7. The UDPPoke class

import java.io.*;
import java.net.*;

public class UDPPoke {

private int bufferSize; // in bytes
private int timeout; // in milliseconds
private InetAddress host;

private int port;

public UDPPoke(InetAddress host, int port, int bufferSize, int timeout) {
this.bufferSize = bufferSize;
this.host = host;
if (port < 1 || port > 65535) {
throw new IllegalArgumentException("Port out of range");

}

this.port = port;
this.timeout = timeout;

}

public UDPPoke(InetAddress host, int port, int bufferSize) {
this(host, port, bufferSize, 30000);
}

public UDPPoke(InetAddress host, int port) {
this(host, port, 8192, 30000);
}

public byte[] poke() {
try (DatagramSocket socket = new DatagramSocket(0)) {
DatagramPacket outgoing = new DatagramPacket(new byte[1], 1, host, port);
socket.connect(host, port);
socket.setSoTimeout(timeout);

422 | Chapter12:UDP

socket.send(outgoing);
DatagramPacket incoming
= new DatagramPacket(new byte[bufferSize], bufferSize);

// next line blocks until the response is received
socket.receive(incoming);
int numBytes = incoming.getlLength();
byte[] response = new byte[numBytes];
System.arraycopy(incoming.getData(), O, response, 0O, numBytes);
return response;

} catch (IOException ex) {
return null;

}

}

public static void main(String[] args) {

InetAddress host;

int port = 0;

try {
host = InetAddress.getByName(args[0]);
port = Integer.parselnt(args[1]);

} catch (RuntimeException | UnknownHostException ex) {
System.out.println("Usage: java UDPPoke host port");
return;

}

try {
UDPPoke poker = new UDPPoke(host, port);
byte[] response = poker.poke();
if (response == null) {
System.out.println("No response within allotted time");
return;
}
String result = new String(response, "US-ASCII");
System.out.println(result);
} catch (UnsupportedEncodingException ex) {
// Really shouldn't happen
ex.printStackTrace();
}
}
}

For example, this connects to a daytime server over UDP:

$ java UDPPoke rama.poly.edu 13
Sun Oct 3 13:04:22 2009

This connects to a chargen server:

$ java UDPPoke rama.poly.edu 19
123456789 ; <=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]~_"abcdefghijklmnopgrstuv

Some Useful Applications | 423

Given this class, UDP daytime, time, chargen, and quote of the day clients are almost
trivial. A time client is only slightly harder, and only because you need to convert the
four raw bytes returned by the server to a java.util.Date object. The same algorithm
as in Example 8-3 will accomplish that as demonstrated in Example 12-8.

Example 12-8. A UDP time client

import java.net.*;
import java.util.*;

public class UDPTimeClient {

public final static int PORT = 37;
public final static String DEFAULT_HOST = "time.nist.gov";

public static void main(String[] args) {

InetAddress host;
try {
if (args.length > 0) {
host = InetAddress.getByName(args[0]);
} else {
host = InetAddress.getByName(DEFAULT_HOST);
}
} catch (RuntimeException | UnknownHostException ex) {
System.out.println("Usage: java UDPTimeClient [host]");
return;

}

UDPPoke poker = new UDPPoke(host, PORT);
byte[] response = poker.poke();

if (response == null) {
System.out.println("No response within allotted time");
return;

} else if (response.length != 4) {
System.out.println("Unrecognized response format");
return;

}

// The time protocol sets the epoch at 1900,
// the Java Date class at 1970. This number
// converts between then.

long differenceBetweenEpochs = 2208988800L;

long secondsSince1900 = 0;
for (int 1 = 0; 1 < 4; i++) {
secondsSince1900
= (secondsSince1900 << 8) | (response[i] & OxOOOOOOFF);
}

long secondsSince1970

424 | Chapter12:UDP

= secondsSince1900 - differenceBetweenEpochs;
long msSincel970 = secondsSincel970 * 1000;
Date time = new Date(msSince1970);

System.out.println(time);
}
}

UDPServer

Clients aren’t the only programs that benefit from a reusable implementation. The
servers for these protocols are also very similar. They all wait for UDP datagrams on a
specified port and reply to each datagram with another datagram. The servers differ
only in the content of the datagram that they return. Example 12-9 is a simple iterative
UDPServer class that can be subclassed to provide specific servers for different protocols.

The UDPServer class has two fields, the int bufferSize and the DatagramSocket sock
et, the latter of which is protected so it can be used by subclasses. The constructor opens
a datagram socket on a specified local port to receive datagrams of no more than
bufferSize bytes.

UDPServer implementsRunnable so that multiple instances can run in parallel. Its run()
method contains a loop that repeatedly receives an incoming datagram and responds
by passing it to the abstract respond() method. This method will be overridden by
particular subclasses in order to implement different kinds of servers.

Assuming this class may be used as part of other programs that do more than just run
one server, you need a way to shut it down. This is provided by the shutDown() method,
which sets a flag. The main loop checks this flag each pass to see if it should exit. Because
the receive() call can block indefinitely if there’s no traffic, you also set a timeout on
the socket. This will wake it up once every 10 seconds to check for shutdown whether
there’s traffic or not.

UDPServer is a very flexible class. Subclasses can send zero, one, or many datagrams in
response to each incoming datagram. If a lot of processing is required to respond to a
packet, the respond() method can spawn a thread to do it. However, UDP servers tend
not to have extended interactions with a client. Each incoming packet is treated inde-
pendently of other packets, so the response can usually be handled directly in the
respond() method without spawning a thread.

Example 12-9. The UDPServer class

import java.ilo.*;
import java.net.*;
import java.util.logging.*;

public abstract class UDPServer implements Runnable {

Some Useful Applications | 425

private final int bufferSize; // in bytes

private final int port;

private final Logger logger = Logger.getlLogger(UDPServer.class.getCanonicalName());
private volatile boolean isShutDown = false;

public UDPServer(int port, int bufferSize) {
this.bufferSize = bufferSize;
this.port = port;

}

public UDPServer(int port) {
this(port, 8192);
}

public void run() {
byte[] buffer = new byte[bufferSize];
try (DatagramSocket socket = new DatagramSocket(port)) {
socket.setSoTimeout(10000); // check every 10 seconds for shutdown
while (true) {
if (isShutDown) return;
DatagramPacket incoming = new DatagramPacket(buffer, buffer.length);
try {
socket.receive(incoming);
this.respond(socket, incoming);
} catch (SocketTimeoutException ex) {
if (isShutDown) return;
} catch (IOException ex) {
logger.log(Level.WARNING, ex.getMessage(), ex);
}
} // end while
} catch (SocketException ex) {
logger.log(Level.SEVERE, "Could not bind to port: " + port, ex);
}
}

public abstract void respond(DatagramSocket socket, DatagramPacket request)
throws IOException;

public void shutDown() {
this.isShutDown = true;

}
}

The easiest protocol to handle is discard. All that’s needed is a main() method that sets
the port and starts the thread. respond() is a do-nothing method. Example 12-10 is a
high-performance UDP discard server that does nothing with incoming packets.

426 | Chapter12:UDP

Example 12-10. A UDP discard server

import java.net.*;

public class FastUDPDiscardServer extends UDPServer {

}

public final static int DEFAULT_PORT = 9;

public FastUDPDiscardServer() {
super (DEFAULT_PORT);
}

public static void main(String[] args) {
UDPServer server = new FastUDPDiscardServer();
Thread t = new Thread(server);
t.start();

}

public void respond(DatagramSocket socket, DatagramPacket request) {

}

It ism’t much harder to implement an echo server, as Example 12-11 shows. Unlike a
stream-based TCP echo server, multiple threads are not required to handle multiple
clients.

Example 12-11. A UDP echo server

import java.io.*;
import java.net.¥*;

public class UDPEchoServer extends UDPServer {

public final static int DEFAULT_PORT = 7;

public UDPEchoServer() {
super (DEFAULT_PORT);

3

public void respond(DatagramSocket socket, DatagramPacket packet)
throws IOException {
DatagramPacket outgoing = new DatagramPacket(packet.getData(),
packet.getLength(), packet.getAddress(), packet.getPort());
socket.send(outgoing);

3

public static void main(String[] args) {
UDPServer server = new UDPEchoServer();
Thread t = new Thread(server);
t.start();

Some Useful Applications | 427

3
}

A UDP Echo Client

The UDPPoke class implemented earlier isn’t suitable for all protocols. In particular, pro-
tocols that require multiple datagrams require a different implementation. The echo
protocol has both TCP and UDP implementations. Implementing the echo protocol
with TCP is simple; it's more complex with UDP because you don’t have I/O streams or
the concept of a connection to work with. A TCP-based echo client can send a message
and wait for a response on the same connection. However, a UDP-based echo client has
no guarantee that the message it sent was received. Therefore, it cannot simply wait for
the response; it needs to be prepared to send and receive data asynchronously.

This behavior is fairly simple to implement using threads, however. One thread can
process user input and send it to the echo server, while a second thread accepts input
from the server and displays it to the user. The client is divided into three classes: the
main UDPEchoClient class, the SenderThread class, and the ReceiverThread class.

The UDPEchoClient class should look familiar. It reads a hostname from the command
line and converts it to an InetAddress object. UDPEchoClient uses this object and the
default echo port to construct a SenderThread object. This constructor can throw a
SocketException, so the exception must be caught. Then the SenderThread starts. The
same DatagramSocket that the SenderThread uses is used to construct a ReceiverTh
read, which is then started. It’s important to use the same DatagramSocket for both
sending and receiving data because the echo server will send the response back to the
port the data was sent from. Example 12-12 shows the code for the UDPEchoClient.

Example 12-12. The UDPEchoClient class

import java.net.*;
public class UDPEchoClient {
public final static int PORT = 7;
public static void main(String[] args) {

String hostname = "localhost";
if (args.length > 0) {
hostname = args[0];

}

try {
InetAddress ia = InetAddress.getByName(hostname);
DatagramSocket socket = new DatagramSocket();
SenderThread sender = new SenderThread(socket, ia, PORT);
sender.start();

428 | Chapter12:UDP

Thread receiver = new ReceiverThread(socket);
receiver.start();

} catch (UnknownHostException ex) {
System.err.println(ex);

} catch (SocketException ex) {
System.err.println(ex);

}

}
}

The SenderThread class reads input from the console a line at a time and sends it to the
echo server. It's shown in Example 12-13. The input is provided by System.in, but a
different client could include an option to read input from a different stream—perhaps
opening a FileInputStream to read from a file. The fields of this class define the server
to which it sends data, the port on that server, and the DatagramSocket that does the
sending, all set in the single constructor. The DatagramSocket is connected to the remote
server to make sure all datagrams received were in fact sent by the right server. It’s rather
unlikely that some other server on the Internet is going to bombard this particular port
with extraneous data, so this is not a big flaw. However, it’s a good habit to make sure
that the packets you receive come from the right place, especially if security is a concern.

The run() method processes user input a line at a time. To do this, the BufferedRead
er userInput is chained to System.in. An infinite loop reads lines of user input. Each
line is stored in theLine. A period on a line by itself signals the end of user input and
breaks out of the loop. Otherwise, the bytes of data are stored in the data array using
the getBytes() method from java.lang.String. Next, the data array is placed in the
payload part of the DatagramPacket output, along with information about the server,
the port, and the data length. This packet is then sent to its destination by socket. This
thread then yields to give other threads an opportunity to run.

Example 12-13. The SenderThread class

import java.io.*;
import java.net.¥;

class SenderThread extends Thread {

private InetAddress server;

private DatagramSocket socket;

private int port;

private volatile boolean stopped = false;

SenderThread(DatagramSocket socket, InetAddress address, int port) {
this.server = address;
this.port = port;
this.socket = socket;
this.socket.connect(server, port);

3

Some Useful Applications | 429

public void halt() {
this.stopped = true;
}

public void run() {
try {
BufferedReader userInput
= new BufferedReader(new InputStreamReader(System.in));
while (true) {
if (stopped) return;
String thelLine = userInput.readlLine();
if (theLine.equals(".")) break;
byte[] data = thelLine.getBytes("UTF-8");
DatagramPacket output
= new DatagramPacket(data, data.length, server, port);
socket.send(output);
Thread.yield();
}
} catch (IOException ex) {
System.err.println(ex);
}
}
}

The RecetverThread class shown in Example 12-14 waits for datagrams to arrive from
the network. When a datagram is received, it is converted to a String and printed on
System.out for display to the user. A more advanced echo client could include an option
to send the output elsewhere.

This class has two fields. The more important is the DatagramSocket, theSocket, which
must be the same DatagramSocket used by the SenderThread. Data arrives on the port
used by that DatagramSocket; any other DatagramSocket would not be allowed to con-
nect to the same port. The second field, stopped, is a boolean used to halt this thread
without invoking the deprecated stop() method.

The run() method is an infinite loop that uses socket’s receive() method to wait for
incoming datagrams. When an incoming datagram appears, it is converted intoa String
with the same length as the incoming data and printed on System.out. As in the input
thread, this thread then yields to give other threads an opportunity to execute.
Example 12-14. The ReceiverThread class

import java.io.*;
import java.net.¥*;

class ReceiverThread extends Thread {

private DatagramSocket socket;

430 | Chapter12:UDP

private volatile boolean stopped = false;

ReceiverThread(DatagramSocket socket) {
this.socket = socket;

}

public void halt() {
this.stopped = true;
}

public void run() {
byte[] buffer = new byte[65507];
while (true) {
if (stopped) return;
DatagramPacket dp = new DatagramPacket(buffer, buffer.length);

try {
socket.receive(dp);
String s = new String(dp.getData(), 0, dp.getLength(), "UTF-8");
System.out.println(s);
Thread.yield();

} catch (IOException ex) {
System.err.println(ex);

}

}
}
}

You can run the echo client on one machine and connect to the echo server on a second
machine to verify that the network is functioning properly between them.

DatagramChannel

The DatagramChannel class is used for nonblocking UDP applications, in the same way
as SocketChannel and ServerSocketChannel are used for nonblocking TCP applica-
tions. Like SocketChannel and ServerSocketChannel, DatagramChannel is a subclass
of SelectableChannel that can be registered with a Selector. This is useful in servers
where one thread can manage communications with multiple clients. However, UDP is
by its nature much more asynchronous than TCP so the net effect is smaller. In UDP, a
single datagram socket can process requests from multiple clients for both input and
output. What the DatagramChannel class adds is the ability to do this in a nonblocking
fashion, so methods return quickly if the network isn’t immediately ready to receive or
send data.

Using DatagramChannel

DatagramChannel is a near-complete alternate API for UDP. In Java 6 and earlier, you
still need to use the DatagramSocket class to bind a channel to a port. However, you do

DatagramChannel | 431

not have to use it thereafter, and you don’t have to use it all in Java 7 and later. Nor do
you ever use DatagramPacket. Instead, you read and write byte buffers, just as you do
with a SocketChannel.

Opening a socket

The java.nio.channels.DatagramChannel class does not have any public construc-
tors. Instead, you create a new DatagramChannel object using the static open() method
For example:

DatagramChannel channel = DatagramChannel.open();

This channel is not initially bound to any port. To bind it, you access the channel’s peer
DatagramSocket object using the socket() method. For example, this binds a channel
to port 3141:

SocketAddress address = new InetSocketAddress(3141);
DatagramSocket socket = channel.socket();
socket.bind(address);

Java 7 adds a convenient bind() method directly to DatagramChannel, so you don’t have
to use a DatagramSocket at all. For example:

SocketAddress address = new InetSocketAddress(3141);
channel.bind(address);

Receiving

The receive() method reads one datagram packet from the channel into a ByteBuffer.
It returns the address of the host that sent the packet:

public SocketAddress receive(ByteBuffer dst) throws IOException

If the channel is blocking (the default), this method will not return until a packet has
been read. If the channel is nonblocking, this method will immediately return null if no
packet is available to read.

If the datagram packet has more data than the buffer can hold, the extra data is thrown
away with no notification of the problem. You do not receive a BufferOverflowExcep
tion or anything similar. Again you see that UDP is unreliable. This behavior introduces
an additional layer of unreliability into the system. The data can arrive safely from the
network and still be lost inside your own program.

Using this method, you can reimplement the discard server to log the host sending the
data as well as the data sent. Example 12-15 demonstrates. It avoids the potential loss of
data by using a buffer that’s big enough to hold any UDP packet and clearing it before
it’s used again.

Example 12-15. A UDPDiscardServer based on channels

import java.ilo.*;
import java.net.*;

432 | Chapter12:UDP

import java.nio.*;
import java.nio.channels.*;

public class UDPDiscardServerWithChannels {

public final static int PORT = 9;
public final static int MAX_PACKET_SIZE = 65507;

public static void main(String[] args) {

try {
DatagramChannel channel = DatagramChannel.open();
DatagramSocket socket = channel.socket();
SocketAddress address = new InetSocketAddress(PORT);
socket.bind(address);
ByteBuffer buffer = ByteBuffer.allocateDirect(MAX_PACKET_SIZE);
while (true) {
SocketAddress client = channel.receive(buffer);
buffer.flip();
System.out.print(client + " says ");
while (buffer.hasRemaining()) System.out.write(buffer.get());
System.out.println();
buffer.clear();
}
} catch (IOException ex) {
System.err.println(ex);

}

3
}

Sending

The send() method writes one datagram packet into the channel from a ByteBuffer
to the address specified as the second argument:

public int send(ByteBuffer src, SocketAddress target) throws IOException

The source ByteBuffer can be reused if you want to send the same data to multiple
clients. Just don’t forget to rewind it first.

The send() method returns the number of bytes written. This will either be the number
of bytes that were available in the buffer to be written or zero, nothing in between. It is
zero if the channel is in nonblocking mode and the data can’t be sent immediately.
Otherwise, if the channel is not in nonblocking mode, send() simply waits to return
until it can send all the data in the buffer.

Example 12-16 demonstrates with a simple echo server based on channels. Just as it did
in Example 12-15, the receive() method reads a packet. However, this time, rather
than logging the packet on System.out, it returns the same data to the client that sent
it.

DatagramChannel | 433

Example 12-16. A UDPEchoServer based on channels

import java.io.*;
import java.net.¥;
import java.nio.*;

import java.nio.channels.*;
public class UDPEchoServerWithChannels {

public final static int PORT = 7;
public final static int MAX_PACKET_SIZE = 65507;

public static void main(String[] args) {

try {
DatagramChannel channel = DatagramChannel.open();
DatagramSocket socket = channel.socket();
SocketAddress address = new InetSocketAddress(PORT);
socket.bind(address);
ByteBuffer buffer = ByteBuffer.allocateDirect(MAX_PACKET_SIZE);
while (true) {
SocketAddress client = channel.receive(buffer);
buffer.flip();
channel.send(buffer, client);
buffer.clear();

}
} catch (IOException ex) {
System.err.println(ex);

}
}
}

This program is iterative, blocking, and synchronous. This is much less of a problem
for UDP-based protocols than for TCP protocols. The unreliable, packet-based, con-
nectionless nature of UDP means that the server at most has to wait for the local buffer
to clear. It does not wait for the client to be ready to receive data. There’s much less
opportunity for one client to get held up behind a slower client.

Connecting

Once you've opened a datagram channel, you connect it to a particular remote address
using the connect() method:
SocketAddress remote = new InetSocketAddress("time.nist.gov", 37);
channel.connect(remote);
The channel will only send data to or receive data from this host. Unlike the con
nect() method of SocketChannel, this method alone does not send or receive any
packets across the network because UDP is a connectionless protocol. It merely estab-
lishes the host it will send packets to when there’s data ready to be sent. Thus, con
nect() returns fairly quickly, and doesn’t block in any meaningful sense. There’s no

434 | Chapter12:UDP

need here for a finishConnect() or isConnectionPending() method. There is an
isConnected() method that returns true if and only if the DatagramSocket is connec-

ted:
public boolean isConnected()

This tells you whether the DatagramChannel is limited to one host. Unlike SocketChan
nel, a DatagramChannel doesn’t have to be connected to transmit or receive data.

Finally, the disconnect() method breaks the connection:
public DatagramChannel disconnect() throws IOException

This doesn’t really close anything because nothing was really open in the first place. It
just allows the channel to be connected to a different host in the future.

Reading

Besides the special-purpose receive() method, DatagramChannel has the usual three
read() methods:

public int read(ByteBuffer dst) throws IOException

public long read(ByteBuffer[] dsts) throws IOException

public long read(ByteBuffer[] dsts, int offset, int length)

throws IOException

However, these methods can only be used on connected channels. That is, before in-
voking one of these methods, you must invoke connect() to glue the channel to a
particular remote host. This makes them more suitable for use with clients that know
who they’ll be talking to than for servers that must accept input from multiple hosts at
the same time that are normally not known prior to the arrival of the first packet.

Each of these three methods only reads a single datagram packet from the network. As
much data from that datagram as possible is stored in the argument ByteBuffer(s).
Each method returns the number of bytes read or -1 if the channel has been closed.
This method may return 0 for any of several reasons, including:

o The channel is nonblocking and no packet was ready.

o A datagram packet contained no data.
o The buffer is full.

As with the receive() method, if the datagram packet has more data than the Byte
Buffer(s) can hold, the extra data is thrown away with no notification of the problem.
You do not receive a BufferOverflowException or anything similar.

Writing

Naturally, DatagramChannel has the three write methods common to all writable, scat-
tering channels, which can be used instead of the send() method:

DatagramChannel | 435

public int write(ByteBuffer src) throws IOException

public long write(ByteBuffer[] dsts) throws IOException

public long write(ByteBuffer[] dsts, int offset, int length)
throws IOException

These methods can only be used on connected channels; otherwise, they don’t know
where to send the packet. Each of these methods sends a single datagram packet over
the connection. None of these methods are guaranteed to write the complete contents
of the buffer(s). Fortunately, the cursor-based nature of buffers enables you to easily call
this method again and again until the buffer is fully drained and the data has been
completely sent, possibly using multiple datagram packets. For example:

while (buffer.hasRemaining() && channel.write(buffer) != -1) ;

You can use the read and write methods to implement a simple UDP echo client. On
the client side, it’s easy to connect before sending. Because packets may be lost in transit
(always remember UDP is unreliable), you don’t want to tie up the sending while waiting
to receive a packet. Thus, you can take advantage of selectors and nonblocking I/O.
These work for UDP pretty much exactly like they worked for TCP in Chapter 11. This
time, though, rather than sending text data, let’s send one hundred ints from 0 to 99.
You'll print out the values returned so it will be easy to figure out if any packets are being
lost. Example 12-17 demonstrates.

Example 12-17. A UDP echo client based on channels

import java.io.*;

import java.net.*;

import java.nio.*;

import java.nio.channels.*;
import java.util.*;

public class UDPEchoClientWithChannels {

public final static int PORT = 7;
private final static int LIMIT = 100;

public static void main(String[] args) {

SocketAddress remote;

try {
remote = new InetSocketAddress(args[0], PORT);

} catch (RuntimeException ex) {
System.err.println("Usage: java UDPEchoClientWithChannels host");
return;

}
try (DatagramChannel channel = DatagramChannel.open()) {
channel.configureBlocking(false);

channel.connect(remote);

Selector selector = Selector.open();

436 | Chapter12:UDP

channel.register(selector, SelectionKey.OP_READ | SelectionKey.OP_WRITE);

ByteBuffer buffer = ByteBuffer.allocate(4);
int n = 0;
int numbersRead = 0;
while (true) {
if (numbersRead == LIMIT) break;
// wait one minute for a connection
selector.select(60000);
Set<SelectionKey> readyKeys = selector.selectedKeys();
if (readyKeys.isEmpty() && n == LIMIT) {
// All packets have been written and it doesn't look like any
// more are will arrive from the network
break;
}
else {
Iterator<SelectionKey> iterator = readyKeys.iterator();
while (iterator.hasNext()) {
SelectionKey key = (SelectionKey) iterator.next();
iterator.remove();
if (key.isReadable()) {
buffer.clear();
channel.read(buffer);
buffer.flip();
int echo = buffer.getInt();
System.out.println("Read: "
numbersRead++;

+ echo);

}
if (key.isWritable()) {
buffer.clear();
buffer.putInt(n);
buffer.flip();
channel.write(buffer);
System.out.println("Wrote:
n++;
if (n == LIMIT) {
// All packets have been written; switch to read-only mode
key.interestOps(SelectionKey.OP_READ);

+n);

}
}
}
}

}

System.out.println("Echoed " + numbersRead + " out of " + LIMIT +
" sent");

System.out.println("Success rate: " + 100.0 * numbersRead / LIMIT +
%)

} catch (IOException ex) {
System.err.println(ex);
}
}
}

DatagramChannel

437

There is one major difference between selecting TCP channels and selecting datagram

channels.

Because datagram channels are truly connectionless (despite the connect()

method), you need to notice when the data transfer is complete and shut down. In this
example, youassume the data is finished when all packets have been sent and one minute
has passed since the last packet was received. Any expected packets that have not been
received by this point are assumed to be lost in the ether.

A typical run produced output like this:

Wrote:

Read:

Wrote:

0
0
1

Wrote: 2

Read:

Wrote:

Read:

Wrote:
Wrote:
Wrote:
Wrote:
Wrote:
Wrote:
Wrote:
Wrote:
Wrote:
Wrote:
Wrote:
Wrote:
Wrote:
Wrote:
Wrote:
Wrote:
Wrote:
Wrote:
Wrote:

Read:

Wrote:

Wrote:

Read:

Wrote:

Read:

Wrote:

Read:
Read:
Read:
Read:
Read:

97
72

98
73

99
75
76

97
98
99

Echoed 92 out of 100 sent
Success rate: 92.0%

438 | Chapter12:UDP

Connecting to a remote server a couple of miles and seven hops away (according to
traceroute), I saw between 90% and 98% of the packets make the round trip.

Closing

Just as with regular datagram sockets, a channel should be closed when you’re done with
it to free up the port and any other resources it may be using:

public void close() throws IOException

Closing an already closed channel has no effect. Attempting to write data to or read data
from a closed channel throws an exception. If youre uncertain whether a channel has
been closed, check with isOpen():

public boolean isOpen()

This returns false if the channel is closed, true if it's open.

Like all channels, in Java 7 DatagramChannel implements AutoCloseable so you can
use it in try-with-resources statements. Prior to Java 7, close it in a finally block if you
can. By now the pattern should be quite familiar. In Java 6 and earlier:

DatagramChannel channel = null;
try {
channel = DatagramChannel.open();
// Use the channel...
} catch (IOException ex) {
// handle exceptions...
} finally {
if (channel != null) {
try {
channel.close();
} catch (IOException ex) {
// ignore
}
}
}

and in Java 7 and later:

try (DatagramChannel channel = DatagramChannel.open()) {
// Use the channel...

} catch (IOException ex) {
// handle exceptions...

}
Socket Options // Java 7

In Java 7 and later, DatagramChannel supports eight socket options listed in Table 12-1.

DatagramChannel | 439

Table 12-1. Socket options supported by datagram sockets

Option Type Constant Purpose
SO_SNDBUF StandardSocketOptions. Integer Size of the buffer used for
sending datagram packets

SO_RCVBUF StandardSocketOp Integer Size of the buffer used for
tions.SO_RCVBUF receiving datagram packets

SO_REUSEADDR StandardSocketOptions.SO_RE Boolean Enable/disable address reuse
USEADDR

SO_BROADCAST StandardSocketOp Boolean Enable/disable broadcast
tions.SO_BROADCAST messages

IP_TOS StandardSocketOptions.IP_TOS Integer Traffic class

IP_MULTICAST_IF StandardSocketOptions.IP_MUL NetworkInter Local networkinterface to use for
TICAST_IF face multicast

IP_MULTICAST_TTL ~ StandardSocketOptions.IP_MUL Integer Time-to-live value for multicast
TICAST_TTL datagrams

IP_MULTICAST_LOOP StandardSocketOptions.IP_MUL Boolean Enable/disable loopback of
TICAST_LOOP multicast datagrams

The first five options have the same meanings as they do for datagram sockets as de-
scribed in “Socket Options” on page 417. The last three are used by multicast sockets,
which we’ll take up in Chapter 13.

These are inspected and configured by just three methods:

public <T> DatagramChannel setOption(SocketOption<T> name, T value)
throws IOException

public <T> T getOption(SocketOption<T> name) throws IOException

public Set<SocketOption<?>> supportedOptions()

The supportedOptions() method lists the available socket options. The getOption()
method tells you the current value of any of these. And setOption() lets you change
the value. For example, suppose you want to send a broadcast message. SO_BROAD-
CAST is usually turned off by default, but you can switch it on like so:

try (DatagramChannel channel = DatagramChannel.open()) {
channel.setOption(StandardSocketOptions.SO_BROADCAST, true);
// Send the broadcast message...

} catch (IOException ex) {
// handle exceptions...

}

Example 12-18 opens a channel just to check the default values of these options.

Example 12-18. Default socket option values

import java.ilo.IOException;
import java.net.SocketOption;
import java.nio.channels.DatagramChannel;

440 | Chapter12:UDP

public class DefaultSocketOptionValues {

public static void main(String[] args) {
try (DatagramChannel channel = DatagramChannel.open()) {
for (SocketOption<?> option : channel.supportedOptions()) {
System.out.println(option.name() + ": " + channel.getOption(option));
}
} catch (IOException ex) {
ex.printStackTrace();
}
}
}

Here’s the output I got on my Mac:

IP_MULTICAST_TTL: 1
SO_BROADCAST: false
SO_REUSEADDR: false
SO_RCVBUF: 196724
IP_MULTICAST_LOOP: true
SO_SNDBUF: 9216
IP_MULTICAST_IF: null
IP_TOS: 0

It’s a bit surprising that my send buffer is so much larger than my receive buffer.

DatagramChannel | 441

CHAPTER 13
IP Multicast

The sockets in the previous chapters are unicast: they provide point-to-point commu-
nication. Unicast sockets create a connection with two well-defined endpoints; there is
one sender and one receiver and, although they may switch roles, at any given time it
is easy to tell which is which. However, although point-to-point communications serve
many, if not most needs (people have engaged in one-on-one conversations for millen-
nia), many tasks require a different model. For example, a television station broadcasts
data from one location to every point within range of its transmitter. The signal reaches
every television set, whether or not it’s turned on and whether or not it’s tuned to that
particular station. Indeed, the signal even reaches homes with cable boxes instead of
antennas and homes that don’t have a television. This is the classic example of broad-
casting. It’s indiscriminate and quite wasteful of both the electromagnetic spectrum and
power.

Videoconferencing, by contrast, sends an audio-video feed to a select group of people.
Usenet news is posted at one site and distributed around the world to hundreds of
thousands of people. DNS router updates travel from the site, announcing a change to
many other routers. However, the sender relies on the intermediate sites to copy and
relay the message to downstream sites. The sender does not address its message to every
host that will eventually receive it. These are examples of multicasting, although they’re
implemented with additional application layer protocols on top of TCP or UDP. These
protocols require fairly detailed configuration and intervention by human beings. For
instance, to join Usenet you have to find a site willing to send news to you and relay
your outgoing news to the rest of the world. To add you to the Usenet feed, the news
administrator of the news relay has to specifically add your site to their news config
files. However, recent developments with the network software in most major operating
systems as well as Internet routers have opened up a new possibility—true multicasting,
in which the routers decide how to efficiently move a message to individual hosts. In
particular, the initial router sends only one copy of the message to a router near the
receiving hosts, which then makes multiple copies for different recipients at or closer

443

to the destinations. Internet multicasting is built on top of UDP. Multicasting in Java
uses the DatagramPacket class introduced in Chapter 12, along with a new Multicast
Socket class.

Multicasting

Multicasting is broader than unicast, point-to-point communication but narrower and
more targeted than broadcast communication. Multicasting sends data from one host
to many different hosts, but not to everyone; the data only goes to clients that have
expressed an interest by joining a particular multicast group. In a way, this is like a public
meeting. People can come and go as they please, leaving when the discussion no longer
interests them. Before they arrive and after they have left, they don’t need to process the
information at all: it just doesn’t reach them. On the Internet, such “public meetings”
are best implemented using a multicast socket that sends a copy of the data to a location
(or a group of locations) close to the parties that have declared an interest in the data.
In the best case, the data is duplicated only when it reaches the local network serving
the interested clients: the data crosses the Internet only once. More realistically, several
identical copies of the data traverse the Internet; but, by carefully choosing the points
at which the streams are duplicated, the load on the network is minimized. The good
news is that programmers and network administrators aren’t responsible for choosing
the points where the data is duplicated or even for sending multiple copies; the Internet’s
routers handle all that.

IP also supports broadcasting, but the use of broadcasts is strictly limited. Protocols
require broadcasts only when there is no alternative; and routers limit broadcasts to the
local network or subnet, preventing broadcasts from reaching the Internet at large. Even
a few small global broadcasts could bring the Internet to its knees. Broadcasting high-
bandwidth data such as audio, video, or even text and still images is out of the question.
A single email spam that goes to millions of addresses is bad enough. Imagine what
would happen ifa real-time video feed were copied to all billion+ Internet users, whether
they wanted to watch it or not.

However, there’s a middle ground between point-to-point communications and broad-
casts to the whole world. There’s no reason to send a video feed to hosts that aren’t
interested in it; we need a technology that sends data to the hosts that want it, without
bothering the rest of the world. One way to do this is to use many unicast streams. If
1,000 clients want to watch a BBC live stream, the data is sent a thousand times. This is
inefficient, since it duplicates data needlessly, butit’s orders-of-magnitude more efficient
than broadcasting the data to every host on the Internet. Still, if the number of interested
clients is large enough, you will eventually run out of bandwidth or CPU power—prob-
ably sooner rather than later.

Another approach to the problem is to create static connection trees. This is the solution
employed by Usenet news and some conferencing systems. Data is fed from the origi-

444 | Chapter 13:IP Multicast

nating site to other servers, which replicate it to still other servers, which eventually
replicate it to clients. Each client connects to the nearest server. This is more efficient
than sending everything to all interested clients via multiple unicasts, but the scheme
is kludgy and beginning to show its age. New sites need to find a place to hook into the
tree manually. The tree does not necessarily reflect the best possible topology at any one
time, and servers still need to maintain many point-to-point connections to their clients,
sending the same data to each one. It would be better to allow the routers in the Internet
to dynamically determine the best possible routes for transmitting distributed infor-
mation and to replicate data only when absolutely necessary. This is where multicasting
comes in.

For example, if youre multicasting video from New York and 20 people attached to one
LAN are watching the show in Los Angeles, the feed will be sent to that LAN only once.
If 50 more people are watching in San Francisco, the data stream will be duplicated
somewhere (let’s say Fresno) and sent to the two cities. If a hundred more people are
watching in Houston, another data stream will be sent there (perhaps from St. Louis);
see Figure 13-1. The data has crossed the Internet only three times—not the 170 times
that would be required by point-to-point connections, or the millions of times that
would be required by a true broadcast. Multicasting is halfway between the point-to-
point communication common to the Internet and the broadcast model of television
and it’s more efficient than either. When a packet is multicast, it is addressed to a mul-
ticast group and sent to each host belonging to the group. It does not go to a single host
(as in unicasting), nor does it go to every host (as in broadcasting). Either would be too
inefficient.

Multicasting | 445

San Francisco

Fresno

. New York
San Francisco
St. Louis

Los Angeles

Houston

Figure 13-1. Multicast from New York to San Francisco, Los Angeles, and Houston

When people talk about multicasting, audio and video are the first applications that
come to mind. Indeed, the BBC has been running a multicast trial covering both TV
and radio for several years now, though ISP participation has been regrettably limited.
However, audio and video are only the tip of the iceberg. Other possibilities include
multiplayer games, distributed filesystems, massively parallel computing, multiperson
conferencing, database replication, content delivery networks, and more. Multicasting
can be used to implement name services and directory services that don't require the
client to know a server’s address in advance; to look up a name, a host could multicast
its request to some well-known address and wait until a response is received from the
nearest server. Apple’s Bonjour (a.k.a. Zeroconf) and Apache’s River both use IP mul-
ticasting to dynamically discover services on the local network.

Multicasting has been designed to fit into the Internet as seamlessly as possible. Most
of the work is done by routers and should be transparent to application programmers.
An application simply sends datagram packets to a multicast address, which isn’t fun-
damentally different from any other IP address. The routers make sure the packet is
delivered to all the hosts in the multicast group. The biggest problem is that multicast
routers are not yet ubiquitous; therefore, you need to know enough about them to find
out whether multicasting is supported on your network. For instance, although the BBC
has been multicasting for several years now, their multicast streams are only accessible
to subscribers of about a dozen relatively small British ISPs. In practice, multicasting is

446 | Chapter 13:IP Multicast

http://www.bbc.co.uk/multicast/
https://river.apache.org/

much more commonly used behind the firewall within a single organization than across
the global Internet.

As far as the application itself, you need to pay attention to an additional header field
in the datagrams called the Time-To-Live (TTL) value. The TTL is the maximum num-
ber of routers that the datagram is allowed to cross. Once the packet has crossed that
many routers, it is discarded. Multicasting uses the TTL as an ad hoc way to limit how
far a packet can travel. For example, you don’t want packets for a friendly on-campus
game of Dogtfight reaching routers on the other side of the world. Figure 13-2 shows
how TTLs limit a packet’s spread.

(ampus p 0‘) World
A s 3.)
source
\ 1) ‘ | | :
5 s 8 s 3 s 2o 1)
‘ 4) = 9 1) ‘:,' packet dies

-.'. - ~ :.' g .._"‘ :'.')

N3

‘I\

.......... ‘/ “ 9)
o

Figure 13-2. Coverage of a packet with a TTL of five

Multicast Addresses and Groups

A multicast address is the shared address of a group of hosts called a multicast group.
We'll talk about the address first. IPv4 multicast addresses are IP addresses in the CIDR
group 224.0.0.0/4 (i.e., they range from 224.0.0.0 to 239.255.255.255). All addresses in
this range have the binary digits 1110 as their first four bits. IPv6 multicast addresses
are in the CIDR group ff00::/8 (i.e., they all start with the byte OxFE or 11111111 in
binary).

Multicasting | 447

Like any IP address, a multicast address can have a hostname. For example, the multicast
address 224.0.1.1 (the address of the Network Time Protocol distributed service) is
assigned the name ntp.mcast.net.

A multicast group is a set of Internet hosts that share a multicast address. Any data sent
to the multicast address is relayed to all the members of the group. Membership in a
multicast group is open; hosts can enter or leave the group at any time. Groups can be
either permanent or transient. Permanent groups have assigned addresses that remain
constant, whether or not there are any members in the group. However, most multicast
groups are transient and exist only as long as they have members. All you have to do to
create anew multicast group is picka random address from 225.0.0.0 to 238.255.255.255,
construct an InetAddress object for that address, and start sending it data.

The TANA is responsible for handing out permanent multicast addresses as needed. So
far, a few hundred have been specifically assigned. Link-local multicast addresses begin
with 224.0.0 (i.e., addresses from 224.0.0.0 to 224.0.0.255) and are reserved for routing
protocols and other low-level activities, such as gateway discovery and group member-
ship reporting. For example, all-systems.mcast.net, 224.0.0.1, is a multicast group that
includes all systems on the local subnet. Multicast routers never forward datagrams with
destinations in this range. Table 13-1 lists a few of these assigned addresses.

Table 13-1. Link-local multicast addresses

Domain name IP address Purpose
BASE-ADDRESS.MCAST.NET 224.0.0.0 The reserved base address. This is never assigned to any multicast
group.
ALL-SYSTEMS.MCAST.NET 224.0.0.1 All systems on the local subnet.
ALL-ROUTERS MCAST.NET 224.0.0.2 All routers on the local subnet.
DVMRPMCAST.NET 224.0.0.4 All Distance Vector Multicast Routing Protocol (DVMRP) routers on this
subnet.
MOBILE-AGENTS MCAST.NET 224.0.0.11 Mobile agents on the local subnet.
DHCP-AGENTS.MCASTNET 224.0.0.12 This multicast group allows a client to locate a Dynamic Host
Configuration Protocol (DHCP) server or relay agent on the local subnet.
RSVP- 224.0.0.14 RSVP encapsulation on this subnet. RSVP stands for Resource
ENCAPSULATION MCAST.NET reSerVation setup Protocol, an effort to allow people to reserve a
guaranteed amount of Internet bandwidth in advance for an event.
VRRPMCAST.NET 224.0.0.18 Virtual Router Redundancy Protocol (VRRP) Routers
224.0.0.35 DXCluster is used to announce foreign amateur (DX) stations.
224.0.0.36 Digital Transmission Content Protection (DTCP), a digital restrictions

management (DRM) technology that encrypts interconnections
between DVD players, televisions, and similar devices.

224.0.0.37-224.0.0.68 zeroconf addressing
224.0.0.106 Multicast Router Discovery

448 | Chapter 13:IP Multicast

http://www.dxcluster.org/
http://bit.ly/17EaPLL

Domain name IP address Purpose

224.0.0.112 Multipath Management Agent Device Discovery

224.0.0.713 Qualcomm’s AllJoyn

224.0.0.114 Inter RFID Reader Protocol

224.0.0.251 Multicast DNS self assigns and resolves host names for multicast
addresses.

224.0.0.252 Link-local Multicast Name Resolution, a precursor of mDNS, allows

nodes ot self-assign domain names strictly for the local network, and
to resolve such domain names on the local network.

224.0.0.253 Teredo is used to tunnel IPv6 over IPv4. Other Teredo clients on the
same |Pv4 subnet respond to this multicast address.

224.0.0.254 Reserved for experimentation.

Permanently assigned multicast addresses that extend beyond the local subnet begin
with 224.1. or 224.2. Table 13-2 lists a few of these permanent addresses. A few blocks
of addresses ranging in size from a few dozen to a few thousand addresses have also
been reserved for particular purposes. The complete list is available from iana.org,
though you should note that it contains many now defunct services, protocols, and
companies. The remaining 248 million multicast addresses can be used on a temporary
basis by anyone who needs them. Multicast routers (mrouters for short) are responsible
for making sure that two different systems don't try to use the same address at the same
time.

Table 13-2. Common permanent multicast addresses

Domain name IP address Purpose

NTPMCASTNET 224.0.1.1 The Network Time Protocol.

NSS.MCASTNET 224.0.1.6 The Name Service Server.

AUDIONEWS.MCAST.NET 224.0.1.7 Audio news multicast.

MTPMCASTNET 224.0.1.9 The Multicast Transport Protocol.

IETF-1-LOW-AUDIO MCASTNET ~ 224.0.1.10 Channel 1 of low-quality audio from IETF meetings.
IETF-1-AUDIO.MCAST.NET 224.0.1.11 Channel 1 of high-quality audio from IETF meetings.
IETF-1-VIDEO.MCAST.NET 224.0.1.12 Channel 1 of video from IETF meetings.
IETF-2-LOW-AUDIO MCASTNET ~ 224.0.1.13 Channel 2 of low-quality audio from IETF meetings.
IETF-2-AUDIO.MCAST.NET 224.0.1.14 Channel 2 of high-quality audio from IETF meetings.
IETF-2-VIDEO.MCAST.NET 224.0.1.15 Channel 2 of video from IETF meetings.

MLOADD MCASTNET 224.0.1.19 MLOADD measures the traffic load through one or more network

interfaces over a number of seconds. Multicasting is used to
communicate between the different interfaces being measured.

EXPERIMENTMCASTNET 224.0.1.20 Experiments.

224.0.23.178 JDP Java Discovery Protocol, used to find manageable JVMs on
the network.

Multicasting | 449

https://tools.ietf.org/html/rfc6762
http://bit.ly/1djewsm
http://bit.ly/19Y00nU
http://bit.ly/multicast-registry

Domain name IP address Purpose

MICROSOFT.MCAST.NET 224.0.1.24 Used by Windows Internet Name Service (WINS) servers tolocate
one another.
MTRACEMCAST.NET 224.0.1.32 A multicast version of traceroute.
JINI-ANNOUNCEMENTMCASTNET -~ 224.0.1.84 JINI announcements.
JINI-REQUEST.MCASTNET 224.0.1.85 JINI requests.
224.0.1.143 Emergency Managers Weather Information Network.

224.2.0.0-224.2.255.255 The Multicast Backbone on the Internet (MBONE) addresses are
reserved for multimedia conference calls (i.e., audio, video,
whiteboard, and shared web browsing between many people).

224222 Port 9875 on this address is used to broadcast the currently
available MBONE programming. You can look at this with the X
Window utility sdr or the Windows/Unix multikit program.

239.0.0.0-239.255.255.255 Organization local scope, in contrast to TTL scope, uses different
ranges of multicast addresses to constrain multicast traffic to a
particular region or group of routers. For example, when a
Universal Plug and Play (UPnP) device joins a network, it sends
an HTTPU (HTTP over UDP) message to the multicast address
239.255.255.250 on port 1900. The idea is to allow the possible
group membership to be established in advance without relying
on less-than-reliable TTL values.

Clients and Servers

When a host wants to send data to a multicast group, it puts that data in multicast
datagrams, which are nothing more than UDP datagrams addressed to a multicast
group. Multicast data is sent via UDP, which, though unreliable, can be as much as three
times faster than data sent via connection-oriented TCP. (If you think about it, multicast
over TCP would be next to impossible. TCP requires hosts to acknowledge that they
have received packets; handling acknowledgments in a multicast situation would be a
nightmare.) If youre developing a multicast application that can't tolerate data loss, it’s
your responsibility to determine whether data was damaged in transitand how to handle
missing data. For example, if you are building a distributed cache system, you might
simply decide to leave any files that don’t arrive intact out of the cache.

Earlier, I said that from an application programmer’s standpoint, the primary difference
between multicasting and using regular UDP sockets is that you have to worry about
the TTL value. This is a single byte in the IP header that takes values from 1 to 255; it
is interpreted roughly as the number of routers through which a packet can pass before
itis discarded. Each time the packet passes through a router, its TTL field is decremented
by at least one; some routers may decrement the TTL by two or more. When the TTL
reaches zero, the packet is discarded. The TTL field was originally designed to prevent
routing loops by guaranteeing that all packets would eventually be discarded. It prevents
misconfigured routers from sending packets back and forth to each other indefinitely.

450 | Chapter 13:IP Multicast

In IP multicasting, the TTL limits the multicast geographically. For example, a TTL
value of 16 limits the packet to the local area, generally one organization or perhaps an
organization and its immediate upstream and downstream neighbors. A TTL of 127,
however, sends the packet around the world. Intermediate values are also possible.
However, there is no precise way to map TTLs to geographical distance. Generally, the
farther away a site is, the more routers a packet has to pass through before reaching it.
Packets with small TTL values won't travel as far as packets with large TTL values.
Table 13-3 provides some rough estimates relating TTL values to geographical reach.
Packets addressed to a multicast group from 224.0.0.0 to 224.0.0.255 are never forwar-
ded beyond the local subnet, regardless of the TTL values used.

Table 13-3. Estimated TTL values for datagrams originating in the continental United
States

Destinations TTL value

The local host 0
The local subnet 1

The local campus—that is, the same side of the nearest Internet router—but on possibly different LANs 16

High-bandwidth sites in the same country, generally those fairly close to the backbone 32
All sites in the same country 48
All sites on the same continent 64
High-bandwidth sites worldwide 128
Al sites worldwide 255

Once the data has been stuffed into one or more datagrams, the sending host launches
the datagrams onto the Internet. This is just like sending regular (unicast) UDP data.
The sending host begins by transmitting a multicast datagram to the local network. This
packet immediately reaches all members of the multicast group in the same subnet. If
the Time-To-Live field of the packet is greater than 1, multicast routers on the local
network forward the packet to other networks that have members of the destination
group. When the packet arrives at one of the final destinations, the multicast router on
the foreign network transmits the packet to each host it serves that is a member of the
multicast group. If necessary, the multicast router also retransmits the packet to the next
routers in the paths between the current router and all its eventual destinations.

When data arrives at a host in a multicast group, the host receives it as it receives any
other UDP datagram—even though the packet’s destination address doesn’t match the
receiving host. The host recognizes that the datagram is intended for it because it belongs
to the multicast group to which the datagram is addressed, much as most of us accept
mail addressed to “Occupant,” even though none of us are named Mr. or Ms. Occupant.
The receiving host must be listening on the proper port, ready to process the datagram
when it arrives.

Multicasting | 451

Routers and Routing

Figure 13-3 shows one of the simplest possible multicast configurations: a single server
sending the same data to four clients served by the same router. A multicast socket sends
one stream of data over the Internet to the clients’ router; the router duplicates the
stream and sends it to each of the clients. Without multicast sockets, the server would
have to send four separate but identical streams of data to the router, which would route
each stream to a client. Using the same stream to send the same data to multiple clients
significantly reduces the bandwidth required on the Internet backbone.

Of course, real-world routes can be much more complex, involving multiple hierarchies
of redundant routers. However, the goal of multicast sockets is simple: no matter how
complex the network, the same data should never be sent more than once over any given
network segment. Fortunately, you don’t need to worry about routing issues. Just create
aMulticastSocket, have the socket join a multicast group, and stuff the address of the
multicast group in the DatagramPacket you want to send. The routers and the Multi
castSocket class take care of the rest.

with Multicast Sockets without Multicast Sockets

Clients

Router

Router

Server

Figure 13-3. With and without multicast sockets

The biggest restriction on multicasting is the availability of special multicast routers
(mrouters). Mrouters are reconfigured Internet routers or workstations that support
the IP multicast extensions. Many consumer-oriented ISPs quite deliberately do not
enable multicasting in their routers. In 2013, it is still possible to find hosts between
which no multicast route exists (i.e., there is no route between the hosts that travels
exclusively over mrouters).

452 | Chapter 13:IP Multicast

To send and receive multicast data beyond the local subnet, you need a multicast router.
Check with your network administrator to see whether your routers support multi-
casting. You can also try pinging all-routers.mcast.net . If any router responds, then your
network is hooked up to a multicast router:

% ping all-routers.mcast.net

all-routers.mcast.net is alive
This still may not allow you to send to or receive from every multicast-capable host on
the Internet. For your packets to reach any given host, there must be a path of multicast-
capable routers between your host and the remote host. Alternatively, some sites may
be connected by special multicast tunnel software that transmits multicast data over
unicast UDP that all routers understand. If you have trouble getting the examples in
this chapter to produce the expected results, check with your local network adminis-
trator or ISP to see whether multicasting is actually supported by your routers.

Working with Multicast Sockets

Enough theory. In Java, you multicast data using the java.net.MulticastSocket class,
a subclass of java.net.DatagramSocket:
public class MulticastSocket extends DatagramSocket
implements Closeable, AutoCloseable
As you would expect, MulticastSocket’s behavior is very similar to DatagramSocket’s:
you put your data in DatagramPacket objects that you send and receive with the Mul
ticastSocket. Therefore, I won't repeat the basics; this discussion assumes that you
already know how to work with datagrams. If you're jumping around in this book rather
than reading it cover to cover, now might be a good time to go back and read Chapter 12.

To receive data that is being multicast from a remote site, first create a MulticastSock
et with the MulticastSocket() constructor. As with other kinds of sockets, you need
to know the port to listen on. This code fragment opens a MulticastSocket that listens
on port 2300:

MulticastSocket ms = new MulticastSocket(2300);
Next, join a multicast group using the MulticastSocket’s joinGroup() method:

InetAddress group = InetAddress.getByName('"224.2.2.2");

ms.joinGroup(group);
This signals the routers in the path between you and the server to start sending data
your way and tells the local host that it should pass you IP packets addressed to the
multicast group.

Once you've joined the multicast group, you receive UDP data just as you would with
aDatagramSocket. You create a DatagramPacket with a byte array that serves as a buffer

Working with Multicast Sockets | 453

for data and enter a loop in which you receive the data by calling the receive() method
inherited from the DatagramSocket class:

byte[] buffer = new byte[8192];

DatagramPacket dp = new DatagramPacket(buffer, buffer.length);

ms.receive(dp);
When you no longer want to receive data, leave the multicast group by invoking the
socket’s LleaveGroup() method. You can then close the socket with the close() method
inherited from DatagramSocket:

ms.leaveGroup(group);
ms.close();

Sending data to a multicast address is similar to sending UDP data to a unicast address.
You do not need to join a multicast group to send data to it. You create a new Datagram
Packet, stuff the data and the address of the multicast group into the packet, and pass
it to the send() method:

InetAddress ia = InetAddress.getByName("experiment.mcast.net");
byte[] data = "Here's some multicast data\r\n".getBytes("UTF-8");
int port = 4000;

DatagramPacket dp = new DatagramPacket(data, data.length, ia, port);
MulticastSocket ms = new MulticastSocket();

ms.send(dp);

There is one caveat to all this: multicast sockets are a security hole big enough to drive
a small truck through. Consequently, untrusted code running under the control of a
SecurityManager is not allowed to do anything involving multicast sockets. Remotely
loaded code is normally only allowed to send datagrams to or receive datagrams from
the host it was downloaded from. However, multicast sockets don’t allow this sort of
restriction to be placed on the packets they send or receive. Once you send data to a
multicast socket, you have very limited and unreliable control over which hosts receive
that data. Consequently, most environments that execute remote code take the conser-
vative approach of disallowing all multicasting.

The Constructors

The constructors are simple. You can either pick a port to listen on or let Java assign an
anonymous port for you:

public MulticastSocket() throws SocketException
public MulticastSocket(int port) throws SocketException
public MulticastSocket(SocketAddress bindAddress) throws IOException

For example:

MulticastSocket ms1 = new MulticastSocket();
MulticastSocket ms2 = new MulticastSocket(4000);

454 | Chapter 13:IP Multicast

SocketAddress address = new InetSocketAddress("192.168.254.32", 4000);
MulticastSocket ms3 = new MulticastSocket(address);
All three constructors throw a SocketException if the Socket can't be created. If you
don’t have sufficient privileges to bind to the port or if the port you're trying to bind to
is already in use, then a Socket cannot be created. Note that because a multicast socket
is a datagram socket as far as the operating system is concerned, a MulticastSocket
cannot occupy a port already occupied by a DatagramSocket, and vice versa.

You can pass null to the constructor to create an unbound socket, which will be con-
nected later with the bind() method. This is useful when setting socket options that can
only be set before the socket is bound. For example, this code fragment creates a mul-
ticast socket with SO_REUSEADDR disabled (that option is normally enabled by de-
fault for multicast sockets):

MulticastSocket ms = new MulticastSocket(null);

ms.setReuseAddress(false);

SocketAddress address = new InetSocketAddress(4000);
ms.bind(address);

Communicating with a Multicast Group

Once a MulticastSocket has been created, it can perform four key operations:

1. Join a multicast group.
2. Send data to the members of the group.
3. Receive data from the group.

4. Leave the multicast group.

The MulticastSocket class has methods for operations 1 and 4. No new methods are
required to send or receive data. The send() and receive() methods of the superclass,
DatagramSocket, suffice for those operations. You can perform these operations in any
order, with the exception that you must join a group before you can receive data from
it. You do not need to join a group to send data to it, and you can freely intermix sending
and receiving data.

Joining groups

To join a group, pass an InetAddress or a SocketAddress for the multicast group to
the joinGroup() method:
public void joinGroup(InetAddress address) throws IOException

public void joinGroup(SocketAddress address, NetworkInterface interface)
throws IOException

Working with Multicast Sockets | 455

Once you've joined a multicast group, you receive datagrams exactly as you receive
unicast datagrams, as shown in the previous chapter. That is, you set up a Datagram
Packet as a buffer and pass it into this socket’s receive() method. For example:

try {
MulticastSocket ms = new MulticastSocket(4000);

InetAddress ia = InetAddress.getByName('"224.2.2.2");
ms.joinGroup(ia);
byte[] buffer = new byte[8192];
while (true) {
DatagramPacket dp = new DatagramPacket(buffer, buffer.length);
ms.receive(dp);
String s = new String(dp.getData(), "8859_1");
System.out.println(s);

}
} catch (IOException ex) {
System.err.println(ex);

}

If the address that you try to join is not a multicast address (if it is not between 224.0.0.0
and 239.255.255.255), the joinGroup() method throws an IOException.

A single MulticastSocket can join multiple multicast groups. Information about
membership in multicast groups is stored in multicast routers, not in the object. In this
case, youd use the address stored in the incoming datagram to determine which address
a packet was intended for.

Multiple multicast sockets on the same machine and even in the same Java program can
all join the same group. If so, each socket receives a complete copy of the data addressed
to that group that arrives at the local host.

A second argument allows you to join a multicast group only on a specified local network
interface. For example, this code fragment attempts to join the group with IP address
224.2.2.2 on the network interface named “eth0”, if such an interface exists. If no such
interface exists, then it joins on all available network interfaces:

MulticastSocket ms = new MulticastSocket();
SocketAddress group = new InetSocketAddress("224.2.2.2", 40);
NetworkInterface ni = NetworkInterface.getByName("eth0");
if (ni !'= null) {
ms.joinGroup(group, ni);
} else {
ms.joinGroup(group);

}
Other than the extra argument specifying the network interface to listen from, this
behaves pretty much like the single-argument joinGroup() method. For instance, pass-
ing a SocketAddress object that does not represent a multicast group as the first argu-
ment throws an I0OException.

456 | Chapter 13:IP Multicast

Leaving groups and closing the connection

Call the leaveGroup() method when you no longer want to receive datagrams from the
specified multicast group, on either all or a specified network interface:

public void leaveGroup(InetAddress address) throws IOException
public void leaveGroup(SocketAddress multicastAddress,
NetworkInterface interface)

throws IOException

It signals the local multicast router, telling it to stop sending you datagrams. If the
address you try to leave is not a multicast address (if it is not between 224.0.0.0 and
239.255.255.255), the method throws an I0Exception. However, no exception occurs
if you leave a multicast group you never joined.

Pretty much all the methods in MulticastSocket can throw an I0Exception, so you’'ll
usually wrap all this in a try block. In Java 7, DatagramSocket implements
Autocloseable so you can use try-with-resources:

try (MulticastSocket socket = new MulticastSocket()) {
// connect to the server...

} catch (IOException ex) {
ex.printStackTrace();

}

In Java 6 and earlier, you'll want to explicitly close the socket in a finally block to
release resources the socket holds:

MulticastSocket socket = null;
try {
socket = new MulticastSocket();
// connect to the server...
} catch (IOException ex) {
ex.printStackTrace();
} finally {
if (socket !'= null) {
try {
socket.close();
} catch (IOException ex) {
// ignore
}
}
}

Sending multicast data

Sending data with a MulticastSocket is similar to sending data with a DatagramSock
et. Stuffyour data into a DatagramPacket object and send it off using the send () method
inherited from DatagramSocket. The data is sent to every host that belongs to the mul-
ticast group to which the packet is addressed. For example:

Working with Multicast Sockets | 457

try {
InetAddress ia = InetAddress.getByName("experiment.mcast.net");

byte[] data = "Here's some multicast data\r\n".getBytes();
int port = 4000;
DatagramPacket dp = new DatagramPacket(data, data.length, ia, port);
MulticastSocket ms = new MulticastSocket();
ms.send(dp);
} catch (IOException ex) {
System.err.println(ex);
}
By default, multicast sockets uses a TTL of 1 (that is, packets don't travel outside the
local subnet). However, you can change this setting for an individual packet by passing

an integer from 0 to 255 as the first argument to the constructor.

The setTimeToLive() method sets the default TTL value used for packets sent from
the socket using the send(DatagramPacket dp) method inherited from DatagramSock
et (as opposed to the send(DatagramPacket dp, byte ttl) method in Multicast
Socket). The getTimeTolLive() method returns the default TTL value of the Multi
castSocket:

public void setTimeToLive(int ttl) throws IOException
public int getTimeToLive() throws IOException

For example, this code fragment sets a TTL of 64:

try {
InetAddress ia = InetAddress.getByName('"experiment.mcast.net");

byte[] data = "Here's some multicast data\r\n".getBytes();
int port = 4000;
DatagramPacket dp = new DatagramPacket(data, data.length, ia, port);
MulticastSocket ms = new MulticastSocket();
ms.setTimeToLive(64);
ms.send(dp);
} catch (IOException ex) {
System.err.println(ex);

}
Loopback mode

Whether or not a host receives the multicast packets it sends is platform dependent—
that is, whether or not they loop back. Passing true to setLoopback() indicates you
don’t want to receive the packets you send. Passing false indicates you do want to
receive the packets you send:

public void setLoopbackMode(boolean disable) throws SocketException

public boolean getLoopbackMode() throws SocketException
However, this is only a hint. Implementations are not required to do as you request.
Because loopback mode may not be followed on all systems, it's important to check what
the loopback mode is if youre both sending and receiving packets. The getLoopback

458 | Chapter 13:IP Multicast

Mode() method returns true if packets are not looped back and false if they are. (This
feels backward to me. I suspect this method was written by a programmer following the
ill-advised convention that defaults should always be true.)

If the system is looping packets back and you don’t want it to, youw'll need to recognize
the packets somehow and discard them. If the system is not looping the packets back
and you do want it to, store copies of the packets you send and inject them into your
internal data structures manually at the same time you send them. You can ask for the
behavior you want with setLoopback(), but you can’t count on it.

Network interfaces

On a multihomed host, the setInterface() and setNetworkInterface() methods
choose the network interface used for multicast sending and receiving:

public void setInterface(InetAddress address) throws SocketException

public InetAddress getInterface() throws SocketException

public void setNetworkInterface(NetworkInterface interface) throws
SocketException

public NetworkInterface getNetworkInterface() throws SocketException

The setter methods throw a SocketException if the argument is not the address of a
network interface on the local machine. It is unclear why the network interface is im-
mutably set in the constructor for unicast Socket and DatagramSocket objects but is
variable and set with a separate method for MulticastSocket objects. To be safe, set the
interface immediately after constructing a MulticastSocket and don't change it there-
after. Here’s how you might use setInterface():

try {
InetAddress ia = InetAddress.getByName('"www.ibiblio.org");
MulticastSocket ms = new MulticastSocket(2048);
ms.setInterface(ia);
// send and receive data...

} catch (UnknownHostException ue) {
System.err.println(ue);

} catch (SocketException se) {
System.err.println(se);

}

The setNetworkInterface() method serves the same purpose as the setInter
face() method; that is, it chooses the network interface used for multicast sending and
receiving. However, it does so based on the local name of a network interface such as
“eth0” (as encapsulated in a NetworkInterface object) rather than on the IP address
bound to that network interface (as encapsulated in an InetAddress object). setNet
workInterface() throws a SocketException if the NetworkInterface passed as an
argument is not a network interface on the local machine.

The getNetworkInterface() method returns a NetworkInterface object representing
the network interface on which this MulticastSocket is listening for data. If no network

Working with Multicast Sockets | 459

interface has been explicitly set in the constructor or with setNetworkInterface(), it
returns a placeholder object with the address “0.0.0.0” and the index -1. For example,
this code fragment prints the network interface used by a socket:

NetworkInterface intf = ms.getNetworkInterface();
System.out.println(intf.getName());

Two Simple Examples

Most multicast servers are indiscriminate about who they will talk to. Therefore, it’s easy
to join a group and watch the data that’s being sent to it. Example 13-1 is a MulticastS
niffer class that reads the name of a multicast group from the command line, constructs
an InetAddress from that hostname, and creates a MulticastSocket, which attempts
to join the multicast group at that hostname. If the attempt succeeds, MulticastSniff
er receives datagrams from the socket and prints their contents on System.out. This
program is useful primarily to verify that you are receiving multicast data at a particular
host. Most multicast data is binary and won't be intelligible when printed as text.

Example 13-1. Multicast sniffer

import java.ilo.*;
import java.net.*;

public class MulticastSniffer {
public static void main(String[] args) {

InetAddress group = null;
int port = 0;

// read the address from the command line
try {
group = InetAddress.getByName(args[0]);
port = Integer.parselnt(args[1]);
} catch (ArrayIndexOutOfBoundsException | NumberFormatException
| UnknownHostException ex) {
System.err.println(
"Usage: java MulticastSniffer multicast_address port");
System.exit(1);
}

MulticastSocket ms = null;

try {
ms = new MulticastSocket(port);
ms.joinGroup(group);

byte[] buffer = new byte[8192];

while (true) {
DatagramPacket dp = new DatagramPacket(buffer, buffer.length);
ms.receive(dp);

460 | Chapter 13:IP Multicast

String s = new String(dp.getData(), "8859_1");
System.out.println(s);
}
} catch (IOException ex) {
System.err.println(ex);
} finally {
if (ms != null) {
try {
ms. leaveGroup(group);
ms.close();
} catch (IOException ex) {}
}
}
}
}

The program begins by reading the name and port of the multicast group from the first
two command-line arguments. Next, it creates a new MulticastSocket ms on the
specified port. This socket joins the multicast group at the specified InetAddress. Then
itentersaloop in which it waits for packets to arrive. As each packet arrives, the program
reads its data, converts the data to an ISO Latin-1 String, and prints it on Sys
tem.out. Finally, when the user interrupts the program or an exception is thrown, the
socket leaves the group and closes itself.

When a Universal Plug and Play (UPnP) device joins a network, it sends an HTTPU
(HTTP over UDP) message to the multicast address 239.255.255.250 on port 1900. You
can use this program to listen to those messages. If such a device is broadcasting, you
should see a message pop through within the first minute or two. In fact, you’ll probably
see a lot more. I collected about a megabyte and a half of announcements within the
first couple of minutes I had this program running. I show only the first two here:

$ java MulticastSniffer 239.255.255.250 1900

NOTIFY * HTTP/1.1

HOST: 239.255.255.250:1900

CACHE-CONTROL: max-age=1800

LOCATION: http://192.168.1.2:23519/Ircc.xml

NT: upnp:rootdevice

NTS: ssdp:alive

SERVER: Android/3.2 UPnP/1.0 Internet TV Box NSZ-GT1/1.0
USN: uuid:34567890-1234-1010-8000-544249cb49fd: :upnp:rootdevice
X-AV-Server-Info: av=5.0; hn=""; cn="Sony Corporation";
mn="Internet TV Box NSZ-GT1"; mv="1.0";

NOTIFY * HTTP/1.1

HOST: 239.255.255.250:1900

CACHE-CONTROL: max-age=1800

LOCATION: http://192.168.1.2:23519/Ircc.xml

NT: uuid:34567890-1234-1010-8000-544249cb49fd

NTS: ssdp:alive

SERVER: Android/3.2 UPnP/1.0 Internet TV Box NSZ-GT1/1.0

Two Simple Examples | 461

USN: uuid:34567890-1234-1010-8000-544249cb49fd
X-AV-Server-Info: av=5.0; hn=""; cn="Sony Corporation";
mn="Internet TV Box NSZ-GT1"; mv="1.0";

It appears that my Google TV is very chatty, sending an announcement about once a
second. Most devices only announce when they’re first connected to the network, or
when they’re queried by another device.

Now let’s consider sending multicast data. Example 13-2 is a MulticastSender class
that reads input from the command line and sends it to a multicast group. It’s fairly
simple, overall.

Example 13-2. MulticastSender

import java.io.*;
import java.net.*;

public class MulticastSender {
public static void main(String[] args) {

InetAddress ia = null;
int port = 0;
byte ttl = (byte) 1;

// read the address from the command line
try {

ia = InetAddress.getByName(args[0]);

port = Integer.parseInt(args[1]);

if (args.length > 2) ttl = (byte) Integer.parselnt(args[2]);
} catch (NumberFormatException | IndexOutOfBoundsException

| UnknownHostException ex) {
System.err.println(ex);
System.err.println(
"Usage: java MulticastSender multicast_address port ttl");

System.exit(1);

}

byte[] data = "Here's some multicast data\r\n".getBytes();
DatagramPacket dp = new DatagramPacket(data, data.length, ia, port);

try (MulticastSocket ms = new MulticastSocket()) {
ms.setTimeToLive(ttl);
ms.joinGroup(ia);
for (int 1 = 1; 1 < 10; 1++) {

ms.send(dp);

}
ms.leaveGroup(ia);

} catch (SocketException ex) {
System.err.println(ex);

} catch (IOException ex) {
System.err.println(ex);

462 | Chapter 13:IP Multicast

}
3
}

Example 13-2 reads the address of a multicast group, a port number, and an optional
TTL from the command line. It then stuffs the string "Here's some multicast data
\r\n"into the byte array data using the getBytes() method of java.lang.String, and
places this array in the DatagramPacket dp. Next, it constructs the MulticastSocket
ms, which joins the group ia. Once it has joined the group, ms sends the datagram packet
dp to the group ia 10 times. The TTL value is set to one to make sure that this data
doesn’'t go beyond the local subnet. Having sent the data, ms leaves the group and closes
itself.

Run MulticastSniffer on one machine in your local subnet. Listen to the group all-
systems.mcast.net on port 4000, like this:

% java MulticastSniffer all-systems.mcast.net 4000

Next, send data to that group by running MulticastSender on another machine in your
local subnet. You can also run it in a different window on the same machine, although
that option is not as exciting. However, you must start running the MulticastSniff
er before you start running the MulticastSender. Send to the group all-
systems.mcast.net on port 4000, like this:

% java MulticastSender all-systems.mcast.net 4000
Back on the first machine, you should see this output:

Here's some multicast data
Here's some multicast data
Here's some multicast data
Here's some multicast data
Here's some multicast data
Here's some multicast data
Here's some multicast data
Here's some multicast data
Here's some multicast data

For this to work beyond the local subnet, the two subnets must each have multicast
routers, and the routers in between them need to have multicast enabled.

Two Simple Examples | 463

A

absolute URLs, 122
accept() method, 284
accessor methods, 60
acknowledged submissions, 24
addresses
address blocks, 15
assignment of, 3, 11
checking for spam, 111
definition of, 3
determining v4 vs. v6, 102
InetAddress class, 95-107
IPv4 vs. IPv6, 107
look up of, 95
reverse look up of, 96, 98
Sp. NewtorkInterface class, 108
testing characteristics of, 104
testing reachability of, 106
types of, 102
variations of, 93
vs. hostnames, 94
AES ciphers, 335
AES encryption, 332
allocate methods, 362
allowUserInteraction field, 210
anonymous ports, 303
application layer, function of, 7, 10
ASCII characters, 149, 170
assured forwarding priority, 266

Index

asymmetric encryption, 326
asynchronous I/O vs. classic I/0, 348
AsynchronousSocketChannel class, 384
audit logs, 297

(see also logging)
authentication dialog box, 210

(see also password protection)
Authenticator class, 162
available() method, 33

B

bandwidth, 262, 309
bidirectional protocols, 246
big-endian, definition of, 365
binary files, 193, 288, 366
bind() method, 304
blocking, 81, 261, 284

(see also nonblocking I/O)
broadcast addresses, 13
broadcast communication, 444
BufferedInputStream class, 36, 39
BufferedOutputStream class, 29, 38
BufferedWriter class, 29
buffers

appropriate size for, 372, 413, 432

bulk methods for, 364

classes of, 372

compaction of, 370

concept of, 360

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

465

creating, 362
data conversion in, 365
duplication of, 372
filling and draining of, 363, 369
filter streams and, 38
flipping vs. clearing data in, 351, 361
impact of, 359
information tracked by, 360
marking/resetting of, 377
object methods for, 377
output streams and, 29
performance issues with, 262
slicing of, 376
view buffers, 368
vs. streams, 359
bureaucratic snooping, 325
ByteArrayOutputStream class, 26, 30
bytesAvailable, 34
bytesRead, 34

C

Cache-control header, 200
CacheResponse class, 204, 205
caching
checking for document modifications, 212
control of, 200
installing system-wide for Java, 203
local vs. server, 214
of cookies, 183
of DNS lookups, 98
Callable interface, 68
CallbackDigest class, 64
CallbackDigestUserInterface class, 65
CallbackDigestUserInterface.receiveDigest()
method, 64
callbacks, 64
chaining
filter streams and, 36
invocation chaining, 370
channel classes
asynchronous channels, 384
Channels class, 383
channels vs. streams, 359
ServerSocketChannel, 381
socket options, 386
SocketChannel, 378
character encoding, 195
chargen protocol
alternates to, 366

benefits and drawbacks of, 349
channel-based client, 351
connection closure in, 356
non-blocking server in, 357
chunked transfer encoding, 235
cipher suites, 332, 343
CipherInputStream class, 36
ciphertext, 326
classes of service, 265
ClassLoader.getSystemResource(String name)
method, 128
client requests
HTTP header configuration, 215
ifModifiedSince request, 212
multiple in HTTP 1.1, 176, 285
parts of, 170, 177
possible requests, 225
protected instance fields in, 208
request body in, 179
request lines in, 170
steps of, 169
client sockets (see sockets)
client/server model, 18
close() method, 30, 250, 261
codebase, 99
compaction, 370
configuration files, 301
connect() method, 189, 416
connected field, 209
Connection fields, 176
connection trees, 445
constructors
basic, 251
for multicast sockets, 454
for server sockets, 302
in DatagramPacket class, 401
in DatagramSocket class, 409
proxy servers, 256
socket addresses and, 255
specifying connections with, 253
without binding, 304
without connections, 254
content encoding, 195
content-types.properties file, 224
cookie-based authentication, 162
cookies
Amazon examples, 183
cookie-stealing attacks, 183
creation of, 181

466 | Index

expiration of, 183

management of, 184

storage of, 185

tracking with, 181

uses for, 181
cooperative thread scheduling, 79
Coordinated Universal Time (UTC), 240
createSocket() method, 328
credit-card fraud, 338
cryptography, 327
custom servers, 310

D

Daemon threads, 56

data
binary data, 193, 288, 366
conversion in buffers, 365
conversion in datagrams, 404
determining content type, 191
encoding of, 195, 219, 235
encryption of, 326
potential loss with UDP, 432
retrieving from URLs, 128-134, 189
sending with multicast sockets, 457
transfer speed vs. reliability, 393
transmission of, 237, 260, 283
urgent data, 264
writing to servers, 218

data link layer (see host-to-network layer)

data streams, 42

data-mining, 325

DatagramChannel class
as alternative API for UDP, 432
closing sockets in, 439
establishing connections in, 434
nonblocking nature of, 431
opening a socket in, 432
reading datagrams in, 435
receiving datagrams in, 432
sending datagrams in, 433
writing in, 435

DatagramPacket class
constructors in, 401
function of, 394
get methods in, 403
receiving data with, 405
setter methods, 406
structure of, 399

datagrams
choosing host for, 416
components of, 237
control of, 261, 447
definition of, 8
diagram of IPv4 datagram, 8
multicast datagrams, 450
optimum size of, 402
protocol for, 394
sending/receiving, 411
DatagramSocket class
constructors in, 409
function of, 394, 408
managing connections in, 416
sending/receiving datagrams, 411
DatalnputStream, 43
Date class, 195
daytime server, 240, 284
deadlock, 77
debugging
effect of buffer size, 372
server log storage for, 297
decode() method, 154
DELETE method, 177, 227
denial-of-service attacks, 287, 291, 349
DES ciphers, 335
dict protocol, 246
Differentiated Services Code Point (DSCP) val-
ue, 266
digest() method, 56
DigestInputStream class, 56
DigestOutputStream class, 30
DigestRunnable class, 58
DigestThread class, 56
disconnect() method, 229, 416
dispose pattern, 30
do Input field, 211
domain name server, 94
Domain Name System (DNS), 12, 94, 394
doOutput field, 212
dotted quad address format, 11

E

echo protocol, 293, 370

encoded strings, 149

encryption, symmetric vs. asymmetric, 326
Enumeration class, 110

equals() method, 139

error conditions, 233

Index | 467

error logs, 297
(see also logging)

Ethernet addresses, 3, 108, 253

event handlers, 336

Executors class, 90

ExecutorService, 68

Expires header, 200

Explicit Congestion Notification (ECN) value,
266

F

FileInputStream class, 31
FileOutputStream class, 26
filter streams
buffered streams, 38
chain organization of, 36
chaining filters together, 37
data streams, 42
input/output in, 37
print streams, 39
versions of, 35
finally clause, 31
FindMaxTask class, 68
firewalls, 16, 253, 293
500 internal server error, 300
fixed-length streaming mode, 236
flipping, 351
forName() method, 187
FTP servers
performance issues in, 290
poor implementation of, 53
full-duplex connections, 238
Futures, 68

G

general-purpose servers, 310
generateCharacters() method, 28
GET method, 158, 177, 200
getAddress() method, 404
getAllowUserInteraction() method, 210
getAuthority() method, 137
getBylnetAddress() method, 109
getByName() method, 108
getCodeBase() method, 127
getConnectTimeout() method, 215
getContent() method, 132
getContent(Class[] classes), 134
getContentEncoding() method, 195

getContentLength() method, 193
getContentType() method, 191
getCookieStore() method, 185
getData() method, 404

getDate() method, 195
getDefaultPort() method, 136
getDigest() method, 61
getDisplayName() method, 110
getDocumentBase() method, 127
getDolnput() method, 211
getDoOutput() method, 212
getErrorStream() method, 233
getExpiration() method, 195
getFile() method, 136
getHeaderField(int n), 198
getHeaderField(String name), 197
getHeaderFieldDate() method, 199
getHeaderFieldInit() method, 199
getHeaderFieldKey(int n), 198
getHost() method, 135
getHostName() method, 96, 98
getInetAddress() method, 110, 257, 305, 416
getInputStream() method, 189
getLastModified() method, 195
getLength() method, 405
getLocalAddress() method, 257, 415
getLocalPort() method, 257, 305, 415
getLocalSocketAddress() method, 255, 416
getLoopbackMode() method, 458
getName() method, 110
getNetworkInterfaces() method, 109
getOffset() method, 405
getOutputStream() method, 26, 218
getPath() method, 136
getPermission() method, 223
getPort() method, 136, 257, 416
getPort()+ method, 404
getProtocol() method, 135
getQuery() method, 137
getReceiveBufferSize() method, 308
getRef() method, 137
getRemoteSocketAddress() method, 416
getResource(String name), 128
getResponseMessage() method, 231
getReuseAddress() method, 308
getSocketAddress() method, 404
getter methods, 100, 110, 257, 305
getURL() method, 209
getUseCaches() method, 214

468 | Index

getUserInfo() method, 137
Greenwich Mean Time (GMT), 195, 240, 246
GUI applications

network client library, 272

sockets in, 268

whois directory service protocol, 269
GUI authenticator, 164
GZIPInputStream class, 36
GZipRunnable class, 90

H

HandshakeCompletedListener interface, 336
hashCode() method, 139, 148, 377
HEAD function, 226
headers
cache control with, 200
configuring for client requests, 215
ifModifiedSince request in, 212
information contained in, 190, 237
retrieving arbitrary fields in, 197
retrieving specific fields in, 191-197
Host field, 170
host not found errors, 98
host-to-network layer
complexity of, 6
function of, 5, 7
physical layer of, 7
hostnames, 94, 96
hosts
connecting to with sockets, 251
definition of, 2, 93
HotJava web browser, 268
HTML (hypertext markup language)
links to URLSs with, 117
standardization of, 22
HTTP (Hypertext Transfer Protocol)
basics of, 169
client requests in, 169
cookies and, 181-186
HTTP 2.0,177
HTTP methods, 177
multiple requests in HTTP 1.1, 176, 285
request body, 179
responses in, 171-175
verbs vs. nouns in, 177
HTTP authentication, 162
HTTP servers
common features in, 309
custom servers, 310

full-fledged server, 319

redirectors, 314

single-file servers, 310
http.proxyHost, 155
HTTPU messages, 461
HttpURLConnection class

creation of, 225

error conditions, 233

function of, 225

HEAD function in, 226

proxies in, 235

redirects in, 234

request method in, 225

server disconnection, 229

server response handling in, 230

streaming mode, 235

I/0O (input/output) streams

basics of, 25

(see also nonblocking I/O)

channels class and, 383

filter streams, 35-52

input streams, 31

output streams, 26-31

readers and writers, 44

vs. channels, 359
TANA (Internet Assigned Numbers Authority),

448
ICMP echo requests, 106
idempotent, definition of, 178
IETF (Internet Engineering Task Force), 20
ifModifiedSince request, 212
immutable arguments, 75
InetAddress class

address types, 102-105

basics of, 95

caching and, 98

creating new objects, 95-100

getter methods, 100

object methods in, 106

reachability testing, 106
InetAddress object, 404
InetSocketAddress class, 255
input streams

basic input class, 31

basic method of, 32

closure of, 34

marking and resetting, 34

Index | 469

retrieving data with, 128
skipping data reads in, 34
subclasses in, 31
InputStream class, 128, 189
InputStreamReader class, 36, 43
instance methods, 67
InstanceCallbackDigest class, 65
InstanceCallbackDigestUserInterface class, 66
Internet
address assignment, 3, 11, 93
(see also addresses)
address blocks in, 15
basics of, 14
firewalls in, 16, 253
handling congestion on, 53
network address translation (NAT), 15
proxy servers in, 16
standards, 19-24
vs. internets, 14
Internet Control Message Protocol (ICMP), 11
internet drafts, 24
Internet Engineering Task Force (IETF), 20
internet layer, function of, 8
Internet Protocol (IP)
characteristics of, 10
popularity of, 8
Internet Registries, 3
Internet standards
definitive source of, 19
Internet Engineering Task Force (IETF), 20
misrepresentation of submissions, 24
World Wide Web Consortium (W3C), 23
intranets, definition of, 14
invocation chaining, 370
IOException, 28, 30, 32
IP addresses, 11, 93
(see also addresses)
TP multicast
clients and servers, 450
connection trees and, 445
examples of, 460
multicast addresses, 447
multicast groups, 447, 455
multicast routers and, 447, 449, 452
multicast sockets, 453-459
need for, 443
potential application of, 446
security issues in, 454
Time-To-Live (TTL) value in, 447, 451, 458

vs. broadcast communication, 444

vs. point-to-point communication, 445
IPv4 network protocol

addresses in, 8

determining address type, 102, 107

dotted quad IP addresses in, 11, 93
IPv6 network protocol

16-byte addresses in, 12, 93

addresses in, 8

determining address type, 102, 107

node-local addresses, 104
IP_TOS class of service socket option, 265
IP_TOS socket option, 420
IRIs (Internationalized Resource Identifiers),

syntax of, 149
isAnyLocalAddress() method, 102
isBound() method, 259
isClosed() method, 258
isLinkLocalAddress() method, 103
isLoopbackAddress() method, 103
isSMCGlobal() method, 103
isMCLinkLocal() method, 104
isSMCNodeLocal() method, 104
isMCOrgLocal() method, 103
isMCSiteLocal() method, 104
isMulticastAddress() method, 103
ISPs (Internet Service Providers), 3
isReachable() method, 106
isSiteLocal Address() method, 103
iterative servers, 286

J

Java
advantages of, 310
buffering and multithreading in, 348
caching in, 203
client sockets in, 238
client-side TCP operations in, 251
default queue size in, 290, 303
HTTP 2.0 and, 177
I/O (input/output) streams in, 25
Java 6, xiv, xvi, 439
Java 7, xiv, xvi, 384, 439
network layer protocol in, 8
nonblocking I/O in, 348
protocols supported in, 11
proxy servers and, 154
suitability for networking, 1
URLs vs. URL references in, 122

470 | Index

Java Secure Sockets Extension (JSSE)
packages included in, 327
protocols included in, 326

java.io package, 52

java.io.Reader class, 45

java.io.Writer class, 45

java.lang.Object class, 106, 123

java.lang.Thread class, 55

java.net.MulticastSocket class, 453

java.net.Proxy class, 155

java.net.Socket class, 251

java.net.URI class, 121, 141

java.net.URL class, 121, 141

java.net. URLConnection, 209

java.nio package, 348

java.util. Date, 195

java.util. Enumeration, 110

java.utillogging package, 298

join() method, 83

JPasswordField class, 164

K

Keep-Alive value, 176, 229
keytool, 339

keywords, 170

kill command, 287

L

latency, 262, 309
layer models
application layer, 10
host-to-network layer, 5, 7
internet layer, 8
reasons for, 4
transport layer, 9
link layer (see host-to-network layer)
link-local multicast addresses, 448
local interfaces, choosing connections from, 253
local loopback addresses, 12
local variables, 75
LogFile, 73
logging
configuration files for, 301
creating logs, 298-302
items logged, 297
levels of seriousness in, 298
properties file for, 301
rotation/retention policies for, 302

uses for, 297
web server logfiles, 112-116
loopback addresses, 12, 96, 102

M

Mailto URLs, 137
man-in-the-middle attack, 327
mark() method, 34
marking, 34
markSupported() method, 34
method arguments
in HttpURLConnection class, 225
primitive vs. object types, 75
methods
HTTP methods, 177
protected, 187
static methods, 67, 75
synchronization of, 74
thread safe, 75
MIME (Multipurpose Internet Mail Exten-
sions), 171, 188, 191, 224
Modified Julian Date, 240
mrouters, 447, 449, 452
multicast addresses, 102
multicast routers, 447, 449, 452
Multicast sniffer, 460
multicasting (see IP multicast)
MulticastSender class, 462
MulticastSocket class, 453
MultithreadedMaxFinder class, 69
multithreading, 55-60, 289, 348, 359

N

Nagle’s algorithm, 260
National Institute for Standards and Technology
(NIST), 240
National Security Agency (NSA), 325
network address translation (NAT), 15
network interface layer (see host-to-network
layer)
network layer (see internet layer)
Network Time Protocol (NTP), 42
NetworkInterface Class, 108
NetworkInterface objects, 108
networks
address assignment in, 3
basics of, 2
client libraries for, 272

Index | 471

client/server model, 18 OutputStreamWriter class, 47
definition of, 2
domain names in, 12, 94 P

examples of, 1)
internet standards. 19 packet-switched networks, 3

IP addresses in, 11 packets, 3, 237, 260, 266
parseDate() method, 199
password protection
dialog box for, 210
downloading protected web pages, 167
hiding display of, 164
HTTP authentication, 162
protocol standards for, 4 implemenation options, 162
protocols in, 10 username/password support, 164
the Internet, 14-18 PasswordAuthentication class, 164
payloads, 237
peer-to-peer connections, 19
performance issues
buffers and, 262
CPU vs. network speeds, 347
multiple threads and, 359

Java programming language for, 1
layer models in, 4-10

nodes in, 2

packet-switched networks, 3
performance issues, 7, 347

ports assignments in, 13

newlnstance() method, 187

No trusted certificate found message, 331
noargs constructor, 304

node-local addresses, 104

nodes, definition of, 2, 93

non-routable addresses, 12

nonblocking 1/0 (NIO) Naglfe’s algorithm and, 260
buffers in, 359-378 physical layer and, 7
channels in, 378-387 proxy servers and, 154

example client program, 349 simultaneous connections and, 54, 290, 348
example server program, 353 TCP speed, 393

need for, 347 traffic classes and, 309

physical layer, performance issues with, 7

ping requests, 262

ping-pong denial-of-service attack, 349
point-to-point communication, 443

polling, 63, 67

readiness selection in, 388
vs. multithreading, 348
NullPointerException, 30, 61

0 pool.shutdown() method, 92
Object class, 106, 123 port assignments, 13
Observer design pattern, 68 POST method, 177, 200, 218
OOBINLINE socket option, 264 preemptive thread scheduling, 79
Open Directory interface, 159 print statements, 141
Open Systems Interconnection Reference Mod- PrintStream class, 39, 72
el (OSI), 7 PrintWriter class, 51
openConnection() method, 132, 188 priorities, 78
openStream() method, 31, 128 protected methods, 187
OPTIONS method, 228 protocol handlers, 124, 187, 210
output streams, 26-31 protocols
buffering of, 29 chargen protocol, 349
bytes in, 28 definition of, 4
closure of, 30 determining supported, 124
flushing of, 30 echo protocol, 293, 370
fundamental method of, 26 in network layers, 4
subclasses of, 26 Internet Protocol (IP), 8
OutputStream class, 218 investigating with Telnet, 238

472 | Index

1Pv4/IPv6, 8, 11, 107
reliable vs. unreliable, 10, 432
security protocols, 326
Transmission Control Protocol (TCP), 9
User Datagram Protocol (UDP), 9
whois directory service protocol, 269
proxies/proxy servers
function of, 16, 154
in HttpURLConnection class, 235
Proxy class, 155
ProxySelector class, 156
sockets and, 256
SOCKS proxy server, 256
system properties, 155
Proxy class, 155
public-key (asymmetric) encryption, 326, 339
PUT method, 177, 218, 228

Q

QueryString class, 153
queue length, 290, 303

R

race conditions, 61, 85
RC4-based ciphers, 335
reachability, 106
read() method, 32
Reader class, 45
readers and writers
conversion to, 383
filter readers and writers, 49
mirror image hierarchy of, 44
OutputStreamWriter class, 47
PrintWriter class, 51
readers, 47
Writer class, 45
readiness selection, 388
readLine() method, 44
readUTF() method, 43
realtime blackhole lists, 111
ReceiverThread class, 430
redirects, 234, 314
relative URIs, 147
relative URLs, 122, 127
reliable protocols, 10
remote ports, 251
representations, 118, 179
request body, 179

request lines, 170
request methods, 225
request-response pattern, 177, 246
Requests for Comments (RFCs), 20
resetting, 34
resources
benefits of threads for, 54
competition for, 55, 77
connecting to with URLConnection, 187
definition of, 117
identification with URLs, 117
sharing of, 70
response codes
200 OK, 172
500 internal server error, 300
handling, 230
list of, 172-175
response messages, 231
ResponseCache class, 203, 206
ReturnDigest class, 61
ReturnDigestUserInterface class, 61
RFCs (Request for Comments), 20
Runnable interface, 58

S

saveBinaryFile() method, 194
scheduling

blocking in, 81, 139

cooperative, 79

joining threads, 83

preemptive, 79

preventing starvation with, 78

priorities and, 78

sleeping in, 82

yielding in, 81
secret-key (symmetric) encryption, 326
secure sockets

choosing cipher suites, 332

client mode and, 338

complexity of, 326

configuring SSLServerSockets, 343

creating secure client sockets, 328

creating secure server sockets, 339

encryption schemes for, 326

event handlers and, 336

need for, 325

session management for, 337
Secure Sockets Layer (SSL) Version 3, 326

Index |

473

security issues
client-side programs, 338
cookie-stealing attacks, 183
CookiePolicy, 184
denial-of-service attacks, 287, 291, 349
in DNS lookups, 99
in multicast sockets, 454
in redirects, 234
in URLConnections, 223
in URLs, 137
man-in-the-middle attack, 327
password-protected sites, 162-164
preventing information sharing, 154
rogue servers, 253
server-side programs, 159
socket encryption, 325
(see also secure sockets)
third-party cookies, 182
select() method, 156
SelectionKey class, 390
Selector.open() method, 388
SenderThread class, 429
sendUrgentData() method, 264
server logs (see logging)
server sockets
accessing properties of, 305
binary data and, 288
class of service options, 309
closing, 287, 295
construction of, 302
exception handling in, 286
function of, 283
HTTP server examples, 309-324
logging of, 297-302
multithreaded servers and, 289
socket options for, 306
using, 284
vs. client sockets, 283
(see also sockets)
writing to servers with, 293
server-side programs, communication through
GET, 158
servers
basic program life cycle, 284
client requests to, 169
disconnecting from, 229
finding rogue servers, 253
HTTP server examples, 309-324
iterative servers, 286

line termination in, 285
multithreaded, 289
(see also threads)

nonblocking I/O for, 348

reading from with sockets, 240

responses from, 171, 230

retrieving data from, 189

writing data to, 218

writing to with sockets, 246, 293
ServerSocket vs. Socket classes, 283
ServerSocketChannel class, 381
session-sharing, 337, 344
setAddress() method, 407
setAllowUserInteraction() method, 210

setChunkedStreamingMode() method, 235

setConnectTimeout() method, 215
setData() method, 406
setDoInput() method, 211
setDoOutput() method, 212
setInterface() method, 459
setLength() method, 408
setLoopback() method, 458
setNetworkInterface() method, 459

setPerformancePreferences() method, 267

setPort() method, 408

setPriority() method, 79
setReceiveBufferSize() method, 308
setReuseAddress() method, 308
setSocketAddress() method, 408
setSoTimeout() method, 417
setTimeToLive() method, 458
setUseCaches() method, 214
setUseClientMode() method, 338
sharding, 55

shouldAccept () method, 184
shutdownInput() method, 250
shutdownNow() method, 92
shutdownOutput() method, 250
single-byte read() method, 33
single-file servers, 310
single-threaded programs, 55, 56, 61
skip() method, 34

sleeping, 82

slicing, 376

Socket class, 251

Socket vs. ServerSocket classes, 238
SocketAddress class, 255
SocketAddress object, 404
SocketChannel class, 378

474 | Index

SocketException, 108
sockets
accessing properties of, 257
basic operations of, 237
construction/connection of, 251-257
encrypted connections, 176
(see also secure sockets)
function of, 237
half-closed sockets, 250
in GUI applications, 268-281
investigating protocols for, 238
maximum speed of, 262
naming conventions for, 260
proxy servers and, 256
reading from servers with, 240
reusing with Keep-Alive, 176, 229
setting options for, 259-267, 386, 417-421,
439
socket addresses, 255
socket exceptions, 267
unicast vs. multicast, 443
writing to servers with, 246
(see also server sockets)
SOCKS proxy server, 256
SO_BROADCAST socket option, 420
SO_KEEPALIVE socket option, 264
SO_LINGER socket option, 261
SO_RCVBUF socket option, 262, 308, 418
SO_REUSEADDR socket option, 265, 308, 419
SO_SNDBUF socket option, 262, 419
SO_TIMEOUT socket option, 261, 307, 417
SpamCheck, 111
SSLServerSockets
cipher suites for, 343
client mode in, 344
configuration of, 343
session management for, 344
SSLSocketFactory.getDefault() method, 328
stateless requests/responses, 177
static methods, 67, 75
strategy design pattern, 123
streaming mode, 235
streams (see I/O (input/output) streams)
String arguments, 75
sun.net package, 187
synchronization
advantages of, 70
alternatives to, 75
of blocks, 72

of methods, 74
System.setProperty() method, 155

T

TCP/IP four-layer model, diagram of, 5
(see also Transmission Control Protocol)
TCP_NODELAY socket option, 260
Telnet, 238
TelnetInputStream class, 31, 36
TelnetOutputStream class, 26
third-party cookies, 182
Thread class, 55
thread per connection design, 290
Thread.sleep() method, 82
threads
alternatives to, 54
blocking in, 81, 139
Callable interface and, 68
callbacks and, 64
deadlock of, 77
ExecutorService for, 68
extension of vs. Runnable interface, 59
finishing of, 89
function of, 54, 70
futures and, 68
implementation of, 55-59
joining of, 83
pauses in, 80, 86
polling and, 63
race conditions in, 61, 85
returning information from, 60-70
reusing, 70
scheduling of, 78-89
sleeping and, 82
subclassing of, 56
synchronization of, 70-77
thread pools and executors, 90
vs. Thread, 55
waiting on locked objects, 86
yielding of, 81
time protocol client, 245
timeout values, 215, 261, 307, 395
toASCIIString() method, 149
toExternalForm() method, 141
toString() method, 141, 149, 259
toURI() method, 141
TRACE method, 229
traceroute, 106
traffic classes, 265, 309

Index | 475

Transmission Control Protocol (TCP)

alternatives to, 393

characteristics of, 10

client-side operations, 251

dict protocol, 246

echo protocol, 293, 370

reliability of, 9

traffic classes in, 265, 309
Transport Layer Security (TLS), 326
transport layer, function of, 9
try with resources construct, 30, 129, 291
TTL (Time-To-Live) value, 447, 451, 458
200 OK response code, 172, 230

U

UDP (User Datagram Protocol)
benefits and downfalls of, 393
characteristics of, 11
connection timeouts in, 395
data loss in, 432
DatagramPacket class, 399-408
datagrams in, 394
DatagramSocket class, 408-416
example client program, 395
example server program, 397
nonblocking applications in, 431
raw speed and, 394
simple UDP clients, 421
socket options in, 417-421, 439
UDP Echo client, 428
UDPServer class, 425
unreliability of, 9
vs. TCP, 394

UDP Echo client, 428, 436

UDPDiscardClient class, 412

UDPPoke class, 421

UDPServer class, 425

unencoded strings, 149

unicast sockets, 443

Universal Plug and Play (UPnP) devices, 461

unreliable protocols, 10, 432

equality and comparison, 148
hierarchical format of, 119
relative vs. absolute, 144, 147
scheme-specific part of, 118, 145
string representation and, 149
syntax of, 118
URI class, 141-149
vs. URLs, 117, 121, 141
(see also URLSs (uniform resource loca-
tors))

URL class, 121, 141

HTTP 2.0 and, 177

HTTP authentication and, 162
HTTP Keep-Alive support in, 176
Java programs and, 117
server-side communication in, 158
strategy design pattern in, 123

vs. URI class, 142

vs. URLConnection, 190

url field, 209
URL references, 122
URLConnection class

basic steps of, 188

caching and, 200-208

client request HT TP headers configuration,
215

connection configuration in, 208-215

drawbacks of, 188

HTTP 2.0 and, 177

HttpURLConnection subclass, 225-236

MIME media types in, 224

necessary method in, 189

protected instance fields in, 208

purposes of, 187

reading the header, 190-199

retrieving data in, 189

security considerations in, 223

setting properties in, 208

timeout values in, 215

vs. URL class, 190

writing data to servers in, 218

URLDecoder class, 154
URLEncoder.encode() method, 150
URLSs (uniform resource locators)
ASCII character limitations, 149
components of, 135-139
conversion in, 141
creating new, 123-128
equality and comparison of, 139

urgent data, 264
URI class, 121, 141
URIs (Uniform Resource Identifiers)
assignment of unique, 118
basics of, 117
components of, 144
construction of, 142
definition of, 118

476 | Index

function of, 121 Weblog program, 112

HTML links and, 117 whois directory service protocol), 269
Mailto URLs, 137 wildcard addresses, 102
proxies/proxy servers and, 154 World Wide Web Consortium (W3C), 23
relative vs. absolute URLs, 122, 127 wrap methods, 362
retrieving data from, 128-134 write() methods, 45
string decoding, 154 write(int b) method, 26
string encoding, 150 writeBytes()+ method, 42
syntax of, 121 writeChars() method, 42
URL class, 123-141 Writer class, 45
vs. URIs, 121, 141 writeUTF() method, 43
URNSs (Uniform Resource Names), 141
useCaches field, 214 X
x-gzip content encoding, 195
) x-www-form-urlencoded, 149, 219
variables, local, 75
verbs, 177 Y

yielding, 81

W

web server logfiles, 112-116

Index | 477

About the Author

Elliotte Rusty Harold is originally from New Orleans, and he returns there periodically
in search of a decent bowl of gumbo. However, he currently resides in the Prospect
Heights neighborhood of Brooklyn with his wife, Beth, and dog, Thor. He’s a frequent
speaker at industry conferences including Software Development, Dr. Dobb’s Archi-
tecture & Design World, JavaZone, JAOO, SD Best Practices, Extreme Markup Lan-
guages, and too many user groups to count. His open source projects include the XOM
Library for processing XML with Java and the Amateur media player.

Colophon

The animal on the cover of Java Network Programming, Fourth Edition, is a North
American river otter (Lutra canadensis). These small carnivores are found in all major
waterways of the United States and Canada, and in almost every habitat except the
tundra and the hot, dry regions of the southwestern United States. They weigh about
20 pounds and are approximately two and a half feet long, and females tend to be about
a third smaller than males. Their diet consists mainly of aquatic animals like fish and
frogs, but since they spend about two-thirds of their time on land, they also eat the
occasional bird or rodent. Two layers of fur—a coarse outer coat and a thick, dense inner
coat—protect a river otter from the cold, and, in fact, they seem to enjoy playing in snow
and ice. When diving, a river otter’s pulse rate slows to only 20 beats per minute from
its normal 170, conserving oxygen and allowing the otter to stay underwater longer.
These animals are sociable and domesticated easily, and in Europe, a related species was
once trained to catch fish for people to eat.

The cover image is from the Dover Pictorial Archive. The cover font is Adobe ITC
Garamond. The text font is Adobe Minion Pro; the heading font is Adobe Myriad Con-
densed; and the code font is Dalton Maag’s Ubuntu Mono.

	Copyright
	Table of Contents
	Preface
	About the Fourth Edition
	Organization of the Book
	Who You Are
	Java Versions
	About the Examples
	Conventions Used in This Book
	Request for Comments
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Basic Network Concepts
	Networks
	The Layers of a Network
	The Host-to-Network Layer
	The Internet Layer
	The Transport Layer
	The Application Layer

	IP, TCP, and UDP
	IP Addresses and Domain Names
	Ports

	The Internet
	Internet Address Blocks
	Network Address Translation
	Firewalls
	Proxy Servers

	The Client/Server Model
	Internet Standards
	IETF RFCs
	W3C Recommendations

	Chapter 2. Streams
	Output Streams
	Input Streams
	Marking and Resetting

	Filter Streams
	Chaining Filters Together
	Buffered Streams
	PrintStream
	Data Streams

	Readers and Writers
	Writers
	OutputStreamWriter
	Readers
	Filter Readers and Writers
	PrintWriter

	Chapter 3. Threads
	Running Threads
	Subclassing Thread
	Implementing the Runnable Interface

	Returning Information from a Thread
	Race Conditions
	Polling
	Callbacks
	Futures, Callables, and Executors

	Synchronization
	Synchronized Blocks
	Synchronized Methods
	Alternatives to Synchronization

	Deadlock
	Thread Scheduling
	Priorities
	Preemption

	Thread Pools and Executors

	Chapter 4. Internet Addresses
	The InetAddress Class
	Creating New InetAddress Objects
	Getter Methods
	Address Types
	Testing Reachability
	Object Methods

	Inet4Address and Inet6Address
	The NetworkInterface Class
	Factory Methods
	Getter Methods

	Some Useful Programs
	SpamCheck
	Processing Web Server Logfiles

	Chapter 5. URLs and URIs
	URIs
	URLs
	Relative URLs

	The URL Class
	Creating New URLs
	Retrieving Data from a URL
	Splitting a URL into Pieces
	Equality and Comparison
	Conversion

	The URI Class
	Constructing a URI
	The Parts of the URI
	Resolving Relative URIs
	Equality and Comparison
	String Representations

	x-www-form-urlencoded
	URLEncoder
	URLDecoder

	Proxies
	System Properties
	The Proxy Class
	The ProxySelector Class

	Communicating with Server-Side Programs Through GET
	Accessing Password-Protected Sites
	The Authenticator Class
	The PasswordAuthentication Class
	The JPasswordField Class

	Chapter 6. HTTP
	The Protocol
	Keep-Alive

	HTTP Methods
	The Request Body
	Cookies
	CookieManager
	CookieStore

	Chapter 7. URLConnections
	Opening URLConnections
	Reading Data from a Server
	Reading the Header
	Retrieving Specific Header Fields
	Retrieving Arbitrary Header Fields

	Caches
	Web Cache for Java

	Configuring the Connection
	protected URL url
	protected boolean connected
	protected boolean allowUserInteraction
	protected boolean doInput
	protected boolean doOutput
	protected boolean ifModifiedSince
	protected boolean useCaches
	Timeouts

	Configuring the Client Request HTTP Header
	Writing Data to a Server
	Security Considerations for URLConnections
	Guessing MIME Media Types
	HttpURLConnection
	The Request Method
	Disconnecting from the Server
	Handling Server Responses
	Proxies
	Streaming Mode

	Chapter 8. Sockets for Clients
	Using Sockets
	Investigating Protocols with Telnet
	Reading from Servers with Sockets
	Writing to Servers with Sockets

	Constructing and Connecting Sockets
	Basic Constructors
	Picking a Local Interface to Connect From
	Constructing Without Connecting
	Socket Addresses
	Proxy Servers

	Getting Information About a Socket
	Closed or Connected?
	toString()

	Setting Socket Options
	TCP_NODELAY
	SO_LINGER
	SO_TIMEOUT
	SO_RCVBUF and SO_SNDBUF
	SO_KEEPALIVE
	OOBINLINE
	SO_REUSEADDR
	IP_TOS Class of Service

	Socket Exceptions
	Sockets in GUI Applications
	Whois
	A Network Client Library

	Chapter 9. Sockets for Servers
	Using ServerSockets
	Serving Binary Data
	Multithreaded Servers
	Writing to Servers with Sockets
	Closing Server Sockets

	Logging
	What to Log
	How to Log

	Constructing Server Sockets
	Constructing Without Binding

	Getting Information About a Server Socket
	Socket Options
	SO_TIMEOUT
	SO_REUSEADDR
	SO_RCVBUF
	Class of Service

	HTTP Servers
	A Single-File Server
	A Redirector
	A Full-Fledged HTTP Server

	Chapter 10. Secure Sockets
	Secure Communications
	Creating Secure Client Sockets
	Choosing the Cipher Suites
	Event Handlers
	Session Management
	Client Mode
	Creating Secure Server Sockets
	Configuring SSLServerSockets
	Choosing the Cipher Suites
	Session Management
	Client Mode

	Chapter 11. Nonblocking I/O
	An Example Client
	An Example Server
	Buffers
	Creating Buffers
	Filling and Draining
	Bulk Methods
	Data Conversion
	View Buffers
	Compacting Buffers
	Duplicating Buffers
	Slicing Buffers
	Marking and Resetting
	Object Methods

	Channels
	SocketChannel
	ServerSocketChannel
	The Channels Class
	Asynchronous Channels (Java 7)
	Socket Options (Java 7)

	Readiness Selection
	The Selector Class
	The SelectionKey Class

	Chapter 12. UDP
	The UDP Protocol
	UDP Clients
	UDP Servers
	The DatagramPacket Class
	The Constructors
	The get Methods
	The setter Methods

	The DatagramSocket Class
	The Constructors
	Sending and Receiving Datagrams
	Managing Connections

	Socket Options
	SO_TIMEOUT
	SO_RCVBUF
	SO_SNDBUF
	SO_REUSEADDR
	SO_BROADCAST
	IP_TOS

	Some Useful Applications
	Simple UDP Clients
	UDPServer
	A UDP Echo Client

	DatagramChannel
	Using DatagramChannel

	Chapter 13. IP Multicast
	Multicasting
	Multicast Addresses and Groups
	Clients and Servers
	Routers and Routing

	Working with Multicast Sockets
	The Constructors
	Communicating with a Multicast Group

	Two Simple Examples

	Index
	About the Author

